2-Hexanol, 5-methyl-

Other names: 2-Methyl-5-hexanol

5-Methyl-2-hexanol 5-Methylhexanol-(2) 5-methylhexan-2-ol

InChi=1S/C7H16O/c1-6(2)4-5-7(3)8/h6-8H,4-5H2,1-3H3

InchiKey: ZDVJGWXFXGJSIU-UHFFFAOYSA-N

Formula: C7H16O

SMILES: CC(C)CCC(C)O

Mol. weight [g/mol]: 116.20 CAS: 627-59-8

Physical Properties

Property code	Value	Unit	Source
gf	-133.64	kJ/mol	Joback Method
hf	-350.60	kJ/mol	Joback Method
hfus	10.93	kJ/mol	Joback Method
hvap	47.08	kJ/mol	Joback Method
log10ws	-1.38		Aqueous Solubility Prediction Method
logp	1.803		Crippen Method
mcvol	115.360	ml/mol	McGowan Method
рс	3149.09	kPa	Joback Method
tb	422.00 ± 5.00	K	NIST Webbook
tb	422.15 ± 3.00	K	NIST Webbook
tb	422.15 ± 3.00	K	NIST Webbook
tb	422.20	K	NIST Webbook
tc	618.05	K	Joback Method
tf	199.47	K	Joback Method
VC	0.434	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	248.03	J/mol×K	450.86	Joback Method

cna					
cpg	259.20	J/mol×K	478.73	Joback Method	
cpg	269.95	J/mol×K	506.59	Joback Method	
cpg	280.27	J/mol×K	534.46	Joback Method	
cpg	290.18	J/mol×K	562.32	Joback Method	
cpg	299.70	J/mol×K	590.19	Joback Method	
cpg	308.82	J/mol×K	618.05	Joback Method	
cpl	255.40	J/mol×K	262.05	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	254.70	J/mol×K	261.83	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	257.70	J/mol×K	265.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	258.60	J/mol×K	265.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	263.10	J/mol×K	270.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	263.90	J/mol×K	270.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	268.60	J/mol×K	275.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	269.50	J/mol×K	275.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	274.40	J/mol×K	280.00	Calorimetric and FTIR study of selected aliphatic heptanols	
срІ	275.20	J/mol×K	280.00	Calorimetric and FTIR study of selected aliphatic heptanols	
срІ	280.30	J/mol×K	285.00	Calorimetric and FTIR study of selected aliphatic heptanols	
срІ	281.10	J/mol×K	285.00	Calorimetric and FTIR study of selected aliphatic heptanols	

cpl	286.30	J/mol×K	290.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	287.10	J/mol×K	290.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	292.10	J/mol×K	295.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	292.90	J/mol×K	295.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	297.70	J/mol×K	300.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	298.60	J/mol×K	300.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	303.40	J/mol×K	305.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	304.10	J/mol×K	305.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	308.90	J/mol×K	310.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	309.60	J/mol×K	310.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	314.20	J/mol×K	315.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	315.00	J/mol×K	315.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	319.40	J/mol×K	320.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	320.40	J/mol×K	320.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	368.80	J/mol×K	379.90	Calorimetric and FTIR study of selected aliphatic heptanols	

cpl	325.60	J/mol×K	325.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	329.80	J/mol×K	330.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	330.70	J/mol×K	330.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	334.50	J/mol×K	335.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	335.50	J/mol×K	335.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	339.10	J/mol×K	340.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	340.10	J/mol×K	340.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	343.80	J/mol×K	345.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	344.80	J/mol×K	345.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	348.50	J/mol×K	350.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	349.60	J/mol×K	350.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	352.90	J/mol×K	355.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	354.00	J/mol×K	355.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	356.80	J/mol×K	360.00	Calorimetric and FTIR study of selected aliphatic heptanols	

cpl	358.00	J/mol×K	360.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	371.70	J/mol×K	382.84	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	361.50	J/mol×K	365.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	363.30	J/mol×K	370.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	364.70	J/mol×K	370.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	366.30	J/mol×K	375.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	367.70	J/mol×K	375.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	324.70	J/mol×K	325.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	370.30	J/mol×K	380.00	Calorimetric and FTIR study of selected aliphatic heptanols	
cpl	360.20	J/mol×K	365.00	Calorimetric and FTIR study of selected aliphatic heptanols	
dvisc	0.4386858	Paxs	199.47	Joback Method	
dvisc	0.0395574	Paxs	241.37	Joback Method	
dvisc	0.0072680	Paxs	283.27	Joback Method	
dvisc	0.0020664	Paxs	325.16	Joback Method	
dvisc	0.0007829	Paxs	367.06	Joback Method	
dvisc	0.0003619	Paxs	408.96	Joback Method	
dvisc	0.0001931	Paxs	450.86	Joback Method	
hvapt	49.40	kJ/mol	388.00	NIST Webbook	

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.62024e+01
Coeff. B	-4.17747e+03
Coeff. C	-6.15770e+01
Temperature range (K), min.	324.07
Temperature range (K), max.	445.15

Sources

Calorimetric and FTIR study of selected https://www.doi.org/10.1016/j.fluid.2016.04.003 aliphatic heptanols: Joback Method:

https://en.wikipedia.org/wiki/Joback_method

McGowan Method: http://link.springer.com/article/10.1007/BF02311772

NIST Webbook: http://webbook.nist.gov/cgi/cbook.cgi?ID=C627598&Units=SI

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

The Yaws Handbook of Vapor

Pressure: Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l

Legend

Ideal gas heat capacity cpg: Liquid phase heat capacity cpl:

dvisc: Dynamic viscosity

Standard Gibbs free energy of formation gf: hf: Enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions

Enthalpy of vaporization at standard conditions hvap: hvapt: Enthalpy of vaporization at a given temperature

Log10 of Water solubility in mol/l log10ws: logp: Octanol/Water partition coefficient McGowan's characteristic volume mcvol:

pc: Critical Pressure Vapor pressure pvap:

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

Critical Volume vc:

Latest version available from:

https://www.chemeo.com/cid/45-000-1/2-Hexanol-5-methyl.pdf

Generated by Cheméo on 2025-12-22 02:40:44.284222631 +0000 UTC m=+6119441.814263295.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.