2-Methyl-1-butanol

Other names: 1-butanol, 2-methyl-

InChi=1S/C5H12O/c1-3-5(2)4-6/h5-6H,3-4H2,1-2H3

InchiKey: QPRQEDXDYOZYLA-UHFFFAOYSA-N

Formula: C5H12O CCC(C)CO

Mol. weight [g/mol]: 88.15 CAS: 137-32-6

Physical Properties

Property code	Value	Unit	Source
gf	-148.04	kJ/mol	Joback Method
hf	-304.04	kJ/mol	Joback Method
hfus	9.27	kJ/mol	Joback Method
hvap	43.02	kJ/mol	Joback Method
log10ws	-0.47		Aqueous Solubility Prediction Method
logp	1.025		Crippen Method
mcvol	87.180	ml/mol	McGowan Method
рс	3916.03	kPa	Joback Method
tb	402.45	К	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System
tb	401.93	К	Vapor-Liquid Equilibrium of Binary Mixtures Containing Ethyl Acetate + 2-Methyl-1-propanol and Ethyl Acetate + 2-Methyl-1-butanol at 101.3 kPa
tb	401.93	К	Vapor-Liquid Equilibria at 101.3 kPa for Binary Mixtures Containing 2-Methyl-1-propanol + 2-Methyl-1-butanol, 2-Methyl-1-propanol + 3-Methyl-1-butanol, and 2-Methyl-1-propanol + 1-Pentanol
tb	401.27	К	Isobaric Vapor Liquid Equilibria for the Binary and Ternary Systems of 2-Methyl-1-butanol, 2-Methyl-butanol Acetate, and Dimethylformamide (DMF) at 101.3 kPa

tc	570.76	K	Joback Method
tf	191.93	K	Joback Method
tt	118.00	К	Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols
VC	0.329	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	216.94	J/mol×K	570.76	Joback Method	
cpg	202.42	J/mol×K	515.68	Joback Method	
cpg	194.72	J/mol×K	488.15	Joback Method	
cpg	186.73	J/mol×K	460.61	Joback Method	
cpg	178.43	J/mol×K	433.08	Joback Method	
cpg	169.82	J/mol×K	405.54	Joback Method	
cpg	209.82	J/mol×K	543.22	Joback Method	
dvisc	0.0379452	Paxs	227.53	Joback Method	
dvisc	0.0026559	Paxs	298.74	Joback Method	
dvisc	0.0010745	Paxs	334.34	Joback Method	
dvisc	0.0083860	Paxs	263.13	Joback Method	
dvisc	0.0005174	Paxs	369.94	Joback Method	
dvisc	0.3005917	Paxs	191.93	Joback Method	
dvisc	0.0002833	Paxs	405.54	Joback Method	
kvisc	0.0000047	m2/s	303.15	Density, Viscosity, Excess Molar Volume, and Viscosity Deviation of Three Amyl Alcohols + Ethanol Binary Mixtures from 293.15 to 323.15 K	
kvisc	0.0000041	m2/s	308.15	Density, Viscosity, Excess Molar Volume, and Viscosity Deviation of Three Amyl Alcohols + Ethanol Binary Mixtures from 293.15 to 323.15 K	

kvisc	0.0000053	m2/s	298.15	Density, Viscosity, Excess Molar Volume, and Viscosity Deviation of Three Amyl Alcohols + Ethanol Binary Mixtures from 293.15 to 323.15 K	
kvisc	0.0000035	m2/s	313.15	Density, Viscosity, Excess Molar Volume, and Viscosity Deviation of Three Amyl Alcohols + Ethanol Binary Mixtures from 293.15 to 323.15 K	
kvisc	0.0000027	m2/s	323.15	Density, Viscosity, Excess Molar Volume, and Viscosity Deviation of Three Amyl Alcohols + Ethanol Binary Mixtures from 293.15 to 323.15 K	
kvisc	0.0000031	m2/s	318.15	Density, Viscosity, Excess Molar Volume, and Viscosity Deviation of Three Amyl Alcohols + Ethanol Binary Mixtures from 293.15 to 323.15 K	
kvisc	0.0000061	m2/s	293.15	Density, Viscosity, Excess Molar Volume, and Viscosity Deviation of Three Amyl Alcohols + Ethanol Binary Mixtures from 293.15 to 323.15 K	
pvap	32.00	kPa	371.74	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	

pvap	50.00	kPa	382.75	Effect of addition of calcium chloride on vapor pressure of 2-methyl-1-butanol
pvap	63.30	kPa	388.95	Effect of addition of calcium chloride on vapor pressure of 2-methyl-1-butanol
pvap	70.00	kPa	391.65	Effect of addition of calcium chloride on vapor pressure of 2-methyl-1-butanol
pvap	76.60	kPa	394.15	Effect of addition of calcium chloride on vapor pressure of 2-methyl-1-butanol
pvap	56.60	kPa	385.65	Effect of addition of calcium chloride on vapor pressure of 2-methyl-1-butanol
pvap	83.30	kPa	396.65	Effect of addition of calcium chloride on vapor pressure of 2-methyl-1-butanol
pvap	9.33	kPa	345.51	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2
pvap	12.00	kPa	350.44	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2
pvap	14.66	kPa	354.51	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2
pvap	17.33	kPa	358.02	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2
pvap	20.66	kPa	361.80	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2
pvap	24.00	kPa	365.12	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2

pvap	28.00	kPa	368.62	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	90.00	kPa	398.85	Effect of addition of calcium chloride on vapor pressure of 2-methyl-1-butanol	
pvap	36.00	kPa	374.56	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	40.00	kPa	377.13	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	44.00	kPa	379.50	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	48.66	kPa	382.05	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	53.33	kPa	384.41	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	58.66	kPa	386.92	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	63.99	kPa	389.23	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	69.33	kPa	391.40	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	74.66	kPa	393.43	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	79.99	kPa	395.35	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	

pvap 85.33	kPa	397.17	Vapor pressure of selected
			aliphatic alcohols by ebulliometry. Part 2
pvap 90.66	kPa	398.90	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2
pvap 97.33	kPa	400.96	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2
pvap 16.70	kPa	357.85	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System
pvap 23.30	kPa	364.85	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System
pvap 30.00	kPa	370.45	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System
pvap 33.30	kPa	372.95	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System
pvap 43.30	kPa	379.05	Effect of addition of calcium chloride on vapor pressure of 2-methyl-1-butanol
pvap 43.30	kPa	379.05	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System
pvap 50.00	kPa	382.75	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System
pvap 56.60	kPa	385.65	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System
pvap 63.30	kPa	388.95	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System

pvap	66.60	kPa	390.35	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System	
pvap	70.00	kPa	391.65	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System	
pvap	76.60	kPa	394.15	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System	
pvap	96.60	kPa	401.05	Effect of addition of calcium chloride on vapor pressure of 2-methyl-1-butanol	
pvap	90.00	kPa	398.85	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System	
pvap	96.60	kPa	401.05	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System	
pvap	101.30	kPa	402.45	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System	
pvap	23.30	kPa	364.85	Effect of addition of calcium chloride on vapor pressure of 2-methyl-1-butanol	
pvap	30.00	kPa	370.45	Effect of addition of calcium chloride on vapor pressure of 2-methyl-1-butanol	
pvap	33.30	kPa	373.05	Effect of addition of calcium chloride on vapor pressure of 2-methyl-1-butanol	
pvap	36.70	kPa	375.15	Effect of addition of calcium chloride on vapor pressure of 2-methyl-1-butanol	
pvap	83.30	kPa	396.65	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System	

pvap	36.70	kPa	375.15	Vapor-Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System
rfi	1.40860		298.15	Study of the Effects of Temperature and Pressure on the Thermodynamic and Acoustic Properties of 2-Methyl-1-butanol at Temperatures from 293K to 318K and Pressures up to 100MPa
rfi	1.40840		298.15	Bubble-Temperature Measurements on Some Binary Mixtures Formed by Tetrahydrofuran or Amyl Alcohol with Hydrocarbons, Chlorohydrocarbons, or Butanols at (94.6 or 95.8) kPa
rfi	1.40872		298.15	Density, Refractive Index, Speed of Sound at 298.15 K, and Vapor-Liquid Equilibria at 101.3 kPa for Binary Mixtures of Propanol + 2-Methyl-1-butanol and Propanol + 3-Methyl-1-butanol
rfi	1.40872		298.15	Density, Refractive Index, Speed of Sound at 298.15 K, and Vapor-Liquid Equilibria at 101.3 kPa for Binary Mixtures of Methanol + 2-Methyl-1-butanol and Ethanol + 2-Methyl-1-butanol

rfi	1.40950		293.15	Isobaric Vapor - Liquid Equilibria for the Ternary System of 2-Methyl-1-butanol, 3-Methyl-1-butanol, and Ethylene Glycol at 101.3 kPa	
rhol	796.39	kg/m3	323.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	
rhol	812.12	kg/m3	303.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa	
rhol	808.29	kg/m3	308.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa	
rhol	814.83	kg/m3	298.15	Vapor Liquid Equilibrium for 2-Methyl-1-butanol + Ethylbenzene + Xylene Isomers at 101.33 kPa	
rhol	804.41	kg/m3	313.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa	
rhol	800.47	kg/m3	318.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa	

rhol	796.47	kg/m3	323.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa	
rhol	814.98	kg/m3	298.15	Excess molar enthalpies of the binary systems: (Dibutyl ether + isomers of pentanol) at T = (298.15 and 308.15) K	
rhol	807.63	kg/m3	308.15	Excess molar enthalpies of the binary systems: (Dibutyl ether + isomers of pentanol) at T = (298.15 and 308.15) K	
rhol	823.02	kg/m3	288.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	
rhol	819.56	kg/m3	293.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	
rhol	815.82	kg/m3	298.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	

rhol	819.64	kg/m3	293.15	Densities and Viscosities for	
				Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa	
rhol	808.20	kg/m3	308.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	
rhol	804.33	kg/m3	313.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	
rhol	800.39	kg/m3	318.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	
rhol	792.41	kg/m3	328.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa	
rhol	792.34	kg/m3	328.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	

rhol	788.20	kg/m3	333.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	
rhol	783.84	kg/m3	338.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	
rhol	823.35	kg/m3	288.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa	
rhol	812.03	kg/m3	303.15	Densities and Viscosities for Binary Liquid Mixtures of Biodiesel + 1-Pentanol, 2-Pentanol, or 2-Methyl-1-Butanol from (288.15 to 338.15) K at 0.1 MPa	
rhol	815.85	kg/m3	298.15	Densities and Viscosities for Binary Liquid Mixtures of Pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa	
srf	0.02	N/m	298.15	Surface Tensions of Three Amyl Alcohol + Ethanol Binary Mixtures from (293.15 to 323.15) K	
srf	0.02	N/m	303.15	Surface Tensions of Three Amyl Alcohol + Ethanol Binary Mixtures from (293.15 to 323.15) K	

srf	0.02	N/m	308.15	Surface Tensions of Three Amyl Alcohol + Ethanol Binary Mixtures from (293.15 to 323.15) K	
srf	0.02	N/m	313.15	Surface Tensions of Three Amyl Alcohol + Ethanol Binary Mixtures from (293.15 to 323.15) K	
srf	0.02	N/m	318.15	Surface Tensions of Three Amyl Alcohol + Ethanol Binary Mixtures from (293.15 to 323.15) K	
srf	0.02	N/m	323.15	Surface Tensions of Three Amyl Alcohol + Ethanol Binary Mixtures from (293.15 to 323.15) K	
srf	0.02	N/m	293.15	Surface Tensions of Three Amyl Alcohol + Ethanol Binary Mixtures from (293.15 to 323.15) K	

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.43135e+01
Coeff. B	-2.78286e+03
Coeff. C	-1.14962e+02
Temperature range (K), min.	313.37
Temperature range (K), max.	424.10

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	2.88019e+02
Coeff. B	-1.78736e+04
Coeff. C	-4.06446e+01
Coeff. D	2.96397e-05

Temperature range (K), min.	203.00
Temperature range (K), max.	565.00

Sources

Isothermal vapor liquid equilibria for different binary mixtures involved in Haparchiquid Etwillarium for 2-Methyl-1-butanol + Ethylbenzene + Rensities and Viacos to Palinary Liquid Mixtures of Pentanol Isomers Frances 2878 of the Inipary Pressure: Henry's law constants and infinite dilution activity coefficients of propane, https://www.doi.org/10.1021/je010272x https://www.doi.org/10.1021/je010272x https://www.doi.org/10.1021/je010272x https://www.cheric.org/research/kdb/hcps-batahan/sind-be/final-https://www.cheric.org/research/kdb/hcps-batahan/sind-be/final-https://www.doi.org/10.1021/je200793z https://www.doi.org/10.1021/je200793z https://www.doi.org/10.1021/je200793z https://www.doi.org/10.1021/je200793z https://wwbbook.nist.gov/cgi/cbook.cgi?IE

Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols: Density, Refractive Index, Speed of bensity, Refractive Index, Speed of Sound at 298.15 K, and Vapor-Liquid Mytinal distance in some factors for your factors of Branched Pentanols in your factors for your factors of Branched Pentanols in your factors for your fac

Study of the Effects of Temperature and Pressure on the Thermodynamic strange busting played the strange of the Energy of the arms of the company of the compa Mixtures Containing Ethyl Acetate + Landarig Mapropario Land Editoria Acetate Emperici Mapor page in the Elliphia Serate
2-Methyl Latricand at 101.3 kPa:
Emperici Taren Liquid Edgilip Macrate +
Emperici Taren Liquid Edgilip Macrate Edg अभाधिमां।-1-butanol, and

2-Methyl-1-propanol + 1-Pentanol:

https://www.doi.org/10.1016/j.fluid.2008.03.002

https://www.doi.org/10.1021/je301220s

https://www.doi.org/10.1021/acs.jced.8b00979

https://www.doi.org/10.1016/j.jct.2015.03.021

https://www.doi.org/10.1021/je0340147

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.doi.org/10.1021/je049723e

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=828

http://webbook.nist.gov/cgi/cbook.cgi?ID=B6001118&Units=SI

https://www.doi.org/10.1021/je060411g

https://www.doi.org/10.1021/je0502142

https://www.doi.org/10.1007/s10765-009-0607-1

https://www.doi.org/10.1021/acs.jced.7b00996

https://www.doi.org/10.1021/je9008365

https://www.doi.org/10.1016/j.fluid.2011.03.018

https://en.wikipedia.org/wiki/Joback_method

Henry's law constants and infinite

https://www.doi.org/10.1016/j.jct.2005.08.004

Ideal gas heat capacity cpg:

dvisc: Dynamic viscosity

Standard Gibbs free energy of formation gf:

Enthalpy of formation at standard conditions hf:

Enthalpy of fusion at standard conditions hfus:

hvap: Enthalpy of vaporization at standard conditions

Kinematic viscosity kvisc:

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: mcvol: McGowan's characteristic volume

Critical Pressure pc: Vapor pressure pvap: rfi: Refractive Index rhol: Liquid Density srf: Surface Tension

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

tt: **Triple Point Temperature**

Critical Volume vc:

Latest version available from:

https://www.chemeo.com/cid/45-975-0/2-Methyl-1-butanol.pdf

Generated by Cheméo on 2025-12-22 06:00:08.417180463 +0000 UTC m=+6131405.947221117.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.