Hydroquinone

Other names: 1,4-Benzenediol

1,4-Benzenediol (hydroquinone)

1,4-Dihydroxy-benzeen

1,4-Dihydroxy-benzol

1,4-Dihydroxybenzen

1,4-Dihydroxybenzene

1,4-Diidrobenzene

4-Hydroxyphenol

Aida

Arctuvin

Benzene, p-dihydroxy-

Benzohydroquinone

Benzoquinol

Black & White Bleaching Cream

Black and White Bleaching Cream

Derma-Blanch

Diak 5

Dihydroquinone

Eldopacque

Eldopaque

Eldopaque forte

Eldoquin

Eldoquin forte

HE 5

Hidroquinone

Hydrochinon

Hydrochinone

Hydroquinol

Hydroquinole

Idrochinone

NCI-C55834

Phiaquin

Quinol

Solaquin forte

Tecquinol

Tenox HQ

Tequinol

UN 2662

USAF EK-356

p-Benzenediol

p-Dihydroquinone

p-Dihydroxybenzene

p-Dioxobenzene

p-Dioxybenzene

p-Hydroquinone

p-Hydroxyphenol

p-quinol

InChl=1S/C6H6O2/c7-5-1-2-6(8)4-3-5/h1-4,7-8H

InchiKey: QIGBRXMKCJKVMJ-UHFFFAOYSA-N

Formula: C6H6O2

SMILES: Oc1ccc(O)cc1

Mol. weight [g/mol]: 110.11 CAS: 123-31-9

Physical Properties

Property code	Value	Unit	Source
chs	-2847.50 ± 1.20	kJ/mol	NIST Webbook
chs	-2824.68	kJ/mol	NIST Webbook
chs	-2852.40 ± 0.88	kJ/mol	NIST Webbook
chs	-2855.60	kJ/mol	NIST Webbook
chs	-2865.00	kJ/mol	NIST Webbook
chs	-2856.00	kJ/mol	NIST Webbook
chs	-2861.00	kJ/mol	NIST Webbook
chs	-2858.00	kJ/mol	NIST Webbook
gf	-187.56	kJ/mol	Joback Method
hf	-268.90	kJ/mol	NIST Webbook
hf	-266.90	kJ/mol	NIST Webbook
hf	-268.40	kJ/mol	NIST Webbook
hf	-272.00	kJ/mol	NIST Webbook
hf	-277.00 ± 1.40	kJ/mol	NIST Webbook
hfs	-371.10 ± 1.30	kJ/mol	NIST Webbook
hfs	-362.50	kJ/mol	NIST Webbook
hfs	-361.00	kJ/mol	NIST Webbook
hfs	-363.00 ± 1.00	kJ/mol	NIST Webbook
hfs	-366.10 ± 1.20	kJ/mol	NIST Webbook
hfus	27.23	kJ/mol	Di-Hydroxybenzenes: Catechol, Resorcinol, and Hydroquinone. Enthalpies of Phase Transitions Revisited

hfus	23.78	kJ/mol	Measurement of enthalpy curves of phase change materials via DSC and T-History: When are both methods needed to estimate the behaviour of the bulk material in applications?
hsub	94.10	kJ/mol	NIST Webbook
hsub	94.10 ± 0.50	kJ/mol	NIST Webbook
hsub	99.20 ± 1.70	kJ/mol	NIST Webbook
hsub	94.13 ± 0.53	kJ/mol	NIST Webbook
hsub	103.76	kJ/mol	NIST Webbook
hvap	84.40 ± 0.70	kJ/mol	NIST Webbook
ie	8.44	eV	NIST Webbook
ie	7.95 ± 0.03	eV	NIST Webbook
ie	7.94 ± 0.01	eV	NIST Webbook
ie	7.93 ± 0.01	eV	NIST Webbook
ie	7.95 ± 0.05	eV	NIST Webbook
log10ws	-0.17		Estimated Solubility Method
log10ws	-0.17		Aqueous Solubility Prediction Method
logp	1.098		Crippen Method
mcvol	83.380	ml/mol	McGowan Method
рс	7561.44	kPa	Joback Method
rinpol	1241.00		NIST Webbook
rinpol	1334.00		NIST Webbook
rinpol	207.49		NIST Webbook
rinpol	1241.00		NIST Webbook
rinpol	1334.00		NIST Webbook
rinpol	1327.00		NIST Webbook
rinpol	1334.00		NIST Webbook
rinpol	1327.00		NIST Webbook
rinpol	220.60		NIST Webbook
rinpol	220.60		NIST Webbook
ripol	2693.00		NIST Webbook
ripol	2693.00		NIST Webbook
ripol	2693.00		NIST Webbook
sg	343.10 ± 5.00	J/mol×K	NIST Webbook
tb	558.20 ± 1.00	K	NIST Webbook
tb	558.20	K	NIST Webbook
tc	766.85	K	Joback Method
tf	445.00	K	NIST Webbook
tf	443.50 ± 0.30	K	NIST Webbook
tf	445.15	K	Liquid pharmaceuticals formulation by eutectic formation

tf	445.35	К	Aqueous Solubility Prediction Method
tf	445.00 ± 0.60	K	NIST Webbook
tf	445.00	К	Enthalpies of formation of dihydroxybenzenes revisited: Combining experimental and high-level ab initio data
tt	445.98 ± 0.03	K	NIST Webbook
tt	445.50 ± 0.30	K	NIST Webbook
VC	0.196	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	186.33	J/mol×K	519.62	Joback Method
cpg	220.99	J/mol×K	725.65	Joback Method
cpg	215.32	J/mol×K	684.44	Joback Method
cpg	209.18	J/mol×K	643.24	Joback Method
cpg	202.41	J/mol×K	602.03	Joback Method
cpg	194.85	J/mol×K	560.83	Joback Method
cpg	226.33	J/mol×K	766.85	Joback Method
cps	133.50	J/mol×K	297.90	NIST Webbook
cps	150.20	J/mol×K	323.00	NIST Webbook
cps	130.50	J/mol×K	274.30	NIST Webbook
cps	136.40	J/mol×K	298.15	NIST Webbook
cps	131.90	J/mol×K	298.15	NIST Webbook
cps	139.70	J/mol×K	298.00	NIST Webbook
dvisc	0.0004493	Paxs	415.54	Joback Method
dvisc	0.0009603	Paxs	394.72	Joback Method
dvisc	0.0001210	Paxs	457.17	Joback Method
dvisc	0.0000684	Paxs	477.99	Joback Method
dvisc	0.0000251	Paxs	519.62	Joback Method
dvisc	0.0000406	Paxs	498.80	Joback Method
dvisc	0.0002260	Paxs	436.35	Joback Method
hfust	26.50	kJ/mol	444.95	NIST Webbook
hfust	27.23	kJ/mol	445.10	NIST Webbook
hfust	26.48	kJ/mol	453.00	NIST Webbook
hfust	27.11	kJ/mol	445.50	NIST Webbook
hfust	27.11	kJ/mol	445.10	NIST Webbook
hsubt	101.30	kJ/mol	370.50	NIST Webbook
hsubt	99.00 ± 2.00	kJ/mol	351.00	NIST Webbook
hsubt	103.80	kJ/mol	322.00	NIST Webbook

hsubt						
hsubt	hsubt	103.80	kJ/mol	335.50	NIST Webbook	
hsubt	hsubt	100.60 ± 1.30	kJ/mol	332.00	NIST Webbook	
hvapt	hsubt	93.70 ± 0.50	kJ/mol	334.00	NIST Webbook	
Psub 3.33e-04 RPa 339.40 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	hsubt	104.00 ± 1.00	kJ/mol	342.00	NIST Webbook	
Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 3.53e-04 kPa 339.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.64e-04 kPa 337.30 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.62e-04 kPa 337.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.62e-04 kPa 337.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.12e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Pheno	hvapt	70.50	kJ/mol	503.50	NIST Webbook	
Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.64e-04 kPa 337.30 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.62e-04 kPa 337.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.12e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.12e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.17e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.32e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.32e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	psub	3.33e-04	kPa	339.40	Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion	
Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.62e-04 kPa 337.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.12e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.17e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.17e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.32e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method Phenolics and Phenolics and Phenolics and Phenolics and Polyhydric Compounds by Knudsen Effusion Knudsen Effusion Phenolics and Polyhydric Compounds by Knudsen Effusion	psub	3.53e-04	kPa	339.20	Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion	
Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.12e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.17e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.17e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.32e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method Polyhydric Compounds by Knudsen Effusion	psub	2.64e-04	kPa	337.30	Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion	
Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.17e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.32e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Polyhydric Compounds by Knudsen Effusion	psub	2.62e-04	kPa	337.20	Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion	
Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method psub 2.32e-04 kPa 335.20 Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion	psub	2.12e-04	kPa	335.20	Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion	
Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion	psub	2.17e-04	kPa	335.20	Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion	
	psub	2.32e-04	kPa	335.20	Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion	

psub	2.75e-04	kPa	337.30	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	1.69e-04	kPa	333.20	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	5.56e-05	kPa	322.80	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	5.45e-05	kPa	322.80	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	1.72e-04	kPa	333.20	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	1.77e-04	kPa	333.10	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	5.13e-05	kPa	322.80	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	

psul	o 1.38	e-04	kPa	331.00	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psul	o 3.40	e-04	kPa	339.40	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psul	o 1.38	e-04	kPa	331.00	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psul	o 1.05	e-04	kPa	329.00	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psul	o 1.09	e-04	kPa	329.00	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psul	o 1.13	e-04	kPa	328.90	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psul	o 8.46	e-05	kPa	326.90	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	

psub	8.72e-05	kPa	326.90	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	9.44e-05	kPa	326.90	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	6.93e-05	kPa	324.90	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	6.59e-05	kPa	324.80	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	7.43e-05	kPa	324.90	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
psub	1.42e-04	kPa	331.10	Vapor Pressure Characterization of Several Phenolics and Polyhydric Compounds by Knudsen Effusion Method	
rhol	1328.00	kg/m3	293.15 2-N	Measurements of Liquid Liquid Equilibria for the Quaternary System 1ethoxy-2-methylprop + Phenol + Hydroquinone + Water at 313.15 K	ane

rhos	1338.00	kg/m3	298.15	Liquid liquid equilibria for the quaternary system methyl isobutyl ketone water phenol hydroquinone	
rhos	1332.00	kg/m3	293.20	Ternary and Quaternary Liquid-Liquid Equilibria for Systems of Methyl Butyl Ketone + Water + Hydroquinone + Phenol at 313.2 K and Atmospheric Pressure	
sfust	60.90	J/mol×K	445.50	NIST Webbook	
sfust	59.00	J/mol×K	444.95	NIST Webbook	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source	
tbrp	558.20	K	97.30	NIST Webbook	
tbrp	558.00	K	97.30	NIST Webbook	

Sources

Liquid pharmaceuticals formulation by https://www.doi.org/10.1016/j.fluid.2017.05.009 eutectic formation: Joback Method:

Liquid-Liquid Equilibria for the Ternary https://www.doi.org/10.1021/je060245c System Methyl Isobutyl Ketone + Water Lipyld Light Feuilibria for Octan-2-one https://www.doi.org/10.1021/acs.jced.9b00506 + Dihydroxybenzene + Water at http://webbook.nist.gov/cgi/cbook.cgi?ID=C123

Data and Thermodynamic Modeling: Di-Hydroxybenzenes: Catechol, Resorcinol, and Hydroquinone.

systems methyl isobutyl ketone Landdrujdesyrdiadana the gyateonanoaystemanethyb isotolyyl Return Wastr bite equinoned in brie ent Solvents from 276.65 K to 345.10 K. Measurements and Thermodynamic Modeling of Liquid-Liquid Equilibria
Detator line iteliasiid muniibria forul
methyl isopropyl ketone + (resorcinol
etiiomomethylisisomomomethylisisomomethylisisomomethylisisomomethylisisomomethylisiso

different temperatures: Activity Coefficient Studies in Ternary

ab initio data:

https://en.wikipedia.org/wiki/Joback_method

http://webbook.nist.gov/cgi/cbook.cgi?ID=C123319&Units=SI

https://www.doi.org/10.1016/j.tca.2008.02.016

https://www.doi.org/10.1016/j.fluid.2016.11.005

https://www.doi.org/10.1016/j.fluid.2007.05.026

https://www.doi.org/10.1021/je0502748

https://www.doi.org/10.1021/acs.jced.9b00633

https://www.doi.org/10.1016/j.fluid.2016.08.040

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1021/je800307g

Solubility of https://www.doi.org/10.1021/acs.jced.6b00349

3,7,9,11-Tetraoxo-2,4,6,8,10-pentaaza[3.3.3]

McDewane (TECHPAIP) in Different Pure http://link.springer.com/article/10.1007/BF02311772

Solvents at Temperatures between strong in the strong in t https://www.doi.org/10.1021/je500532v https://www.doi.org/10.1016/j.jct.2018.08.041

http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt

p-dihydroxybenzene + water at 333.15 kquenus kolubility. Are kiction Method:

https://www.doi.org/10.1021/je400488x

https://www.doi.org/10.1016/j.tca.2014.09.022 https://www.doi.org/10.1021/acs.jced.7b01127

https://www.doi.org/10.1021/acs.jced.5b00918

https://www.doi.org/10.1021/je050293h

https://www.doi.org/10.1016/j.jct.2010.04.018

Measurements of Liquid Liquid Equilibria for the Quaternary System Methoxy-2-methylpropane + Phenol + https://www.cheric.org/files/research/kdb/mol/mol864.mol Hydroquinone + Water at 313.15 K: Measurement of enthalpy curves of wieasurement or enthalpy curves of phase change materials via DSC and trimistolije with final leuse from Earnally (Method Roesyn Katonie bely who philocome barres of the bely with the พยู่ผู้เช้า behaviour of solutes Apparent molar volumes and isentropic

compression of catechol, resorcinal, and hydroquinone in aqueous solution t **298.15**, 303.15, 298.15, 303.15, and 39.15

chs: Standard solid enthalpy of combustion

cpg: Ideal gas heat capacity Solid phase heat capacity cps:

dvisc: Dynamic viscosity

Standard Gibbs free energy of formation gf: hf: Enthalpy of formation at standard conditions

hfs: Solid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsub: Enthalpy of sublimation at standard conditions hsubt: Enthalpy of sublimation at a given temperature Enthalpy of vaporization at standard conditions hvap: hvapt: Enthalpy of vaporization at a given temperature

Ionization energy ie:

log10ws: Log10 of Water solubility in mol/l logp: Octanol/Water partition coefficient mcvol: McGowan's characteristic volume

Critical Pressure pc:

psub: Sublimation pressure

rhol: Liquid Density rhos: Solid Density

Non-polar retention indices rinpol:

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

Molar entropy at standard conditions sg:

tb: Normal Boiling Point Temperaturetbrp: Boiling point at reduced pressure

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/48-513-9/Hydroquinone.pdf

Generated by Cheméo on 2025-12-24 01:25:54.215049966 +0000 UTC m=+6287751.745090631.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.