Cyclohexylamine

Other names: 1-Aminocyclohexane

1-Cyclohexylamine Aminocyclohexane

Aminohexahydrobenzene

Aniline, hexahydro-

Benzenamine, hexahydro-

CHA

Cyclohexanamine Hexahydroaniline

Hexahydrobenzenamine

UN 2357

cyclohexaneamine

Inchi: InChl=1S/C6H13N/c7-6-4-2-1-3-5-6/h6H,1-5,7H2

InchiKey: PAFZNILMFXTMIY-UHFFFAOYSA-N

Formula: C6H13N

SMILES: NC1CCCC1

Mol. weight [g/mol]: 99.17 **CAS:** 108-91-8

Physical Properties

Property code	Value	Unit	Source
affp	934.40	kJ/mol	NIST Webbook
basg	899.60	kJ/mol	NIST Webbook
chl	-4071.30 ± 1.30	kJ/mol	NIST Webbook
chl	-4077.50 ± 1.60	kJ/mol	NIST Webbook
gf	90.54	kJ/mol	Joback Method
hf	-104.90 ± 1.30	kJ/mol	NIST Webbook
hf	-98.70	kJ/mol	NIST Webbook
hfl	-147.70 ± 1.30	kJ/mol	NIST Webbook
hfl	-141.50 ± 1.60	kJ/mol	NIST Webbook
hfus	8.33	kJ/mol	Joback Method
hvap	43.70	kJ/mol	NIST Webbook
hvap	42.80 ± 0.10	kJ/mol	NIST Webbook
hvap	42.80	kJ/mol	NIST Webbook
ie	8.86	eV	NIST Webbook
ie	8.40	eV	NIST Webbook
ie	8.40 ± 0.10	eV	NIST Webbook

log10ws	-1.77		Crippen Method
logp	1.278		Crippen Method
mcvol	94.520	ml/mol	McGowan Method
pc	4260.71	kPa	Joback Method
rinpol	862.00		NIST Webbook
rinpol	848.00		NIST Webbook
rinpol	870.00		NIST Webbook
rinpol	862.00		NIST Webbook
rinpol	855.00		NIST Webbook
rinpol	851.00		NIST Webbook
rinpol	863.00		NIST Webbook
rinpol	857.00		NIST Webbook
rinpol	857.00		NIST Webbook
rinpol	851.00		NIST Webbook
rinpol	857.00		NIST Webbook
ripol	1257.00		NIST Webbook
ripol	1257.00		NIST Webbook
ripol	1265.00		NIST Webbook
ripol	1267.00		NIST Webbook
ripol	1230.00		NIST Webbook
ripol	1222.00		NIST Webbook
ripol	1251.00		NIST Webbook
tb	407.70	K	NIST Webbook
tb	407.10	K	NIST Webbook
tb	405.15 ± 3.00	K	NIST Webbook
tb	408.15 ± 5.00	K	NIST Webbook
tb	407.40 ± 0.50	K	NIST Webbook
tb	407.00 ± 0.50	K	NIST Webbook
tc	626.80	К	Gas-Liquid Critical Temperatures of Some Alkenes, Amines, and Cyclic Hydrocarbons
tc	614.60	K	NIST Webbook
tf	252.00 ± 4.00	K	NIST Webbook
tf	255.40 ± 0.70	K	NIST Webbook
VC	0.334	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	206.73	J/mol×K	465.57	Joback Method	
cpg	221.50	J/mol×K	502.39	Joback Method	

cpg	235.45	J/mol×K	539.20	Joback Method
cpg	248.59	J/mol×K	576.02	Joback Method
cpg	260.96	J/mol×K	612.83	Joback Method
cpg	272.56	J/mol×K	649.65	Joback Method
cpg	191.11	J/mol×K	428.76	Joback Method
hfust	16.50	kJ/mol	255.10	NIST Webbook
hfust	14.92	kJ/mol	255.40	NIST Webbook
hvapt	36.14	kJ/mol	407.10	NIST Webbook
hvapt	40.60	kJ/mol	385.00	NIST Webbook
hvapt	40.80	kJ/mol	370.50	NIST Webbook
hvapt	42.70 ± 0.10	kJ/mol	313.00	NIST Webbook
hvapt	40.70 ± 0.10	kJ/mol	343.00	NIST Webbook
hvapt	40.80	kJ/mol	367.50	NIST Webbook
hvapt	39.60 ± 0.10	kJ/mol	358.00	NIST Webbook
pvap	4.57	kPa	323.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures
pvap	4.76	kPa	323.99	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures
pvap	4.76	kPa	323.99	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures

pvap	4.76	kPa	323.99	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	7.56	kPa	334.00	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	12.08	kPa	344.00	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	17.65	kPa	354.06	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	25.96	kPa	364.10	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	

pvap	25.96	kPa	364.10	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	25.94	kPa	364.13	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	25.96	kPa	364.13	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	0.23	kPa	273.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	0.46	kPa	283.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	

pvap	0.88	kPa	293.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	1.60	kPa	303.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	2.76	kPa	313.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	4.76	kPa	323.97	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	7.32	kPa	333.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	

pvap	11.35	kPa	343.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures
pvap	17.98	kPa	353.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures
pvap	25.06	kPa	363.15	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures
pvap	0.46	kPa	283.20	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study
pvap	0.56	kPa	286.20	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study
pvap	0.72	kPa	290.10	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study
pvap	0.91	kPa	293.30	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study
pvap	1.06	kPa	296.20	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study

pvap	1.18	kPa	298.10	Thermodynamic proportion of
				properties of cyclohexanamines: Experimental and theoretical study
pvap	1.28	kPa	299.30	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study
pvap	1.54	kPa	302.30	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study
pvap	1.79	kPa	305.30	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study
pvap	2.11	kPa	308.30	Thermodynamic properties of cyclohexanamines: Experimental and theoretical study
pvap	7.51	kPa	333.15	Activity Coefficients at Infinite Dilution of Cylcohexylamine + Octane, Toluene, Ethylbenzene, or Aniline and Excess Molar Volumes in Binary Mixtures of Cyclohexylamine + Heptane, Octane, Nonane, Decane, Undecane, Aniline, or Water
pvap	25.59	kPa	363.15	Activity Coefficients at Infinite Dilution of Cylcohexylamine + Octane, Toluene, Ethylbenzene, or Aniline and Excess Molar Volumes in Binary Mixtures of Cyclohexylamine + Heptane, Octane, Nonane, Decane, Undecane, Aniline, or Water

pvap	4.76	kPa	323.92	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	2.85	kPa	313.81	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	2.85	kPa	313.79	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	1.66	kPa	303.84	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	1.66	kPa	303.82	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	

pvap	1.66	kPa	303.79	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures
pvap	0.92	kPa	293.88	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures
pvap	0.92	kPa	293.86	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures
pvap	0.92	kPa	293.83	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures
pvap	0.49	kPa	283.86	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures

pvap	0.25	kPa	274.30	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	25.59	kPa	363.15	An equipment for dynamic measurements of vapour liquid equilibria and results in binary systems containing cyclohexylamine	
pvap	17.53	kPa	353.15	An equipment for dynamic measurements of vapour liquid equilibria and results in binary systems containing cyclohexylamine	
pvap	11.67	kPa	343.15	An equipment for dynamic measurements of vapour liquid equilibria and results in binary systems containing cyclohexylamine	
pvap	0.92	kPa	293.88	Experimental determination of the isothermal (vapour + liquid) equilibria of binary aqueous solutions of sec-butylamine and cyclohexylamine at several temperatures	
pvap	7.52	kPa	333.15	An equipment for dynamic measurements of vapour liquid equilibria and results in binary systems containing cyclohexylamine	

rfi	1.46240	288.15	Vapor liquid equilibria in ternary systems of associating components (water, aniline, cyclohexylamine) and hydrocarbons (octane or toluene)
rfi	1.46240	288.15	Liquid-Liquid(-Liquid) Equilibria in Ternary Systems of Water + Cyclohexylamine + Aromatic Hydrocarbon (Toluene or Propylbenzene) or Aliphatic Hydrocarbon (Heptane or Octane)
rfi	1.44336	323.15	Experimental Determination of Densities and Refractive Indices of the Ternary Mixture 2-Methyl-2-propanol + Cyclohexylamine + n-Heptane at T = (303.15 to 323.15) K
rfi	1.44599	318.15	Experimental Determination of Densities and Refractive Indices of the Ternary Mixture 2-Methyl-2-propanol + Cyclohexylamine + n-Heptane at T = (303.15 to 323.15) K
rfi	1.44856	313.15	Experimental Determination of Densities and Refractive Indices of the Ternary Mixture 2-Methyl-2-propanol + Cyclohexylamine + n-Heptane at T = (303.15 to 323.15) K

rfi	1.45114		308.15	Experimental Determination of
				Determination of Densities and Refractive Indices of the Ternary Mixture 2-Methyl-2-propanol
				Cyclohexylamine + n-Heptane at T = (303.15 to 323.15) K
rfi	1.45375		303.15	Experimental Determination of Densities and Refractive Indices of the Ternary Mixture 2-Methyl-2-propanol
				Cyclohexylamine + n-Heptane at T = (303.15 to 323.15) K
rfi	1.46240		288.15	Ternary Liquid-Liquid(-Liquid) Equilibria of Aniline + Cyclohexylamine + Water, Aniline
				Cyclohexylamine + Octane, Aniline + Water + Toluene, and Aniline + Water + Octane
rhol	871.29	kg/m3	288.15	Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries from 288.15 to 323.15K
rhol	848.71	kg/m3	313.15	Experimental and Computational Studies of Binary Mixtures of Isobutanol + Cyclohexylamine
rhol	853.24	kg/m3	308.15	Experimental and Computational Studies of Binary Mixtures of Isobutanol + Cyclohexylamine

rhol	857.79	kg/m3	303.15	Experimental and Computational Studies of Binary Mixtures of Isobutanol + Cyclohexylamine	
rhol	862.31	kg/m3	298.15	Experimental and Computational Studies of Binary Mixtures of Isobutanol + Cyclohexylamine	
rhol	866.85	kg/m3	293.15	Experimental and Computational Studies of Binary Mixtures of Isobutanol + Cyclohexylamine	
rhol	839.55	kg/m3	323.15	Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries from 288.15 to 323.15K	
rhol	867.20	kg/m3	293.15	Thermodynamics of mixtures with strongly negative deviations from Raoult s law. XII. Densities, viscosities and refractive indices at T = (293.15 to 303.15) K for (1-heptanol, or 1-decanol + cyclohexylamine) systems. Application of the ERAS model to (1-alkanol + cyclohexylamine) mixtures	

rhol	862.69	kg/m3	298.15	Thermodynamics of mixtures with strongly negative deviations from Raoult s law. XII. Densities, viscosities and refractive indices at T = (293.15 to 303.15) K for (1-heptanol, or 1-decanol + cyclohexylamine) systems. Application of the ERAS model to (1-alkanol + cyclohexylamine) mixtures	
rhol	844.07	kg/m3	318.15	Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries from 288.15 to 323.15K	
rhol	858.12	kg/m3	303.15	Thermodynamics of mixtures with strongly negative deviations from Raoult s law. XII. Densities, viscosities and refractive indices at T = (293.15 to 303.15) K for (1-heptanol, or 1-decanol + cyclohexylamine) systems. Application of the ERAS model to (1-alkanol + cyclohexylamine) mixtures	

rhol	853.14	kg/m3	308.15	Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries from 288.15 to 323.15K	
rhol	857.67	kg/m3	303.15	Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries from 288.15 to 323.15K	
rhol	862.21	kg/m3	298.15	Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries from 288.15 to 323.15K	
rhol	866.75	kg/m3	293.15	Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries from 288.15 to 323.15K	

	0.40.04	1- / 0	040.45	F 1	
rhol	848.61	kg/m3	313.15	Experimental determination and modelling of densities and excess molar volumes of ternary system (1-butanol + cyclohexylamine + n-heptane) and corresponding binaries from 288.15 to 323.15K	
speedsl	1342.00	m/s	318.15	Densities, Viscosities, Sound Speed, and IR Studies of N-methyl-2- pyrrolidone with Cyclohexylamine, Cyclohexanol, and Cyclohexene at different Temperatures.	
speedsl	1379.20	m/s	308.15	Densities, Viscosities, Sound Speed, and IR Studies of N-methyl-2- pyrrolidone with Cyclohexylamine, Cyclohexanol, and Cyclohexene at different Temperatures.	
speedsl	1397.80	m/s	303.15	Densities, Viscosities, Sound Speed, and IR Studies of N-methyl-2- pyrrolidone with Cyclohexylamine, Cyclohexanol, and Cyclohexene at different Temperatures.	
speedsl	1301.80	m/s	323.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	

speedsl	1323.10	m/s	318.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1344.50	m/s	313.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1366.00	m/s	308.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1387.30	m/s	303.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1408.80	m/s	298.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	

speedsl	1430.50	m/s	293.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1360.60	m/s	313.15	Densities, Viscosities, Sound Speed, and IR Studies of N-methyl-2- pyrrolidone with Cyclohexylamine, Cyclohexanol, and Cyclohexene at different Temperatures.	

Correlations

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	8.66698e+01
Coeff. B	-7.88954e+03
Coeff. C	-1.06327e+01
Coeff. D	7.33244e-06
Temperature range (K), min.	255.45
Temperature range (K), max.	615.00

Sources

several temperatures:

Experimental and Computational Studies of Binary Mixtures of Measurance (Capital And Computation and Computati **Experimental and Computational** sec-butylamine and cyclohexylamine at

https://www.doi.org/10.1021/acs.jced.6b00158

https://www.doi.org/10.1021/acs.jced.7b00100

https://www.doi.org/10.1016/j.tca.2009.07.002

https://www.doi.org/10.1021/acs.jced.7b00721

https://www.chemeo.com/doc/models/crippen_log10ws

https://www.doi.org/10.1016/j.fluid.2005.05.003

Introduction of the amine group at cycloaliphatic hydrocarbon (c-CHNH2) Popularie ym Visirie ai fy NREÁIG (Diverlinda a)

Interpretation of the control of the

Densities and Excess Molar Volumes of 2-Butanol + Cyclohexanamine + Heptancianaria estadol of hopetable at animal mixtures elle excess and harrial manager of hopetable at animal mixtures elle excess and harrial manager of hopetable animal manager of hopetable animal substantial manager of hopetable and excessive indices of the periodic and by the property of the property of the periodic and by the property of the periodic and excess the property of the periodic and excess the periodic and except a Molar Volumes in Binary Mixtures of Cyclohexylamine + Heptane, Octane, Nonane, Decane, Undecane, Aniline, or Water:

VLE and LLE in ternary systems of two associating components (water, demonstrating components (water, demonstration) and a systems of the systems of

Ternary Liquid-Liquid(-Liquid) Equilibria of Aniline + Cyclohexylamine C WARER, MATHAE + Cyclohexylamine + Octane, Aniline + Water + Toluene, and hanne Ligwide Ligwide Equilibria in Ternary Systems of Water + Received was the passes of managed the second secon

and lefetudies in the self of 24293.15 to bus of plante with bus of plante and cyclobes of the self of Egendlohexylamine)

https://www.doi.org/10.1016/j.fluid.2011.09.010

https://www.doi.org/10.1021/je900240s

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1326

https://www.doi.org/10.1016/j.jct.2011.04.017

https://www.doi.org/10.1016/j.fluid.2016.12.001

https://www.doi.org/10.1016/j.tca.2012.08.011

https://www.doi.org/10.1021/je100484n

https://www.doi.org/10.1021/je050316s

http://webbook.nist.gov/cgi/cbook.cgi?ID=C108918&Units=SI

https://www.cheric.org/files/research/kdb/mol/mol1326.mol

https://en.wikipedia.org/wiki/Joback method

https://www.doi.org/10.1016/j.fluid.2014.02.023

https://www.doi.org/10.1016/j.fluid.2007.07.023

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1326

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1021/je0505366

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1021/je050520f

https://www.doi.org/10.1016/j.tca.2015.03.016

https://www.doi.org/10.1016/j.jct.2014.09.005

https://www.doi.org/10.1016/j.tca.2014.06.026

affp: Proton affinity Gas basicity basg:

Standard liquid enthalpy of combustion chl:

Ideal gas heat capacity cpg:

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

Ionization energy ie:

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: McGowan's characteristic volume mcvol:

pc: Critical Pressurepvap: Vapor pressurerfi: Refractive Indexrhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices speedsl: Speed of sound in fluid

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/46-311-5/Cyclohexylamine.pdf

Generated by Cheméo on 2025-12-05 13:57:39.20754187 +0000 UTC m=+4691256.737582539.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.