n-Butyl methacrylate

Other names: 2-Methyl-2-propenoic acid butyl ester

2-Methyl-butylacrylaat2-Methyl-butylacrylat2-Methyl-butylacrylate

2-Methylacrylic acid, butyl ester

2-Propenoic acid, 2-methyl-, butyl ester

Butil metacrilato

Butyl 2-methacrylate

Butyl 2-methyl-2-propenate Butyl 2-methyl-2-propenoate Butyl ester of methacrylic acid

Butyl methacrylate

Butylester kyseliny methakrylove

Butylmethacrylaat

Methacrylate de butyle

Methacrylic acid n-butyl ester Methacrylic acid, butyl ester Methacrylsaeurebutylester

NSC 20956

butyl 2-methylpropenoate

InChl=1S/C8H14O2/c1-4-5-6-10-8(9)7(2)3/h2,4-6H2,1,3H3

InchiKey: SOGAXMICEFXMKE-UHFFFAOYSA-N

Formula: C8H14O2

SMILES: C=C(C)C(=O)OCCCC

Mol. weight [g/mol]: 142.20 **CAS:** 97-88-1

Physical Properties

Property code	Value	Unit	Source
gf	-138.15	kJ/mol	Joback Method
hf	-337.61	kJ/mol	Joback Method
hfl	-413.10 ± 3.30	kJ/mol	NIST Webbook
hfus	16.67	kJ/mol	Joback Method
hvap	41.97	kJ/mol	Joback Method
log10ws	-1.89		Crippen Method
logp	1.906		Crippen Method
mcvol	126.720	ml/mol	McGowan Method

рс	2790.61	kPa	Joback Method
rinpol	962.00		NIST Webbook
rinpol	967.00		NIST Webbook
rinpol	989.00		NIST Webbook
rinpol	967.00		NIST Webbook
rinpol	964.00		NIST Webbook
rinpol	967.00		NIST Webbook
rinpol	960.00		NIST Webbook
rinpol	962.00		NIST Webbook
rinpol	962.00		NIST Webbook
rinpol	989.00		NIST Webbook
ripol	1190.00		NIST Webbook
ripol	1190.00		NIST Webbook
ripol	1220.00		NIST Webbook
ripol	1232.00		NIST Webbook
tb	434.70	K	NIST Webbook
tc	637.18	K	Joback Method
tf	196.80	K	NIST Webbook
tf	196.80 ± 0.20	K	NIST Webbook
tt	197.78 ± 0.01	K	NIST Webbook
VC	0.489	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	327.16	J/mol×K	637.18	Joback Method
cpg	317.57	J/mol×K	606.87	Joback Method
cpg	307.54	J/mol×K	576.55	Joback Method
cpg	297.08	J/mol×K	546.24	Joback Method
cpg	286.17	J/mol×K	515.92	Joback Method
cpg	274.81	J/mol×K	485.61	Joback Method
cpg	262.99	J/mol×K	455.29	Joback Method
cpl	273.80	J/mol×K	298.15	NIST Webbook
hfust	15.55	kJ/mol	197.80	NIST Webbook
hvapt	45.10	kJ/mol	390.50	NIST Webbook
hvapt	47.40	kJ/mol	358.00	NIST Webbook

rhol	876.19	kg/m3	313.15	Density, excess volume, and excess coefficient of thermal expansion of the binary systems of dimethyl carbonate with butyl methacrylate, allyl methacrylate, styrene, and vinyl acetate at T = (293.15, 303.15, and 313.15) K	
rhol	885.99	kg/m3	303.15	Density, excess volume, and excess coefficient of thermal expansion of the binary systems of dimethyl carbonate with butyl methacrylate, allyl methacrylate, styrene, and vinyl acetate at T = (293.15, 303.15, and 313.15) K	
rhol	876.35	kg/m3	313.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	
rhol	871.64	kg/m3	318.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	

rhol	890.44	kg/m3	298.15	Densities, isobaric thermal compressibilities and derived thermodynamic properties of the binary systems of cyclohexane with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at t = (298.15 and 308.15)K	
rhol	880.86	kg/m3	308.15	Densities, isobaric thermal compressibilities and derived thermodynamic properties of the binary systems of cyclohexane with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at t = (298.15 and 308.15)K	
rhol	895.23	kg/m3	293.15	Density, excess volume, and excess coefficient of thermal expansion of the binary systems of dimethyl carbonate with butyl methacrylate, allyl methacrylate, styrene, and vinyl acetate at T = (293.15, 303.15, and 313.15) K	
rhol	880.86	kg/m3	308.15	Densities and derived thermodynamic properties of the binary systems of 1,1-dimethylethyl methyl ether with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at T = (298.15 and 308.15) K	

rhol	890.44	kg/m3	298.15	Densities and derived thermodynamic properties of the binary systems of 1,1-dimethylethyl methyl ether with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at T = (298.15 and 308.15) K	
rhol	885.78	kg/m3	303.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	
rhol	890.48	kg/m3	298.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	
rhol	895.19	kg/m3	293.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	
rhol	881.07	kg/m3	308.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	

Correlations

Information	Value
IIIIOIIIIalioii	value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.46216e+01
Coeff. B	-3.73997e+03
Coeff. C	-6.08250e+01
Temperature range (K), min.	321.74
Temperature range (K), max.	462.54

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	7.91517e+01
Coeff. B	-8.47577e+03
Coeff. C	-9.18304e+00
Coeff. D	3.81406e-06
Temperature range (K), min.	223.00
Temperature range (K), max.	616.00

Sources

Liquid liquid equilibria for the ternary systems water + 1-propanol + methyl Me@awaylate, the dtyl methacrylate, and +isobutyl methacrylate: Crippen Method:

NIST Webbook:

Densities, isobaric thermal compressibilities and derived tighed by the matter of the binary https://www.doi.org/10.1016/j.fluid.2007.07.011

system of eyelby the matter of the binary https://www.doi.org/10.1016/j.fluid.2007.07.011

system of eyelby the matter of the binary https://www.doi.org/10.1021/je7002572

https://www.sciencedirect.com/book/978012802

https://www.doi.org/10.1016/j.jct.2018.03.013 and partial molar properties of binary methacrylates at temperatures from bensity parties of (benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties of (benzonitrile + methyl hethsity) and benzonitrile + methyl hethsity parties

https://www.doi.org/10.1016/j.fluid.2007.05.018

http://link.springer.com/article/10.1007/BF02311772

https://www.chemeo.com/doc/models/crippen_log10ws

http://webbook.nist.gov/cgi/cbook.cgi?ID=C97881&Units=SI

https://www.doi.org/10.1016/j.tca.2005.06.007

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://en.wikipedia.org/wiki/Joback_method

KDB: https://www.cheric.org/files/research/kdb/mol/mol1185.mol

Densities and derived thermodynamic properties of the binary systems of Prixing the systems of Prixing the systems of Prixing the systems of Prixing the systems of the binary systems of Prixing the systems of the binary systems of th

https://www.doi.org/10.1016/j.jct.2004.11.012

methacrylate, butyl methacrylate, methacrylic acid, alful vinyi acetate at T = (298.15 and 308.15) K:

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1185

Legend

Ideal gas heat capacity cpg: cpl: Liquid phase heat capacity

Standard Gibbs free energy of formation gf: hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

Enthalpy of vaporization at standard conditions hvap: Enthalpy of vaporization at a given temperature hvapt:

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: mcvol: McGowan's characteristic volume

pc: Critical Pressure Vapor pressure pvap: rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

tb: Normal Boiling Point Temperature

Critical Temperature tc:

tf: Normal melting (fusion) point tt: **Triple Point Temperature**

Critical Volume vc:

Latest version available from:

https://www.chemeo.com/cid/47-247-6/n-Butyl-methacrylate.pdf

Generated by Cheméo on 2024-04-09 21:27:44.734062239 +0000 UTC m=+14987313.654639551.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.