2-Propenoic acid, 2-methyl-, 2-propenyl ester

Other names: 2-Methyl-2-propenyl 2-propenoate

2-Propenoic acid, 2-methyl-, 2-propen-1-yl ester

2-methylpropenoic acid, allyl ester 2-propenyl 2-methylpropenoate

AGEFLEX AMA

Allyl 2-methylacrylate

Allyl ester of methacrylic acid

Allyl methacrylate

Allylester kyseliny methakrylove Methacrylic acid, allyl ester

NSC 18597

allyl 2-methylpropenoate

Inchi: InChl=1S/C7H10O2/c1-4-5-9-7(8)6(2)3/h4H,1-2,5H2,3H3

InchiKey: FBCQUCJYYPMKRO-UHFFFAOYSA-N

Formula: C7H10O2

SMILES: C=CCOC(=O)C(=C)C

Mol. weight [g/mol]: 126.15 **CAS:** 96-05-9

Physical Properties

Property code	Value	Unit	Source
gf	-58.73	kJ/mol	Joback Method
hf	-191.54	kJ/mol	Joback Method
hfus	12.80	kJ/mol	Joback Method
hvap	39.07	kJ/mol	Joback Method
log10ws	-1.32		Crippen Method
logp	1.292		Crippen Method
mcvol	108.330	ml/mol	McGowan Method
рс	3246.73	kPa	Joback Method
rinpol	849.00		NIST Webbook
ripol	1188.00		NIST Webbook
tb	429.09	K	Joback Method
tc	616.46	K	Joback Method
tf	223.33	K	Joback Method
VC	0.414	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	207.19	J/mol×K	429.09	Joback Method	
cpg	217.16	J/mol×K	460.32	Joback Method	
cpg	226.71	J/mol×K	491.55	Joback Method	
cpg	235.86	J/mol×K	522.78	Joback Method	
cpg	244.60	J/mol×K	554.01	Joback Method	
cpg	252.95	J/mol×K	585.24	Joback Method	
cpg	260.92	J/mol×K	616.46	Joback Method	
rhol	928.00	kg/m3	298.15	Densities and derived thermodynamic properties of the binary systems of 1,1-dimethylethyl methyl ether with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at T = (298.15 and 308.15) K	
rhol	917.42	kg/m3	308.15	Densities and derived thermodynamic properties of the binary systems of 1,1-dimethylethyl methyl ether with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at T = (298.15 and 308.15) K	
rhol	932.97	kg/m3	293.15	Density, excess volume, and excess coefficient of thermal expansion of the binary systems of dimethyl carbonate with butyl methacrylate, allyl methacrylate, styrene, and vinyl acetate at T = (293.15, 303.15, and 313.15) K	

rhol	922.52	kg/m3	303.15	Density, excess volume, and excess coefficient of thermal expansion of the binary systems of dimethyl carbonate with butyl methacrylate, allyl methacrylate, styrene, and vinyl acetate at T = (293.15, 303.15, and 313.15) K	
rhol	912.07	kg/m3	313.15	Density, excess volume, and excess coefficient of thermal expansion of the binary systems of dimethyl carbonate with butyl methacrylate, allyl methacrylate, styrene, and vinyl acetate at T = (293.15, 303.15, and 313.15) K	
rhol	928.00	kg/m3	298.15	Densities, isobaric thermal compressibilities and derived thermodynamic properties of the binary systems of cyclohexane with allyl methacrylate, butyl methacrylic acid, and vinyl acetate at t = (298.15 and 308.15)K	

917.42 308.15 rhol kg/m3 Densities, isobaric thermal compressibilities

and derived thermodynamic properties of the binary systems of cyclohexane with allyl methacrylate, butyl methacrylate,

methacrylic acid, and vinyl acetate at t = (298.15 and)308.15)K

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbrp	333.20	K	5.70	NIST Webbook

Sources

Crippen Method: https://www.chemeo.com/doc/models/crippen_log10ws

Densities, isobaric thermal https://www.doi.org/10.1016/j.tca.2005.06.007 compressibilities and derived the binary https://en.wikipedia.org/wiki/Joback_method

methacrylic acid, and vinyl acetate at T https://www.cheric.org/files/research/kdb/mol/mol1179.mol

E(298,15 and 308.15) K: http://pubs.acs.org/doi/abs/10.1021/ci990307l

NIST Webbook: http://webbook.nist.gov/cgi/cbook.cgi?ID=C96059&Units=SI

Density, excess volume, and excess https://www.doi.org/10.1016/j.jct.2008.06.017 coefficient of thermal expansion of the binary systems of dimethyl carbonate with butyl methacrylate, allyl

methacrylate, styrene, and vinyl acetate tegend 03.15, and 313.15) K:

Ideal gas heat capacity cpg:

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressurerhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

tb: Normal Boiling Point Temperaturetbrp: Boiling point at reduced pressure

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/46-972-2/2-Propenoic-acid-2-methyl-2-propenyl-ester.pdf

Generated by Cheméo on 2024-05-03 22:47:43.778706658 +0000 UTC m=+17065712.699283980.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.