Amylene hydrate

Other names: 1,1-Dimethyl-1-propanol

2-Butanol, 2-methyl-2-Methyl butanol-2 2-Methyl-2-butanol 2-Methylbutan-2-ol 2-ethyl-2-propanol

2-methyl-2-butanol (tert-amyl alcohol)

3-Methyl-butanol-(3)
3-Methylbutan-3-ol
C2H5C(CH3)2OH
Dimethyl ethyl carbinol
Ethyl dimethyl carbinol

Methyl-2 butanol-2 Methyl-3 butanol-3

NSC 25498

TERT-PENTANOL

TERT-PENTYL ALCOHOL

t-Amyl alcohol tert-Amyl alcohol tert-Isoamyl alcohol

InChl=1S/C5H12O/c1-4-5(2,3)6/h6H,4H2,1-3H3

InchiKey: MSXVEPNJUHWQHW-UHFFFAOYSA-N

 Formula:
 C5H12O

 SMILES:
 CCC(C)(C)O

Mol. weight [g/mol]: 88.15 CAS: 75-85-4

Physical Properties

Property code	Value	Unit	Source
chl	-3303.10 ± 0.46	kJ/mol	NIST Webbook
dm	1.90	debye	KDB
gf	-142.76	kJ/mol	Joback Method
hf	-329.30	kJ/mol	NIST Webbook
hf	-329.90	kJ/mol	KDB
hfl	-379.50 ± 0.54	kJ/mol	NIST Webbook

hfus	0.90	kJ/mol Heat Capacities in the Solid and in the Liquid Phase of Isomeric Pentanols	
hvap	50.17	kJ/mol	NIST Webbook
hvap	51.50 ± 0.30	kJ/mol	NIST Webbook
hvap	50.50	kJ/mol	NIST Webbook
hvap	50.20 ± 0.30	kJ/mol	NIST Webbook
hvap	49.20	kJ/mol	NIST Webbook
hvap	50.10 ± 0.20	kJ/mol	NIST Webbook
ie	10.16 ± 0.03	eV	NIST Webbook
ie	9.80	eV	NIST Webbook
log10ws	0.15		Estimated Solubility Method
log10ws	0.08		Aqueous Solubility Prediction Method
logp	1.167		Crippen Method
mcvol	87.180	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=1)		KDB
рс	3710.00	kPa	KDB
рс	3710.00 ± 40.00	kPa	NIST Webbook
рс	3710.00 ± 20.00	kPa	NIST Webbook
rinpol	628.00		NIST Webbook
rinpol	614.00		NIST Webbook
rinpol	625.00		NIST Webbook
rinpol	628.00		NIST Webbook
rinpol	630.00		NIST Webbook
rinpol	619.00		NIST Webbook
rinpol	659.00		NIST Webbook
rinpol	658.00		NIST Webbook
rinpol	629.00		NIST Webbook
rinpol	626.00		NIST Webbook
rinpol	628.00		NIST Webbook
rinpol	626.00		NIST Webbook
rinpol	622.00		NIST Webbook
rinpol	628.00		NIST Webbook
rinpol	634.00		NIST Webbook
rinpol	614.00		NIST Webbook
rinpol	626.00		NIST Webbook
rinpol	628.00		NIST Webbook
rinpol	628.00		NIST Webbook
rinpol	636.00		NIST Webbook
rinpol	636.00		NIST Webbook
rinpol	636.00		NIST Webbook
rinpol	628.00		NIST Webbook

rinnal	631.00	NIST Webbook
rinpol		
rinpol	636.00	NIST Webbook
rinpol	597.50	NIST Webbook
rinpol	619.00	NIST Webbook
rinpol	628.00	NIST Webbook
rinpol	615.00	NIST Webbook
rinpol	596.60	NIST Webbook
rinpol	614.00	NIST Webbook
rinpol	625.00	NIST Webbook
rinpol	628.00	NIST Webbook
rinpol	644.00	NIST Webbook
rinpol	642.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	628.00	NIST Webbook
rinpol	644.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	631.00	NIST Webbook
rinpol	652.00	NIST Webbook
rinpol	628.00	NIST Webbook
rinpol	644.00	NIST Webbook
rinpol	652.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	597.90	NIST Webbook
rinpol	597.50	NIST Webbook
rinpol	642.00	NIST Webbook
rinpol	652.00	NIST Webbook
ripol	966.00	NIST Webbook
ripol	1014.00	NIST Webbook
ripol	1015.00	NIST Webbook
ripol	987.00	NIST Webbook
ripol	1008.00	NIST Webbook
ripol	1011.00	NIST Webbook
ripol	1003.00	NIST Webbook
ripol	975.00	NIST Webbook
ripol	1003.00	NIST Webbook
ripol	997.00	NIST Webbook
ripol	1000.00	NIST Webbook
ripol	1000.00	NIST Webbook
ripol	1011.00	NIST Webbook
ripol	1000.00	NIST Webbook
ripol	1029.00	NIST Webbook
ripol	1004.00	NIST Webbook
ripol	1048.00	NIST Webbook
ripol	1021.00	NIST Webbook
- IIPOI	.02.100	THE PRODUCTION

ripol	1002.00		NIST Webbook
ripol	1026.00		NIST Webbook
ripol	1028.00		NIST Webbook
ripol	1048.00		NIST Webbook
ripol	1026.00		NIST Webbook
ripol	1028.00		NIST Webbook
ripol	1048.00		NIST Webbook
ripol	1026.00		NIST Webbook
ripol	1029.00		NIST Webbook
ripol	987.00		NIST Webbook
ripol	1012.00		NIST Webbook
ripol	975.00		NIST Webbook
sg	362.80 ± 6.70	J/mol×K	NIST Webbook
sl	229.30	J/mol×K	NIST Webbook
tb	375.65 ± 2.00	K	NIST Webbook
tb	373.90 ± 2.00	K	NIST Webbook
tb	374.96 ± 0.50	K	NIST Webbook
tb	374.90 ± 1.00	K	NIST Webbook
tb	376.15 ± 2.00	K	NIST Webbook
tb	375.46 ± 0.20	K	NIST Webbook
tb	375.05 ± 0.50	K	NIST Webbook
tb	375.65 ± 2.00	K	NIST Webbook
tb	375.65 ± 2.00	K	NIST Webbook
tb	374.15 ± 2.00	K	NIST Webbook
tb	375.15 ± 2.00	K	NIST Webbook
tb	374.85 ± 0.50	K	NIST Webbook
tb	375.50	K	KDB
tb	375.20	K	NIST Webbook
tb	375.00	K	NIST Webbook
tb	374.00 ± 3.00	K	NIST Webbook
tb	374.75 ± 0.50	K	NIST Webbook
tb	375.25 ± 0.50	K	NIST Webbook
tb	355.70 ± 0.50	K	NIST Webbook
tb	375.20 ± 0.50	K	NIST Webbook
tb	375.40 ± 0.20	K	NIST Webbook
tb	375.50 ± 0.10	K	NIST Webbook
tb	373.45 ± 1.50	K	NIST Webbook
tb	374.65 ± 1.00	K	NIST Webbook
tb	375.15 ± 0.50	K	NIST Webbook
tb	375.20 ± 0.50	K	NIST Webbook
tb	375.40	K	NIST Webbook
tb	374.65 ± 1.00	K	NIST Webbook
tb	375.50 ± 0.30	K	NIST Webbook
tb	374.95 ± 0.50	K	NIST Webbook
	3. 1.00 2 3.00	T.	or Woodook

tb	375.40 ± 1.00	K	NIST Webbook
tb	375.15 ± 1.00	K	NIST Webbook
tb	374.65 ± 1.00	K	NIST Webbook
tb	374.55 ± 1.00	K	NIST Webbook
tb	375.45 ± 0.50	K	NIST Webbook
tb	375.05 ± 0.50	K	NIST Webbook
tb	375.40 ± 1.00	K	NIST Webbook
tb	374.65 ± 1.00	K	NIST Webbook
tb	373.15 ± 2.00	K	NIST Webbook
tb	355.35 ± 0.40	K	NIST Webbook
tb	375.60 ± 0.60	K	NIST Webbook
tb	375.00 ± 0.50	K	NIST Webbook
tb	375.40 ± 0.40	K	NIST Webbook
tc	545.00	K	NIST Webbook
tc	543.70 ± 0.70	K	NIST Webbook
tc	543.70 ± 0.50	K	NIST Webbook
tc	543.70	K	KDB
tc	544.90	K	NIST Webbook
tf	263.45	К	Aqueous Solubility Prediction Method
tf	262.75 ± 0.60	K	NIST Webbook
tf	263.95 ± 0.50	K	NIST Webbook
tf	264.20 ± 0.50	K	NIST Webbook
tf	264.30	K	KDB
tt	264.00 ± 0.20	K	NIST Webbook
VC	0.324	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	194.30 ± 4.10	J/mol×K	475.25	NIST Webbook	
cpg	167.70 ± 4.10	J/mol×K	381.35	NIST Webbook	
cpg	169.40 ± 4.10	J/mol×K	387.45	NIST Webbook	
cpg	171.90 ± 4.10	J/mol×K	396.05	NIST Webbook	
cpg	180.30 ± 4.10	J/mol×K	425.95	NIST Webbook	
cpg	172.40 ± 4.10	J/mol×K	398.05	NIST Webbook	
cpg	222.80 ± 4.10	J/mol×K	576.05	NIST Webbook	
cpg	207.20 ± 4.10	J/mol×K	520.85	NIST Webbook	
cpg	168.60 ± 4.10	J/mol×K	384.65	NIST Webbook	
cpl	248.86	J/mol×K	298.15	NIST Webbook	
cpl	248.86	J/mol×K	298.15	NIST Webbook	

cpl	247.30	J/mol×K	298.15	NIST Webbook	
cpl	244.14	J/mol×K	294.40	NIST Webbook	
cpl	247.15	J/mol×K	298.15	NIST Webbook	
dvisc	0.0025042	Paxs	308.15	Excess molar volume, viscosity, and refractive index study for the ternary mixture {2-methyl-2-butanol (1) + tetrahydrofuran (2) + propylamine (3)} at different temperatures. Application of the ERAS-model and Peng Robinson Stryjek Vera equation of state	
dvisc	0.0033871	Paxs	308.15	Densities and Viscosities of Binary Liquid Mixtures of 2-Butanone with Branched Alcohols at (293.15 to 313.15) K	
dvisc	0.0039086	Paxs	303.15	Densities and Viscosities of Binary Liquid Mixtures of 2-Butanone with Branched Alcohols at (293.15 to 313.15) K	
dvisc	0.0044740	Paxs	298.15	Densities and Viscosities of Binary Liquid Mixtures of 2-Butanone with Branched Alcohols at (293.15 to 313.15) K	
dvisc	0.0051080	Paxs	293.15	Densities and Viscosities of Binary Liquid Mixtures of 2-Butanone with Branched Alcohols at (293.15 to 313.15) K	

dvisc	0.0058667	Paxs	288.15	Excess molar volume, viscosity, and refractive index study for the ternary mixture {2-methyl-2-butanol (1) + tetrahydrofuran (2) + propylamine (3)} at different temperatures. Application of the ERAS-model and Peng Robinson Stryjek Vera equation of state	
dvisc	0.0029086	Paxs	313.15	Densities and Viscosities of Binary Liquid Mixtures of 2-Butanone with Branched Alcohols at (293.15 to 313.15) K	
dvisc	0.0034781	Paxs	298.15	Excess molar volume, viscosity, and refractive index study for the ternary mixture {2-methyl-2-butanol (1) + tetrahydrofuran (2) + propylamine (3)} at different temperatures. Application of the ERAS-model and Peng Robinson Stryjek Vera equation of state	
hfust	2.24	kJ/mol	262.70	NIST Webbook	
hfust	0.17	kJ/mol	213.00	NIST Webbook	
hfust	1.96	kJ/mol	146.00	NIST Webbook	
hfust	4.46	kJ/mol	264.00	NIST Webbook	
hfust	2.00	kJ/mol	192.50	NIST Webbook	
hfust	4.46	kJ/mol	264.00	NIST Webbook	
hvapt	39.04	kJ/mol	375.40	NIST Webbook	
hvapt	42.00 ± 0.10	kJ/mol	358.00	NIST Webbook	
hvapt	44.20 ± 0.10	kJ/mol	343.00	NIST Webbook	
hvapt	46.40 ± 0.20	kJ/mol	328.00	NIST Webbook	
hvapt	48.50	kJ/mol	331.00	NIST Webbook	
hvapt	48.40 ± 0.20	kJ/mol	313.00	NIST Webbook	
hvapt	45.80	kJ/mol	349.50	NIST Webbook	
hvapt	49.00	kJ/mol	327.50	NIST Webbook	
hvapt	47.30	kJ/mol	341.50	NIST Webbook	

hvapt	52.80	kJ/mol	336.50	NIST Webbook	
hvapt	51.20	kJ/mol	338.00	NIST Webbook	
hvapt	40.30 ± 0.10	kJ/mol	368.00	NIST Webbook	
kvisc	0.0000021	m2/s	323.15	Density, Viscosity, Excess Molar Volume, and Viscosity Deviation of Three Amyl Alcohols + Ethanol Binary Mixtures from 293.15 to 323.15 K	
kvisc	0.0000034	m2/s	308.15	Density, Viscosity, Excess Molar Volume, and Viscosity Deviation of Three Amyl Alcohols + Ethanol Binary Mixtures from 293.15 to 323.15 K	
kvisc	0.0000051	m2/s	293.15	Density, Viscosity, Excess Molar Volume, and Viscosity Deviation of Three Amyl Alcohols + Ethanol Binary Mixtures from 293.15 to 323.15 K	
kvisc	0.0000045	m2/s	298.15	Density, Viscosity, Excess Molar Volume, and Viscosity Deviation of Three Amyl Alcohols + Ethanol Binary Mixtures from 293.15 to 323.15 K	
kvisc	0.0000039	m2/s	303.15	Density, Viscosity, Excess Molar Volume, and Viscosity Deviation of Three Amyl Alcohols + Ethanol Binary Mixtures from 293.15 to 323.15 K	

kvisc	0.0000025	m2/s	318.15	Density, Viscosity, Excess Molar Volume, and Viscosity Deviation of Three Amyl Alcohols + Ethanol Binary Mixtures from 293.15 to 323.15 K	
kvisc	0.0000029	m2/s	313.15	Density, Viscosity, Excess Molar Volume, and Viscosity Deviation of Three Amyl Alcohols + Ethanol Binary Mixtures from 293.15 to 323.15 K	
pvap	91.99	kPa	371.77	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	82.53	kPa	368.83	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	83.93	kPa	369.31	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	85.28	kPa	369.73	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	86.63	kPa	370.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	87.97	kPa	370.56	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	89.39	kPa	370.99	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	90.76	kPa	371.39	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	93.31	kPa	372.16	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	94.67	kPa	372.56	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	95.99	kPa	372.95	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	97.39	kPa	373.34	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	98.71	kPa	373.73	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	5.69	kPa	313.15	Vapor-Liquid Equilibria in Binary Systems Formed by n-Hexane with Alcohols	
pvap	10.41	kPa	323.15	Vapor-Liquid Equilibria in Binary Systems Formed by n-Hexane with Alcohols	
pvap	17.87	kPa	333.15	Vapor-Liquid Equilibria in Binary Systems Formed by n-Hexane with Alcohols	

pvap	22.87	kPa	338.15	Vapor-Liquid Equilibria in Binary Systems Formed by n-Hexane with Alcohols	
pvap	81.28	kPa	368.44	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	19.33	kPa	335.75	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	22.66	kPa	339.03	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	26.00	kPa	341.93	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	29.33	kPa	344.54	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	32.66	kPa	346.91	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	36.00	kPa	349.10	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	40.00	kPa	351.52	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	44.00	kPa	353.75	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	48.00	kPa	355.83	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	

pvap	52.00	kPa	357.78	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	56.66	kPa	359.90	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	61.33	kPa	361.88	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	66.66	kPa	364.01	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	71.99	kPa	366.01	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	77.33	kPa	367.90	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	82.66	kPa	369.69	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	89.33	kPa	371.80	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	95.99	kPa	373.79	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	
pvap	98.66	kPa	374.56	Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2	

pvap	19.84	kPa	336.04	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Methyl Isobutyl Ketone (MIBK) and 2-Butanol, tert-Pentanol, or 2-Ethyl-1-hexanol	
pvap	29.94	kPa	344.75	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Methyl Isobutyl Ketone (MIBK) and 2-Butanol, tert-Pentanol, or 2-Ethyl-1-hexanol	
pvap	39.96	kPa	351.29	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Methyl Isobutyl Ketone (MIBK) and 2-Butanol, tert-Pentanol, or 2-Ethyl-1-hexanol	
pvap	49.95	kPa	356.60	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Methyl Isobutyl Ketone (MIBK) and 2-Butanol, tert-Pentanol, or 2-Ethyl-1-hexanol	
pvap	60.05	kPa	361.18	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Methyl Isobutyl Ketone (MIBK) and 2-Butanol, tert-Pentanol, or 2-Ethyl-1-hexanol	

pvap	70.74	kPa	365.40	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Methyl Isobutyl Ketone (MIBK) and 2-Butanol, tert-Pentanol, or 2-Ethyl-1-hexanol	
pvap	78.27	kPa	368.07	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Methyl Isobutyl Ketone (MIBK) and 2-Butanol, tert-Pentanol, or 2-Ethyl-1-hexanol	
pvap	78.09	kPa	368.16	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Methyl Isobutyl Ketone (MIBK) and 2-Butanol, tert-Pentanol, or 2-Ethyl-1-hexanol	
pvap	80.20	kPa	368.75	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Methyl Isobutyl Ketone (MIBK) and 2-Butanol, tert-Pentanol, or 2-Ethyl-1-hexanol	

pvap	90.23	kPa	371.97	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Methyl Isobutyl Ketone (MIBK) and 2-Butanol, tert-Pentanol, or 2-Ethyl-1-hexanol	
pvap	100.74	kPa	375.14	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Methyl Isobutyl Ketone (MIBK) and 2-Butanol, tert-Pentanol, or 2-Ethyl-1-hexanol	
pvap	101.88	kPa	375.38	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Methyl Isobutyl Ketone (MIBK) and 2-Butanol, tert-Pentanol, or 2-Ethyl-1-hexanol	
pvap	102.61	kPa	375.53	Vapor Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Methyl Isobutyl Ketone (MIBK) and 2-Butanol, tert-Pentanol, or 2-Ethyl-1-hexanol	
pvap	2.81	kPa	303.29	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	2.85	kPa	303.47	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	3.16	kPa	304.67	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	3.40	kPa	305.75	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	3.43	kPa	305.90	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	4.08	kPa	308.35	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	4.31	kPa	309.12	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	4.55	kPa	309.86	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	4.80	kPa	310.61	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	5.15	kPa	311.64	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	5.43	kPa	312.47	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	5.77	kPa	313.38	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols

pvap	6.08	kPa	314.17	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	6.59	kPa	315.44	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	7.31	kPa	317.09	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	7.99	kPa	318.64	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	8.36	kPa	319.37	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	8.61	kPa	319.86	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	8.84	kPa	320.32	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	9.36	kPa	321.32	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	9.99	kPa	322.44	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	10.41	kPa	323.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols

pvap	10.49	kPa	323.27	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	11.03	kPa	324.11	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	11.51	kPa	324.91	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	12.03	kPa	325.71	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	12.55	kPa	326.45	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	13.05	kPa	327.18	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	13.36	kPa	327.62	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	13.97	kPa	328.41	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	14.65	kPa	329.33	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	15.31	kPa	330.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	78.63	kPa	367.53	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	16.67	kPa	331.80	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	17.29	kPa	332.46	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	17.87	kPa	333.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	17.99	kPa	333.26	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	18.65	kPa	333.99	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	19.32	kPa	334.69	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	20.03	kPa	335.45	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	20.67	kPa	336.05	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	21.31	kPa	336.68	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols

pvap	21.96	kPa	337.31	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	22.63	kPa	337.97	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	23.47	kPa	338.69	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	23.97	kPa	339.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	24.67	kPa	339.68	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	25.35	kPa	340.31	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	26.00	kPa	340.83	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	26.67	kPa	341.39	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	27.33	kPa	341.90	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	27.97	kPa	342.40	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	28.67	kPa	342.92	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	28.95	kPa	343.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	29.31	kPa	343.42	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	30.01	kPa	343.94	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	30.67	kPa	344.47	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	31.35	kPa	344.91	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	32.07	kPa	345.39	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	32.67	kPa	345.78	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	33.48	kPa	346.35	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	34.67	kPa	347.18	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols

pvap	35.32	kPa	347.57	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	36.07	kPa	348.07	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	36.71	kPa	348.49	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	37.36	kPa	348.88	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	38.01	kPa	349.27	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	38.64	kPa	349.64	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	39.32	kPa	350.08	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	39.96	kPa	350.49	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	40.64	kPa	350.83	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	41.31	kPa	351.20	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols

pvap	42.08	kPa	351.67	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	42.65	kPa	351.95	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	43.35	kPa	352.30	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	44.00	kPa	352.73	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	44.65	kPa	353.02	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	44.87	kPa	353.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	45.35	kPa	353.44	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	45.97	kPa	353.73	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	46.63	kPa	354.10	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	47.28	kPa	354.41	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols

pvap	47.95	kPa	354.72	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	48.65	kPa	355.11	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	49.31	kPa	355.43	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	49.95	kPa	355.74	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	50.75	kPa	356.09	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	51.36	kPa	356.45	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	52.00	kPa	356.69	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	52.61	kPa	356.99	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	53.32	kPa	357.35	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	54.03	kPa	357.67	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols

pvap	54.67	kPa	357.96	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	55.35	kPa	358.25	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	55.95	kPa	358.47	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	56.63	kPa	358.85	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	57.33	kPa	359.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	58.00	kPa	359.48	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	58.59	kPa	359.68	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	59.27	kPa	360.01	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	59.95	kPa	360.21	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	60.59	kPa	360.53	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	61.27	kPa	360.83	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	61.99	kPa	361.11	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	62.61	kPa	361.40	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	63.35	kPa	361.72	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	64.04	kPa	362.01	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	64.67	kPa	362.24	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	65.35	kPa	362.54	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	66.00	kPa	362.84	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	66.71	kPa	363.07	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	67.92	kPa	363.56	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols

pvap	69.21	kPa	364.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	70.64	kPa	364.62	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	71.99	kPa	365.21	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	73.37	kPa	365.73	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	74.75	kPa	366.16	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	76.05	kPa	366.67	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	77.28	kPa	367.11	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	15.97	kPa	330.98	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	79.97	kPa	368.02	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
rfi	1.40180		298.15	Vapor-Liquid Equilibria Data for Methanol + 2-Propanol+ 2-Methyl-2-butanol and Constituent Binary Systems at 101.3 kPa	

rfi	1.40219	298.15	Ternary and Binary LLE Measurements for Solvent (4- Methyl-2-pentanone and 2-Methyl-2-butanol) + Furfural + Water between 298 and 401 K	
rfi	1.40250	298.15	Molar heat capacities for (2-methyl-2-butanol + heptane) mixtures and cyclopentanol at temperatures from (284 to 353) K	
rfi	1.40220	298.15 2-	sothermal and Isobaric Vapor-Liquid Equilibrium and Excess Molar Enthalpy of the Binary Mixtures of Methoxy-2-methylpropa + 2-Methyl-2-butanol or + 2-Butanol	ane
rfi	1.40248	298.15	Vapor Liquid Equilibria, Excess Enthalpy, and Excess Volume of Binary Mixtures Containing an Alcohol (1-Butanol, 2-Butanol, or 2-Methyl-2-butanol) and 2-Ethoxy-2-methylbutar	ne
rfi	1.40190	298.15	Excess Molar Enthalpies of 2-Methyl-2-butanol (1) + 1-Alkanols (C1-C5) (2) at 298.15 K	
rfi	1.40160	293.15	Volumetric Properties of Highly Nonideal Binary Mixtures Containing Ethanoic Acid and Propanoic Acid with Butan-2-ol, Methyl-2-propanol, and 2-Methyl-2-butanol at Different Temperatures	

rhol	825.80	kg/m3	274.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	825.40	kg/m3	275.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	824.90	kg/m3	275.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	826.30	kg/m3	274.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	824.00	kg/m3	276.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	823.50	kg/m3	277.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	822.60	kg/m3	278.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	826.70	kg/m3	273.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	821.70	kg/m3	279.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	821.30	kg/m3	279.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	820.80	kg/m3	280.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	820.30	kg/m3	280.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers

rhol	819.90	kg/m3	281.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	819.40	kg/m3	281.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	819.00	kg/m3	282.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers
rhol	795.16	kg/m3	308.15	Excess molar enthalpies of the binary systems: (Dibutyl ether + isomers of pentanol) at T = (298.15 and 308.15) K
rhol	804.31	kg/m3	298.15	Excess molar enthalpies of the binary systems: (Dibutyl ether + isomers of pentanol) at T = (298.15 and 308.15) K
rhol	804.21	kg/m3	298.15	Measurements and correlation at different temperatures of liquid-liquid equilibria of 2-butanol or 2-methyl-2-butanol + 1,2,3-propanetriol
				+ water ternary systems
rhol	809.00	kg/m3	293.00	KDB
rhol	804.28	kg/m3	298.15	Proposal for a Viscous Test Mixture Densities, Viscosities, and Vapor Liquid Equilibrium Data of the Binary Mixture 2-Methyl-2-butanol + 2-Methyl-1-propanol
rhol	822.20	kg/m3	278.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers

rhol	824.50	kg/m3	276.15	Temperature of maximum density for aqueous mixtures of three pentanol isomers	
rhol	823.10	kg/m3	277.65	Temperature of maximum density for aqueous mixtures of three pentanol isomers	
sfust	16.88	J/mol×K	264.00	NIST Webbook	
sfust	13.44	J/mol×K	146.00	NIST Webbook	
sfust	0.78	J/mol×K	213.00	NIST Webbook	
speedsl	1177.79	m/s	298.15	Study of the Effects of Temperature and Pressure on the Thermodynamic and Acoustic Properties of Pentan-1-ol, 2-Methyl-2-butanol, and Cyclopentanol in the Pressure Range from (0.1 to 100) MPa and Temperature from (293 to 318) K	
srf	0.02	N/m	318.15	Surface Tensions of Three Amyl Alcohol + Ethanol Binary Mixtures from (293.15 to 323.15) K	
srf	0.02	N/m	323.15	Surface Tensions of Three Amyl Alcohol + Ethanol Binary Mixtures from (293.15 to 323.15) K	
srf	0.02	N/m	293.15	Surface Tensions of Three Amyl Alcohol + Ethanol Binary Mixtures from (293.15 to 323.15) K	
srf	0.02	N/m	313.15	Surface Tensions of Three Amyl Alcohol + Ethanol Binary Mixtures from (293.15 to 323.15) K	
srf	0.02	N/m	308.15	Surface Tensions of Three Amyl Alcohol + Ethanol Binary Mixtures from (293.15 to 323.15) K	

srf	0.02	N/m	303.15	Surface Tensions of Three Amyl Alcohol + Ethanol Binary Mixtures from (293.15 to 323.15) K	
srf	0.02	N/m	298.15	Surface Tensions of Three Amyl Alcohol + Ethanol Binary Mixtures from (293.15 to 323.15) K	

Correlations

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*In(T) + D*T^2$
Coeff. A	1.65600e+02
Coeff. B	-1.19501e+04
Coeff. C	-2.20829e+01
Coeff. D	1.24464e-05
Temperature range (K), min.	264.35
Temperature range (K), max.	545.15

Datasets

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
303.15	101.33	0.0028100
Reference		https://www.doi.org/10.1021/je050538g

Sources

https://www.doi.org/10.1016/j.jct.2015.03.021 Excess molar enthalpies of the binary systems: (Dibutyl ether + isomers of systems: (Dibutyl ether + isomers of systems) \$e \text{Phi}(208.180\text{distinctions}) \$180\text{distinctions}\$ https://www.doi.org/10.1021/je060476j Vapor-Liquid Equilibria Data for https://www.doi.org/10.1021/acs.jced.9b00490 https://www.doi.org/10.1021/je050416y https://www.doi.org/10.1016/j.jct.2011.11.005 http://link.springer.com/article/10.1007/BF02311772 predictions from COSMO-RS: Experimental and Predicted Results of https://www.doi.org/10.1021/je050193b Anomeric Equilibrium of Glucose in இருவுழ்த், Viscosities, and Refractive Indices for Binary and Ternary Mixtures https://www.doi.org/10.1021/je050538q Indices for Binary and Ternary Mixtures Menayumments ace confidenting a different temperatures of the principal district and the property of t https://www.doi.org/10.1016/j.fluid.2014.06.015 https://www.doi.org/10.1021/je9004382 https://www.doi.org/10.1016/j.jct.2008.10.010 https://www.doi.org/10.1021/je7001094 Thermodynamic Modeling of National Properties of Propertie Solventsures from (284 to 353) K: Solubility Measurement and https://www.doi.org/10.1021/acs.jced.7b01011 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=830 Vapor pressure of selected aliphatic https://www.doi.org/10.1016/j.fluid.2010.06.020 alcohols by ebulliometry. Part 2: Experimental Study of Thermodynamic https://www.doi.org/10.1021/je0602723 Experimental Study of Thermodynamic Properties of Mixtures Containing Ionic Industry and Properties of Mixtures Containing Ionic Industry and Properties of Mixtures Containing Ionic Industry and Industry Indust https://www.doi.org/10.1021/acs.jced.5b00738 https://www.doi.org/10.1021/je8009418 https://www.doi.org/10.1021/je300670n https://www.doi.org/10.1016/j.jct.2017.07.011 https://www.doi.org/10.1021/acs.jced.8b01131 Temperature Dependence of Limiting Activity Coefficients, Henry s Law Capactarity in Equilibried in Phinar Dilution Project Pr https://www.doi.org/10.1021/je901063s https://www.doi.org/10.1016/j.jct.2009.09.001 https://www.doi.org/10.1021/acs.jced.5b00526 https://www.doi.org/10.1021/acs.jced.5b00537 https://www.doi.org/10.1016/j.fluid.2011.03.018 ens new graph is a company of the personal maps https://www.doi.org/10.1021/je060411g Liguidn Phase of Isomeric Pentanols: Estimated Solubility Method: http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt **NIST Webbook:** http://webbook.nist.gov/cgi/cbook.cgi?ID=C75854&Units=SI **Excess Molar Enthalpies of** https://www.doi.org/10.1021/je101031j 2-Methyl-2-butanol (1) + 1-Alkanols องประกาศ)ลูกประชาชาตร Vapor-Liquid Equilibrium and Excess Molar Enthalpy https://www.doi.org/10.1021/acs.jced.5b00300

of the Binary Mixtures of 2-Methoxy-2-methylpropane + 2-Methyl-2-butanol or + 2-Butanol:

Densities and Viscosities of Binary Densities and Viscosities of Binary
Liquid Mixtures of 2-Butanone with
Benry selevicens (200 in first 13.15)
dilution activity coefficients of
isstermal reprinting the property in the selection activity coefficients of
isstermal reprinting the property is saled in
the selection activity coefficients of
isstermal reprinting the property is saled in
the selection activity coefficients of
isstermal reprinting the property is saled in
the selection activity coefficients of
isstermal reprinting the property is saled in
the selection activity coefficients of
isstermal reprinting to the selection activity coefficients of
intermal reprinting to the selection activity coefficients of the selection activity coefficients of
intermal reprinting to the selection activity coefficients of the selection activities activities activities a

Temperatures:

https://www.doi.org/10.1021/je800571y

https://www.cheric.org/files/research/kdb/mol/mol830.mol

Legend

chl: Standard liquid enthalpy of combustion

Ideal gas heat capacity cpg:

Liquid phase heat capacity cpl:

dm: **Dipole Moment** dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formation

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy kvisc: Kinematic viscosity

log10ws: Log10 of Water solubility in mol/l logp: Octanol/Water partition coefficient McGowan's characteristic volume mcvol:

NFPA Fire Rating nfpaf: nfpah: NFPA Health Rating Critical Pressure pc: Vapor pressure pvap: rfi: Refractive Index rhol: Liquid Density

rinpol: Non-polar retention indices

Polar retention indices ripol:

sfust: Entropy of fusion at a given temperature Molar entropy at standard conditions sg:

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

Normal Boiling Point Temperature tb:

tc: Critical Temperature tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/46-663-5/Amylene-hydrate.pdf

Generated by Cheméo on 2025-12-23 13:55:53.991277063 +0000 UTC m=+6246351.521317730.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.