Urea

Other names: (NH2)2CO

Alphadrate Aquacare Aquadrate B-I-K

Basodexan
Benural 70
Bubber shet
Calmurid
Carbaderm
Carbamide

Carbamimidic acid Carbonyl Diamine Carbonyldiamide

Elaqua xx Harnstoff Hyanit Isourea Keratinamin

NCI-C02119 NSC 34375 Nutraplus Onychomal Pastaron

Mocovina

Prespersion, 75 urea

Pseudourea Supercel 3000

UR

Ultra Mide
Urea-13C
Ureaphil
Ureophil
Urepearl
Urevert
Uroderm
Varioform II

carbamoylamine

Inchi: InChl=1S/CH4N2O/c2-1(3)4/h(H4,2,3,4)
InchiKey: XSQUKJJJFZCRTK-UHFFFAOYSA-N

Formula: CH4N2O SMILES: NC(N)=O Mol. weight [g/mol]: 60.06 CAS: 57-13-6

Physical Properties

Property code	Value	Unit	Source
affp	868.40 ± 2.50	kJ/mol	NIST Webbook
affp	873.50 ± 5.00	kJ/mol	NIST Webbook
affp	873.50 ± 5.00	kJ/mol	NIST Webbook
basg	846.10 ± 5.00	kJ/mol	NIST Webbook
basg	841.60 ± 5.00	kJ/mol	NIST Webbook
basg	838.70 ± 3.00	kJ/mol	NIST Webbook
ер	9.40	J/mol×K	NIST Webbook
ер	-1.90	J/mol×K	NIST Webbook
gf	-38.48	kJ/mol	Joback Method
hf	-235.50 ± 1.20	kJ/mol	NIST Webbook
hfs	-333.11 ± 0.69	kJ/mol	NIST Webbook
hfs	-320.20 ± 2.00	kJ/mol	NIST Webbook
hfs	-333.39 ± 0.17	kJ/mol	NIST Webbook
hfs	-333.30 ± 0.20	kJ/mol	NIST Webbook
hfs	-323.60	kJ/mol	NIST Webbook
hfus	10.34	kJ/mol	Joback Method
hsub	98.60	kJ/mol	NIST Webbook
hsub	95.50 ± 0.30	kJ/mol	NIST Webbook
hsub	87.65 ± 0.88	kJ/mol	NIST Webbook
hvap	45.85	kJ/mol	Joback Method
ie	9.80	eV	NIST Webbook
ie	10.15	eV	NIST Webbook
ie	9.70	eV	NIST Webbook
ie	10.28	eV	NIST Webbook
ie	10.27 ± 0.05	eV	NIST Webbook
ie	10.33	eV	NIST Webbook
log10ws	0.96		Aqueous Solubility Prediction Method
log10ws	0.96		Estimated Solubility Method
logp	-0.976		Crippen Method
mcvol	46.480	ml/mol	McGowan Method
рс	7735.33	kPa	Joback Method
SS	104.93	J/mol×K	NIST Webbook

SS	104.26	J/mol×K	NIST Webbook
SS	105.40	J/mol×K	NIST Webbook
SS	172.00	J/mol×K	NIST Webbook
tb	421.21	K	Joback Method
tc	638.13	K	Joback Method
tf	406.15 ± 1.50	K	NIST Webbook
tf	405.15 ± 1.50	K	NIST Webbook
tf	405.80 ± 0.50	K	NIST Webbook
tf	405.40 ± 0.80	K	NIST Webbook
tf	406.20 ± 0.10	K	NIST Webbook
tf	406.00 ± 3.00	K	NIST Webbook
tf	410.00 ± 1.50	K	NIST Webbook
tf	407.00	K	Aqueous Solubility Prediction Method
tf	406.50 ± 0.50	K	NIST Webbook
tt	405.80 ± 0.20	K	NIST Webbook
tt	405.80 ± 0.10	K	NIST Webbook
tt	408.00 ± 0.00	K	NIST Webbook
tt	407.90 ± 0.20	K	NIST Webbook
VC	0.155	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	99.73	J/mol×K	529.67	Joback Method	
cpg	109.86	J/mol×K	638.13	Joback Method	
cpg	106.68	J/mol×K	601.98	Joback Method	
cpg	103.30	J/mol×K	565.82	Joback Method	
cpg	95.96	J/mol×K	493.52	Joback Method	
cpg	87.80	J/mol×K	421.21	Joback Method	
cpg	91.98	J/mol×K	457.36	Joback Method	
cps	93.64	J/mol×K	298.00	NIST Webbook	
cps	93.14	J/mol×K	298.15	NIST Webbook	
cps	90.00	J/mol×K	298.15	NIST Webbook	
cps	115.50	J/mol×K	298.00	NIST Webbook	
cps	94.00	J/mol×K	304.70	NIST Webbook	
cps	93.08	J/mol×K	298.15	NIST Webbook	
cps	68.60	J/mol×K	293.00	NIST Webbook	
cps	92.79	J/mol×K	298.15	NIST Webbook	
hfust	13.60	kJ/mol	405.20	NIST Webbook	
hfust	14.60	kJ/mol	406.70	NIST Webbook	

hfust	13.90	kJ/mol	405.80	NIST Webbook	
hfust	15.03	kJ/mol	407.90	NIST Webbook	
hfust	14.79	kJ/mol	406.50	NIST Webbook	
hfust	13.90	kJ/mol	405.80	NIST Webbook	
hfust	14.50	kJ/mol	406.00	NIST Webbook	
hfust	12.93	kJ/mol	408.10	NIST Webbook	
hfust	14.60	kJ/mol	407.20	NIST Webbook	
hfust	13.61	kJ/mol	405.80	NIST Webbook	
hsubt	88.20	kJ/mol	357.00	NIST Webbook	
hsubt	94.60 ± 2.20	kJ/mol	366.00	NIST Webbook	
hsubt	95.10 ± 2.20	kJ/mol	366.00	NIST Webbook	
hsubt	90.90	kJ/mol	381.00	NIST Webbook	
hsubt	87.70	kJ/mol	356.50	NIST Webbook	
hsubt	96.90	kJ/mol	350.00	NIST Webbook	
hsubt	95.40	kJ/mol	361.00	NIST Webbook	
hsubt	87.90 ± 2.10	kJ/mol	356.50	NIST Webbook	
hsubt	94.60 ± 0.50	kJ/mol	350.00	NIST Webbook	
hsubt	97.60 ± 1.00	kJ/mol	354.00	NIST Webbook	
psub	6.40e-04	kPa	358.30	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	1.00e-03	kPa	363.40	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	

psub	1.51e-03	kPa	368.40	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	1.89e-03	kPa	371.20	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	0.02	kPa	402.00	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	0.02	kPa	399.00	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	

psub	0.01	kPa	393.20	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea
psub	6.27e-03	kPa	386.30	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea
psub	3.80e-03	kPa	379.50	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea
psub	2.96e-03	kPa	376.50	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea

psub	2.46e-03	kPa	374.30	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
sfust	36.40	J/mol×K	406.50	NIST Webbook	
sfust	34.25	J/mol×K	405.80	NIST Webbook	
sfust	35.70	J/mol×K	406.00	NIST Webbook	
sfust	33.54	J/mol×K	405.80	NIST Webbook	

Correlations

Information

information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	2.20584e+01
Coeff. B	-1.05730e+04
Coeff. C	6.10000e-01
Temperature range (K), min.	340.65
Temperature range (K), max.	368.05

Sources

Thermophysical Properties and Solubility of Different Sugar-Derived Measures en Derey Consulti Solvents:

Metsuras in the vertent sowents:
Solubilities of
Adultities of Adultities of Adultities from (303.15
Sayar of Volumetric Properties of Chiral N-Methyl-Substituted Glycolurils
Following the model in the substituted Glycolurils
Following the supporties of an adultities of the participation of four https://www.doi.org/10.1021/je700638u

deep eutectic solvents: Effect of lithium chloride on the density https://www.doi.org/10.1016/j.jct.2018.10.003 and dynamic viscosity of choline chloride/urea deep eutectic solvent in the temperature range (303.15-358.15)

https://www.doi.org/10.1016/j.fluid.2017.05.002

https://www.doi.org/10.1016/j.jct.2011.12.020

https://www.doi.org/10.1021/je050245x

http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt

Value

https://www.doi.org/10.1021/acs.jced.7b00184

https://www.doi.org/10.1021/je401053y

https://www.doi.org/10.1021/acs.jced.8b00105

https://www.doi.org/10.1016/j.jct.2019.01.018

Activity Coefficients of RbF in Urea Water and Formamide Water Mixtures FOR POINT OF PRESENT OF PROPERTY OF PROPER (ethanol and water) enhanced by deep chloride based ionic liquids analogues: Solubility of Rofecoxib in the Presence https://www.doi.org/10.1021/je049631p The machine is out the result of the control of the strength on volumetric and acoustic perpetress vissorities and Feacarical Gondaniestiasagueure Arabydrous Reinne anderisonixtures with Water in the Temperature Range (293.15 to syaluation of Methanesulfonate-Based Deep Eutectic Solvent for Ammonia siscarines and Carbon Dioxide Solubilities of Guanidine Carbonate
Anthomasic Plasse Plasse are flee Systems of Sygnific Acid + Urea + Water, Glutaric Attact of Hydromase and Alepho Mobility and Manager an SUNIONICE THE TOBE SAME OF THE PRINCIPAL Senisings: and viscosities of (Choline Chloride + Urea) Deep Eutectic Solvent ชคนพระหว่ายองเรียกที่สุดเลี้ย เหตุสาย the Minippe สมโค หลักของกระหว่ายองเรียกที่สุดเลี้ยงเรียกของเรียกที่สุดเลี้ยงเรียกของ เรียกของ เรียกของ

Temperature and Concentration

in Formamide and Water: A transport such a factorization of urea and tetrametry turea in Formamide and Water: A transport such a factorization of urea and tetrametry turea and t characterization of urea and its Selubility and Wass: Transfer Coefficient Enhancement of Benzyl Abetatema Wandbernbuth Napatrotropy: Pressure: Effect of Water on the Density, Viscosity, and CO2 Solubility in Choline Chloride/Urea:

https://www.doi.org/10.1021/acs.jced.5b00484 https://www.doi.org/10.1016/j.fluid.2017.03.010 https://www.doi.org/10.1016/j.fluid.2014.08.017 of Mannitol, Poly(vinylpyrrolidone) K30,

Metan to perfect the transport perfect the perfect that the the perfect https://www.doi.org/10.1016/j.jct.2018.04.010 https://www.doi.org/10.1021/acs.jced.6b00569 https://www.doi.org/10.1021/je049971a https://www.doi.org/10.1016/j.jct.2013.09.009 https://www.doi.org/10.1021/je050230z https://www.doi.org/10.1016/j.fluid.2017.01.022 https://www.doi.org/10.1016/j.fluid.2005.09.004 https://www.doi.org/10.1016/j.jct.2015.07.002 https://www.doi.org/10.1021/acs.jced.9b00145 http://pubs.acs.org/doi/abs/10.1021/ci990307l https://www.doi.org/10.1021/acs.jced.7b01004 https://www.doi.org/10.1021/acs.jced.6b00680

https://www.doi.org/10.1016/j.fluid.2019.112249 https://www.doi.org/10.1021/je301203z https://www.doi.org/10.1016/j.jct.2009.08.013

https://www.doi.org/10.1016/j.fluid.2018.06.018 https://www.doi.org/10.1021/je5001796

https://www.doi.org/10.1021/je300358u

https://www.doi.org/10.1016/j.jct.2014.07.012 https://www.doi.org/10.1021/acs.jced.8b01042

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1456

https://www.doi.org/10.1021/je0340957

Solutions of Urea and Tetramethylurea https://www.doi.org/10.1021/acs.jced.9b00794 https://www.doi.org/10.1021/acs.jced.9b00076

https://www.doi.org/10.1021/je0342872

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure https://www.doi.org/10.1021/je500320c

Studies of the Effect of Urea on PEG-4000 Polymer-Water Interactions **Ձլշջթջությալ**(jon and modeling of binary and ternary solid-liquid phase
Gouninganing effects see in the glycol:
মুকুলি বিশ্ব ক্রিক্টিল বিশ্ব কর্মান interaction parameters for dilute in ethylene glycol between 288.15 K. There 380 between 288 ชื่อรักษาอากับระบายล่-Saturated Acetonitrile Water Mixtures: Molar heat capacities of choline N,N-Dimethylformamide and Water: Fixed-Path Length Laser-Induced Fixed-Path Length Laser-Induced Sound Pinging: A Streamlined Method to vestigation of a Determination of all the property of a cetaminophen solubility by a continuous desiration of a cetaminophen solubility by a cetaminophen solubility of a cetaminophen solubility by a cetaminophen solu Vapor pressure of aqueous choline chloride-based deep eutectic solvents ใปเกรียบ based deep eutectic solvents ใปเกรียบ based beep eutectic solvents ใปเกรียบ based base N.N'-dimethylurea at temperatures from

https://www.doi.org/10.1021/acs.jced.8b01121 https://www.doi.org/10.1016/j.fluid.2015.12.026 http://webbook.nist.gov/cgi/cbook.cgi?ID=C57136&Units=SI https://www.doi.org/10.1016/j.fluid.2017.05.008 https://www.doi.org/10.1021/je200122b http://link.springer.com/article/10.1007/BF02311772 Acetonitrile Water Mixtures:
Molar heat capacities of choline
Chloride-based deep eutectic solvents
High measure density repairmentals
High measure deep eutectic
Https://www.doi.org/10.1016/j.jct.2012.05.008
Https:/ https://www.doi.org/10.1016/j.tca.2011.11.036 https://www.doi.org/10.1021/acs.jced.9b00436 https://www.doi.org/10.1016/j.fluid.2018.05.008 https://www.doi.org/10.1016/j.fluid.2018.01.017 https://www.doi.org/10.1016/j.jct.2017.01.010 https://www.doi.org/10.1016/j.fluid.2012.04.003 https://www.doi.org/10.1016/j.tca.2012.05.031 https://www.doi.org/10.1016/j.fluid.2015.11.016 https://www.doi.org/10.1021/acs.jced.9b00246 https://www.doi.org/10.1016/j.jct.2016.08.009 https://www.doi.org/10.1016/j.jct.2018.02.019 https://www.doi.org/10.1016/j.jct.2005.10.017

Proton affinity affp: basg: Gas basicity

(278.15 to 348.15) K and at the pressure

Legend

Ideal gas heat capacity cpg: Solid phase heat capacity cps: Protonation entropy at 298K ep:

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions

Solid phase enthalpy of formation at standard conditions hfs:

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsub: Enthalpy of sublimation at standard conditionshsubt: Enthalpy of sublimation at a given temperaturehvap: Enthalpy of vaporization at standard conditions

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressure

psub: Sublimation pressure

pvap: Vapor pressure

sfust: Entropy of fusion at a given temperature

ss: Solid phase molar entropy at standard conditions

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/45-964-2/Urea.pdf

Generated by Cheméo on 2024-03-13 09:27:28.080747471 +0000 UTC m=+12611297.001324784.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.