indium

Inchi: InChl=1S/In

InchiKey: APFVFJFRJDLVQX-UHFFFAOYSA-N

Formula: In [In]

SMILES: [In]

Mol. weight [g/mol]: 114.82

CAS: 7440-74-6

Physical Properties

Property code	Value	Unit	Source
ea	0.30 ± 0.20	eV	NIST Webbook
ea	0.40 ± 0.01	eV	NIST Webbook
ea	0.38 ± 0.00	eV	NIST Webbook
ea	0.85 ± 0.15	eV	NIST Webbook
hfus	3.27	kJ/mol	Odd even effect in melting properties of 12 alkane-a,x-diamides
ie	5.79 ± 0.00	eV	NIST Webbook
ie	5.85 ± 0.07	eV	NIST Webbook
ie	5.78 ± 0.03	eV	NIST Webbook
ie	5.79	eV	NIST Webbook
ie	5.50 ± 0.20	eV	NIST Webbook
ie	5.79	eV	NIST Webbook
ie	5.50 ± 0.10	eV	NIST Webbook
ie	5.70 ± 0.20	eV	NIST Webbook
ie	5.79 ± 0.00	eV	NIST Webbook
tf	430.15 ± 1.00	K	NIST Webbook

Temperature Dependent Properties

Property code Value Unit Temperature [K] Source

tcondl	34.00	W/m×K	453.00	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	38.00	W/m×K	491.50	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	39.00	W/m×K	521.90	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	40.50	W/m×K	554.20	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	42.30	W/m×K	587.10	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	43.50	W/m×K	617.10	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	45.00	W/m×K	660.90	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	

tcondl	46.50	W/m×K	700.40	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	47.50	W/m×K	743.60	A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II: Measurements	
tcondl	36.30	W/m×K	467.00	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	37.00	W/m×K	495.40	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	38.20	W/m×K	522.20	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	
tcondl	40.00	W/m×K	575.90	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts	

tcondl	41.40	W/m×K	608.80	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts
tcondl	42.20	W/m×K	630.20	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts
tcondl	44.00	W/m×K	684.50	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts
tcondl	44.40	W/m×K	711.00	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts
tcondl	45.30	W/m×K	734.10	Repeatability and Refinement of a Transient Hot-wire Instrument for Measuring the Thermal Conductivity of High Temperature Melts

Correlations

Information Value

Property code	pvap		
Equation	In(Pvp) = A + B/(T + C)		
Coeff. A	1.63791e+01		
Coeff. B	-2.73012e+04		
Coeff. C	-2.37700e+01		
Temperature range (K), min.	1173.15		
Temperature range (K), max.	2345.15		

Sources

Liquid phase vapor pressure https://www.doi.org/10.1016/j.tca.2009.02.020 measurement and thermodynamics

Resessable of the Bi Cu In ternary system: https://www.doi.org/10.1016/j.tca.2009.09.004 of the Bi Cu In ternary system: https://www.sciencedirect.com/book/97801280 https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

Pressure:

Thermophysical Properties of the https://www.doi.org/10.1021/je400882q

Liquid Ga-In-Sn Eutectic Alloy: The measurement of thermal https://www.doi.org/10.1016/j.tca.2012.12.012 conductivity variation with Genderal in the street of https://www.doi.org/10.1016/j.jct.2006.04.004 Genderal in the street of https://www.doi.org/10.1016/j.jct.2006.04.004 Genderal in the street of https://www.doi.org/10.1016/j.tca.2010.02.008 https://www.doi.org/10.1016/j.tca.2010.02.008 https://www.doi.org/10.1016/j.tca.2010.02.008

and In-Sn-Zn Alloys: Measurement of zinc activity in the https://www.doi.org/10.1016/j.tca.2013.06.039 ternary In Zn Sn alloys by EMFmethod: Enthalpy of mixing in the Ag-Cd-In

https://www.doi.org/10.1016/j.jct.2016.12.005 ternary liquid phase: Repeatability and Refinement of a

https://www.doi.org/10.1007/s10765-006-0124-4 https://www.doi.org/10.1007/s10765-006-0057-y https://www.doi.org/10.1016/j.tca.2005.02.005

http://webbook.nist.gov/cgi/cbook.cgi?ID=C7440746&Units=SI

https://www.doi.org/10.1016/j.jct.2018.10.014 Thermodynamic properties of ternary Me-Ga-In (Me = La, U) alloys in a fused **โรมคะที่เกต**คล์ เริ่มช่องกา gallium activity in the liquid Ga in TI alloys by EMF โลสาของใหญ่จะเลืองการรับเล่าเดืองเหตุประเทศ https://www.doi.org/10.1016/j.tca.2005.01.061 https://www.doi.org/10.1016/j.jct.2015.04.035

barium indate: Thermal conductivity and interfacial https://www.doi.org/10.1016/j.fluid.2010.02.029 energy of solid Bi solution in the

Legend

Bi-Al-Zn eutectic system:

Electron affinity ea:

hfus: Enthalpy of fusion at standard conditions

ie: Ionization energy Vapor pressure pvap:

tcondl: Liquid thermal conductivity tf: Normal melting (fusion) point Latest version available from:

https://www.chemeo.com/cid/44-123-6/indium.pdf

Generated by Cheméo on 2025-12-23 18:13:30.098216224 +0000 UTC m=+6261807.628256886.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.