Anisole

Other names: Anisol

Anizol

Benzene, methoxy-Ether, methyl phenyl-Methoxybenzene Methyl phenyl ether

NSC 7920

Phenoxymethane
Phenyl methyl ether

UN 2222

Inchi: InChI=1S/C7H8O/c1-8-7-5-3-2-4-6-7/h2-6H,1H3

InchiKey: RDOXTESZEPMUJZ-UHFFFAOYSA-N

Formula: C7H8O

SMILES: COc1ccccc1

Mol. weight [g/mol]: 108.14 CAS: 100-66-3

Physical Properties

Property code	Value	Unit	Source
affp	839.60	kJ/mol	NIST Webbook
basg	807.20	kJ/mol	NIST Webbook
chl	-3778.00 ± 0.80	kJ/mol	NIST Webbook
chl	-3779.50	kJ/mol	NIST Webbook
chl	-3783.12	kJ/mol	NIST Webbook
cpl	191.54	J/mol×K	Thermodynamics of mixtures involving some (benzene derivatives + benzonitrile)
gf	15.47	kJ/mol	Joback Method
hf	-67.90 ± 1.20	kJ/mol	NIST Webbook
hf	-76.69 ± 0.92	kJ/mol	NIST Webbook
hf	-70.70	kJ/mol	NIST Webbook
hf	-75.10	kJ/mol	NIST Webbook
hfl	-120.00 ± 0.80	kJ/mol	NIST Webbook
hfl	-114.80 ± 1.20	kJ/mol	NIST Webbook
hfl	-118.40	kJ/mol	NIST Webbook
hfus	9.12	kJ/mol	Joback Method
hvap	46.91	kJ/mol	NIST Webbook

hvap	38.00 ± 0.40	kJ/mol	NIST Webbook
hvap	43.30	kJ/mol	NIST Webbook
hvap	38.20 ± 0.40	kJ/mol	NIST Webbook
hvap	39.40	kJ/mol	NIST Webbook
hvap	39.40	kJ/mol	NIST Webbook
hvap	46.60 ± 0.20	kJ/mol	NIST Webbook
hvap	44.30	kJ/mol	NIST Webbook
hvap	46.90	kJ/mol	NIST Webbook
hvap	46.80 ± 0.20	kJ/mol	NIST Webbook
hvap	46.84 ± 0.22	kJ/mol	NIST Webbook
hvap	46.90	kJ/mol	NIST Webbook
hvap	45.30	kJ/mol	NIST Webbook
ie	8.24	eV	NIST Webbook
ie	8.10	eV	NIST Webbook
ie	8.25 ± 0.03	eV	NIST Webbook
ie	8.60	eV	NIST Webbook
ie	8.20 ± 0.02	eV	NIST Webbook
ie	8.37	eV	NIST Webbook
ie	8.20	eV	NIST Webbook
ie	8.18	eV	NIST Webbook
ie	8.25	eV	NIST Webbook
ie	8.39	eV	NIST Webbook
ie	8.46	eV	NIST Webbook
ie	8.80 ± 0.10	eV	NIST Webbook
ie	8.40 ± 0.10	eV	NIST Webbook
ie	8.21	eV	NIST Webbook
ie	8.60	eV	NIST Webbook
ie	8.39	eV	NIST Webbook
ie	8.22 ± 0.02	eV	NIST Webbook
ie	8.42	eV	NIST Webbook
ie	8.42	eV	NIST Webbook
ie	8.20 ± 0.02	eV	NIST Webbook
ie	8.30 ± 0.10	eV	NIST Webbook
ie	8.20 ± 0.05	eV	NIST Webbook
ie	8.45	eV	NIST Webbook
log10ws	-1.85		Estimated Solubility Method
log10ws	-1.85		Aqueous Solubility Prediction Method
logp	1.695		Crippen Method
mcvol	91.600	ml/mol	McGowan Method
рс	4184.72 ± 101.32	kPa	NIST Webbook
рс	4174.59 ± 101.32	kPa	NIST Webbook
рс	4180.00 ± 60.79	kPa	NIST Webbook
рс	4179.66 ± 202.65	kPa	NIST Webbook

nc	4250.00 ± 100.00	kPa	NIST Webbook
pc pc	4222.00 ± 20.00	kPa	NIST Webbook
rhoc	316.84 ± 9.95	kg/m3	NIST Webbook
rinpol	920.00	kg/III3	NIST Webbook
·	918.00		NIST Webbook
rinpol	921.00		NIST Webbook
rinpol			NIST Webbook
rinpol	956.00		
rinpol	902.00		NIST Webbook
rinpol	918.00		NIST Webbook
rinpol	900.00		NIST Webbook
rinpol	900.00		NIST Webbook
rinpol	920.00		NIST Webbook
rinpol	922.00		NIST Webbook
rinpol	925.00		NIST Webbook
rinpol	910.00		NIST Webbook
rinpol	900.00		NIST Webbook
rinpol	923.00		NIST Webbook
rinpol	900.00		NIST Webbook
rinpol	896.00		NIST Webbook
rinpol	900.00		NIST Webbook
rinpol	893.00		NIST Webbook
rinpol	900.00		NIST Webbook
rinpol	916.00		NIST Webbook
rinpol	918.00		NIST Webbook
rinpol	900.00		NIST Webbook
rinpol	906.00		NIST Webbook
rinpol	907.00		NIST Webbook
rinpol	908.00		NIST Webbook
rinpol	893.90		NIST Webbook
rinpol	900.30		NIST Webbook
rinpol	923.00		NIST Webbook
rinpol	915.00		NIST Webbook
rinpol	918.00		NIST Webbook
rinpol	898.40		NIST Webbook
rinpol	920.00		NIST Webbook
rinpol	923.60		NIST Webbook
rinpol	930.00		NIST Webbook
rinpol	930.00		NIST Webbook
rinpol	913.00		NIST Webbook
rinpol	940.00		NIST Webbook
rinpol	935.00		NIST Webbook
rinpol	919.00		NIST Webbook
rinpol	916.00		NIST Webbook
rinpol	915.00		NIST Webbook
IIIIpoi	010.00		11101 11000001

rinnal	027.00	NICT Wohlank
rinpol	927.00	NIST Webbook NIST Webbook
rinpol		
rinpol	880.00	NIST Webbook
rinpol	887.00	NIST Webbook
rinpol	927.00	NIST Webbook
rinpol	928.00	NIST Webbook
rinpol	928.00	NIST Webbook
rinpol	918.00	NIST Webbook
rinpol	911.00	NIST Webbook
rinpol	909.40	NIST Webbook
rinpol	910.10	NIST Webbook
rinpol	901.00	NIST Webbook
rinpol	898.10	NIST Webbook
rinpol	908.80	NIST Webbook
rinpol	903.80	NIST Webbook
rinpol	901.90	NIST Webbook
rinpol	909.00	NIST Webbook
rinpol	889.68	NIST Webbook
rinpol	912.78	NIST Webbook
rinpol	909.99	NIST Webbook
rinpol	904.91	NIST Webbook
rinpol	902.32	NIST Webbook
rinpol	900.00	NIST Webbook
rinpol	897.86	NIST Webbook
rinpol	895.86	NIST Webbook
rinpol	891.69	NIST Webbook
rinpol	893.73	NIST Webbook
rinpol	907.48	NIST Webbook
ripol	1348.00	NIST Webbook
ripol	1368.60	NIST Webbook
ripol	1340.00	NIST Webbook
ripol	1341.00	NIST Webbook
ripol	1330.00	NIST Webbook
ripol	1331.00	NIST Webbook
ripol	1327.00	NIST Webbook
ripol	1340.00	NIST Webbook
ripol	1375.00	NIST Webbook
ripol	1373.00	NIST Webbook
ripol	1340.00	NIST Webbook
ripol	1368.60	NIST Webbook
ripol	1368.60	NIST Webbook
ripol	1394.00	NIST Webbook
ripol	1398.00	NIST Webbook
ripol	1325.00	NIST Webbook
Прог	1020.00	THE PRODUCT

ripol	1354.00	NIST Webbook
ripol	1355.40	NIST Webbook
ripol	1345.60	NIST Webbook
ripol	1356.80	NIST Webbook
ripol	1353.80	NIST Webbook
ripol	1348.20	NIST Webbook
ripol	1351.00	NIST Webbook
ripol	1358.00	NIST Webbook
ripol	1350.90	NIST Webbook
ripol	1349.00	NIST Webbook
ripol	1342.00	NIST Webbook
ripol	1344.00	NIST Webbook
ripol	1306.00	NIST Webbook
ripol	1355.00	NIST Webbook
ripol	1355.00	NIST Webbook
ripol	1355.00	NIST Webbook
ripol	1310.00	NIST Webbook
ripol	1327.00	NIST Webbook
ripol	1327.00	NIST Webbook
ripol	1336.00	NIST Webbook
ripol	1327.00	NIST Webbook
ripol	1341.00	NIST Webbook
ripol	1327.00	NIST Webbook
tb	426.56	K Isobaric vapour + liquid equilibria for three binary systems (toluene + anisole, nbutylbenzene + anisole, and guaiacol + anisole) at 101.33 kPa
tb	426.69	K Isobaric (vapour + liquid) equilibria of binary systems containing butyl acetate for the separation of methoxy aromatic compounds (anisole and guaiacol) from biomass fast pyrolysis oil
tb	426.77	K Vapor-Liquid Equilibria of the Binary System 1-Pentanol + Anisole and the Quaternary System Benzene+Cyclohexane+1-Pentanol+Anis at 101.32 kPa
tc	619.41	K Joback Method
tf	235.20	K The solid-liquid equilitbrium, excess molar volume and refractive deviation properties of binary systems containing dimethyl carbonate, anisole and phenol

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	188.99	J/mol×K	473.15	NIST Webbook
cpg	195.94	J/mol×K	498.15	NIST Webbook
cpg	162.46	J/mol×K	388.15	NIST Webbook
cpg	168.82	J/mol×K	408.15	NIST Webbook
cpg	176.98	J/mol×K	433.15	NIST Webbook
cpg	183.05	J/mol×K	453.15	NIST Webbook
cpl	208.80	J/mol×K	304.80	NIST Webbook
cpl	199.00	J/mol×K	298.15	NIST Webbook
cpl	191.20	J/mol×K	297.20	NIST Webbook
dvisc	0.0009310	Paxs	303.15	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and 303.15) K
dvisc	0.0011880	Paxs	288.15	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and 303.15) K

dvisc	0.0010840	Paxs	293.15	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and 303.15) K	
dvisc	0.0010170	Paxs	298.15	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and 303.15) K	
hfust	11.66	kJ/mol	237.00	NIST Webbook	
hfust	17.03	kJ/mol	293.20	NIST Webbook	
hfust	12.89	kJ/mol	236.00	NIST Webbook	
hvapt	41.90	kJ/mol	409.50	NIST Webbook	
hvapt	41.80	kJ/mol	405.50	NIST Webbook	
hvapt	41.90	kJ/mol	409.50	NIST Webbook	
hvapt	39.00	kJ/mol	359.50	NIST Webbook	
hvapt	42.90 ± 0.10	kJ/mol	367.00	NIST Webbook	
hvapt	42.00 ± 0.10	kJ/mol	382.00	NIST Webbook	
hvapt	40.50 ± 0.10	kJ/mol	402.00	NIST Webbook	
hvapt	38.90 ± 0.10	kJ/mol	427.00	NIST Webbook	
hvapt	38.97	kJ/mol	426.80	NIST Webbook	
pvap	0.35	kPa		Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in ethyl-3-Ethyl-Imidazolium (trifluoromethyl-sulfonyl) Imide Using the Transpiration Method	

pvap	1.18	kPa	313.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.67	kPa	303.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.61	kPa	302.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.52	kPa	299.30 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.50	kPa	298.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

pvap	0.50	kPa	298.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.67	kPa	303.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.77	kPa	306.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.89	kPa	308.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

pvap	0.89	kPa	308.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.41	kPa	296.30 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.93	kPa	309.20 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	1.18	kPa	313.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	1.54	kPa	318.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

DV2D	0.29	kPa	290.30 Thermodynamic
pvap	0.29	Nr d	290.30 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	1.54	kPa	318.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	2.00	kPa	323.60 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	1.40	kPa	313.20 Isothermal vapor-liquid equilibrium of binary and ternary systems of anisole, hexane, and toluene and ternary system of methyl tert-butyl ether, hexane, and toluene
pvap	96.15	kPa	424.61 Vapor Liquid Equilibrium Data for Binary Mixtures of Acetic Acid + Anisole, Acetone + Anisole, and Isopropanol + Anisole at Pressure 96.15 kPa

pvap	96.15	kPa	424.55 Vapor Liquid Equilibrium Data for Binary Mixtures of Acetic Acid + Anisole, Acetone + Anisole, and Isopropanol + Anisole at Pressure 96.15 kPa
pvap	1.11	kPa	312.30 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	93.13	kPa	423.38 Refractive Index and Vapor-Liquid Equilibrium Data for the Binary Systems of Anisole with Xylene Isomers at 93.13 kPa
pvap	0.12	kPa	278.30 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.15	kPa	281.30 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method

pvap	0.19	kPa	284.30 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	0.23	kPa	287.30 Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients of Ethers and Alcohols in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using the Transpiration Method
pvap	96.15	kPa	424.79 Vapor Liquid Equilibrium Data for Binary Mixtures of Acetic Acid + Anisole, Acetone + Anisole, and Isopropanol + Anisole at Pressure 96.15 kPa
rfi	1.51370		298.15 Thermodynamic interactions in binary mixtures of anisole with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, pentan-1-ol, and 3-methylbutan-1-ol at T = (298.15, 303.15, and 308.15) K
rfi	1.51130		303.15 Thermodynamic interactions in binary mixtures of anisole with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, pentan-1-ol, and 3-methylbutan-1-ol at T = (298.15, 303.15, and 308.15) K

rfi	1.50880	308.15 Thermodynamic interactions in binary mixtures of anisole with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, pentan-1-ol, and 3-methylbutan-1-ol at T = (298.15, 303.15, and 308.15) K
rfi	1.51420	298.15 (Vapor + liquid) equilibrium of the binary mixtures formed by acetonitrile with selected compounds at 95.5 kPa
rfi	1.51460	298.15 Volumetric and refractive properties of 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane with methoxybenzene, chlorobenzene, tert-butylbenzene and nitrobenzene at T = (298.15-318.15)
rfi	1.50865	308.15 Volumetric and refractive properties of 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane with methoxybenzene, chlorobenzene, tert-butylbenzene and nitrobenzene at T = (298.15-318.15)
rfi	1.51191	303.15 Volumetric and refractive properties of 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane with methoxybenzene, chlorobenzene, tert-butylbenzene and nitrobenzene at T = (298.15-318.15)

rfi	1.50604	313.15 Volumetric and refractive properties of 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane with methoxybenzene, chlorobenzene, tert-butylbenzene and nitrobenzene at T = (298.15-318.15)
rfi	1.50341	318.15 Volumetric and refractive properties of 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane with methoxybenzene, chlorobenzene, tert-butylbenzene and nitrobenzene at T = (298.15-318.15)
rfi	1.51554	298.15 Isobaric Vapor-Liquid Equilibrium Data for Binary Systems of Anisole with Methyl Acetate, Ethyl Acetate, n-Propyl Acetate, and Isopropyl Acetate at 93.9 kPa
rfi	1.51480	298.15 Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K

rfi	1.51240	303.15 Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K
rfi	1.51170	303.15 Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K
rfi	1.50920	308.15 Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K
rfi	1.51530	298.15 Enthalpies of Mixing, Densities, and Refractive Indices for Binary Mixtures of (Anisole or Phenetole) + Three Aryl Alcohols at 308.15 K and at Atmospheric Pressure

rfi	1.50950	308.15	Enthalpies of Mixing, Densities, and Refractive Indices for Binary Mixtures of (Anisole or Phenetole) + Three Aryl Alcohols at 308.15 K and at Atmospheric Pressure	
rfi	1.51770	293.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Anisole with Benzene, Methylbenzene, Ethylbenzene, Propylbenzene, and Butylbenzene at (293.15 and 303.15) K	
rfi	1.51240	303.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Anisole with Benzene, Methylbenzene, Ethylbenzene, Propylbenzene, and Butylbenzene at (293.15 and 303.15) K	
rfi	1.51495	298.15	Densities, Speeds of Sound, and Refractive Indices of Binary Mixtures of Decan-1-ol with Anisole, o-Cresol, m-Cresol, and p-Cresol at T = (298.15, 303.15, and 308.15) K	

rfi	1.51095	308.15	Densities, Speeds of Sound, and Refractive Indices of Binary Mixtures of Decan-1-ol with Anisole, o-Cresol, m-Cresol, and p-Cresol at T = (298.15, 303.15, and 308.15) K	
rfi	1.51710	293.15	Isobaric Vapor Liquid Equilibria of the Ternary System 1-Pentanol + Nonane Anisole	
rfi	1.51420	298.15	(Vapor + liquid) equilibrium of binary mixtures formed by N,N-dimethyl formamide with some compounds at 95.1 kPa	
rfi	1.51710	293.13	Isobaric Vapor-Liquid Equilibria of the Ternary System Methylbutyl Ketone + 1-Pentanol + Anisole	
rfi	1.51410	298.15	Physical properties of {anisole + n-alkanes} at temperatures between (293.15 and 303.15) K	
rfi	1.51290	303.15	Physical properties of {anisole + n-alkanes} at temperatures between (293.15 and 303.15) K	
rfi	1.51360	298.15	Excess and deviation properties for the binary mixtures of methylcyclohexane with benzene, toluene, p-xylene, mesitylene, and anisole at T = (298.15, 303.15, and 308.15) K	

rfi	1.51120	303.15	Excess and deviation properties for the binary mixtures of methylcyclohexane with benzene, toluene, p-xylene, mesitylene, and anisole at T = (298.15, 303.15, and 308.15) K
rfi	1.50880	308.15	Excess and deviation properties for the binary mixtures of methylcyclohexane with benzene, toluene, p-xylene, mesitylene, and anisole at T = (298.15, 303.15, and 308.15) K
rfi	1.52560	288.15	Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K
rfi	1.51720	293.15	Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K

rfi	1.51690		293.15	Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K	
rfi	1.51410		298.15	Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K	
rfi	1.51610		293.15	Physical properties of {anisole + n-alkanes} at temperatures between (293.15 and 303.15) K	
rfi	1.51395		303.15	Densities, Speeds of Sound, and Refractive Indices of Binary Mixtures of Decan-1-ol with Anisole, o-Cresol, m-Cresol, and p-Cresol at T = (298.15, 303.15, and 308.15) K	
rhol	989.13	kg/m3	298.15	Binary liquid liquid equilibrium in the systems containing monofunctional benzene derivates and 1,2-ethanediol	

rhol	989.42	kg/m3	298.15	Liquid Liquid Equilibria for Ternary Mixtures of Methylphenyl Carbonate, Dimethyl Carbonate, Diphenyl Carbonate, Anisole, Methanol, Phenol, and Water at Several Temperatures	
rhol	980.00	kg/m3	313.15	Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether	
rhol	984.60	kg/m3	308.15	Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether	
rhol	989.40	kg/m3	303.15	Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether	
rhol	993.60	kg/m3	298.15	Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether	
rhol	989.13	kg/m3	298.15	Liquid-Liquid Equilibrium in Ternary Systems Containing Ethylene Glycol, Monofunctional Benzene Derivative, and Ethyl Acetate	

rh	ol	975.00	kg/m3	313.15	Density, viscosity, and speed of sound of binary liquid mixtures of vinyl acetate with butyl vinyl ether, diisopropyl ether, anisole and dibutyl ether	
rh	ol	979.80	kg/m3	308.15	Density, viscosity, and speed of sound of binary liquid mixtures of vinyl acetate with butyl vinyl ether, diisopropyl ether, anisole and dibutyl ether	
rh	ol	984.40	kg/m3	303.15	Density, viscosity, and speed of sound of binary liquid mixtures of vinyl acetate with butyl vinyl ether, diisopropyl ether, anisole and dibutyl ether	
rh	ol	989.32	kg/m3	298.15 1,3,5-trimethyl-1,3,5	The physicochemical properties of 5-tris(3,3,3-trifluoropr with various aromatic hydrocarbons at T = (308.15 to 323.15) K	opyl)cyclotrisiloxane
rh	ol	965.73	kg/m3	323.15 1,3,5-trimethyl-1,3,5	The physicochemical properties of 5-tris(3,3,3-trifluoropr with various aromatic hydrocarbons at T = (308.15 to 323.15) K	opyl)cyclotrisiloxane
rh	ol	970.52	kg/m3	318.15 1,3,5-trimethyl-1,3,5	The physicochemical properties of	opyl)cyclotrisiloxane

rhol	975.25	kg/m3	313.15 The physicochemical properties of 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)cyclotrisiloxane with various aromatic hydrocarbons at T = (308.15 to 323.15) K
rhol	980.04	kg/m3	308.15 The physicochemical properties of 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)cyclotrisiloxane with various aromatic hydrocarbons at T = (308.15 to 323.15) K
rhol	984.59	kg/m3	303.15 The density, refractive index, and thermodynamic behaviour of binary mixtures of 1,3-Diethenyl-1,1,3,3-tetramethyldisiloxane with aromatic hydrocarbons
rhol	989.32	kg/m3	298.15 The density, refractive index, and thermodynamic behaviour of binary mixtures of 1,3-Diethenyl-1,1,3,3-tetramethyldisiloxane
			with aromatic hydrocarbons
rhol	994.01	kg/m3	293.15 The density, refractive index, and thermodynamic behaviour of binary mixtures of
			1,3-Diethenyl-1,1,3,3-tetramethyldisiloxane with aromatic hydrocarbons
rhol	998.62	kg/m3	288.15 The density, refractive index, and thermodynamic behaviour of binary mixtures of 1,3-Diethenyl-1,1,3,3-tetramethyldisiloxane
			with aromatic hydrocarbons

rhol	1003.30	kg/m3	283.15 The density, refractive index, and thermodynamic behaviour of binary mixtures of
			1,3-Diethenyl-1,1,3,3-tetramethyldisiloxane with aromatic hydrocarbons
rhol	970.50	kg/m3	318.15 Intermolecular interactions in mixtures of poly (ethylene glycol) with methoxybenzene and ethoxybenzene: Volumetric and viscometric studies
rhol	979.50	kg/m3	308.15 Intermolecular interactions in mixtures of poly (ethylene glycol) with methoxybenzene and ethoxybenzene: Volumetric and viscometric studies
rhol	988.90	kg/m3	298.15 Intermolecular interactions in mixtures of poly (ethylene glycol) with methoxybenzene and ethoxybenzene: Volumetric and viscometric studies
rhol	989.42	kg/m3	liquid-liquid equilibria and binary excess and deviation properties at constant temperature for mixtures of dimethyl carbonate, anisole, methanol, phenol and water

rhol	969.99	kg/m3	318.15	Solid-liquid equilibria and the physical properties of binary systems of diphenyl carbonate, dimethyl carbonate, methyl phenyl carbonate, anisole, methanol and phenol	
rhol	973.62	kg/m3	313.15	Solid-liquid equilibria and the physical properties of binary systems of diphenyl carbonate, dimethyl carbonate, methyl phenyl carbonate, anisole, methanol and phenol	
rhol	978.34	kg/m3	308.15	Solid-liquid equilibria and the physical properties of binary systems of diphenyl carbonate, dimethyl carbonate, methyl phenyl carbonate, anisole, methanol and phenol	
rhol	983.04	kg/m3	303.15	Solid-liquid equilibria and the physical properties of binary systems of diphenyl carbonate, dimethyl carbonate, methyl phenyl carbonate, anisole, methanol and phenol	
rhol	989.09	kg/m3	298.15	Solid-liquid equilibria and the physical properties of binary systems of diphenyl carbonate, dimethyl carbonate, methyl phenyl carbonate, anisole, methanol and phenol	

rhol	991.95	kg/m3	293.15	Solid-liquid equilibria and the physical properties of binary systems of diphenyl carbonate, dimethyl carbonate, methyl phenyl carbonate, anisole, methanol and phenol
rhol	996.56	kg/m3	288.15	Solid-liquid equilibria and the physical properties of binary systems of diphenyl carbonate, dimethyl carbonate, methyl phenyl carbonate, anisole, methanol and phenol
rhol	989.42	kg/m3	298.15	Solid-liquid equilibria and the physical properties of binary systems of diphenyl carbonate, dimethyl carbonate, methyl phenyl carbonate, anisole, methanol and phenol
sfust	58.10	J/mol×K	293.20	NIST Webbook

Datasets

Mass density, kg/m3

Temperature, K - Liquid	Pressure, kPa - Liquid	Mass density, kg/m3 - Liquid
298.15	100.00	989.2
298.15	10000.00	995.6
298.15	15000.00	998.5
298.15	20000.00	1001.4
298.15	25000.00	1004.1

298.15	30000.00	1006.9
298.15	35000.00	1009.7
298.15	40000.00	1012.5
298.15	45000.00	1015.2
298.15	50000.00	1017.5
318.15	100.00	969.9
318.15	10000.00	977.3
318.15	15000.00	980.4
318.15	20000.00	983.6
318.15	25000.00	986.9
318.15	30000.00	989.8
318.15	35000.00	992.9
318.15	40000.00	995.7
318.15	45000.00	998.6
318.15	50000.00	1001.5
348.15	100.00	941.3
348.15	10000.00	949.8
348.15	15000.00	953.5
348.15	20000.00	957.3
348.15	25000.00	961.1
348.15	30000.00	964.5
348.15	35000.00	967.9
348.15	40000.00	971.0
348.15	45000.00	974.5
348.15	50000.00	977.8
		// / / / / / / / / / / / / / / / / / / /

Reference

https://www.doi.org/10.1016/j.jct.2012.01.008

Sources

Physicochemical Properties of LiFSI Solutions II: LiFSI with Water, MTBE, The physicochemical properties of 1,3,5-trimethyl-1,3,5-triis(3,3,3-triifluoropropyl)cyclotrisiloxane with ideliguid Equilibrium in the system's containing monofunctional benzeric died vassiliaria potate Bieary II: System 1-Pentanol + Anisole and the System 1-Pentanol + Anisole a

http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt

Refractive Index and Vapor-Liquid Refractive index and vapor-liquid Equilibrium Data for the Binary Byseities of Viscreviewith Video of Hexyl Sone of Binary Mingures of Hexyl Activities of Hexyl Activities of Airisoyes where any Vinyl Eighenyl carbonate, dimethyl carbonate, methyl phenyl carbonate, anisole, methanol and phenol:

https://www.doi.org/10.1021/acs.jced.8b00348

https://www.doi.org/10.1021/je400539h

https://www.doi.org/10.1016/j.fluid.2014.05.033

NIST Webbook:

Enthalpies of Mixing, Densities, and 開発研究権性情報を登りを紹介と同時のをおけている。
disopropyl ether, anisole and dibutyl the modynamic interactions in binary mixtures of anisole with ethanol. Deigeminatioprageir 215년 अंधिकार्ग - 01, Sellahility of antiginite of languages of sound for Binary Maxaa signification and bicank exaas and deviation and devi Denzonthen the steep of billary finktures of the ionic liquid pensitive indicated from the state of sensitive indicated from the state of sensitive indicated from the sensitive indicated fro Sontaining Ionic Liquids. Activity Southfree News English English Constant Tanany System 1 The standing Nonane by standing the Country System 1 The standing Nonane by standing the Country System 1 The standing of the Country System 1 The System 1 Th https://www.doi.org/10.1016/j.jct.2013.12.008 Volumetric and viscometric studies:

http://webbook.nist.gov/cgi/cbook.cgi?ID=C100663&Units=SI https://www.doi.org/10.1021/je050085p Refractive Indices for Binary Mixtures อากุมล่าเร็บ ฟังส**า**นสายชาย) ฟังสารนสายชาย) ฟังสารนสายชาย https://www.doi.org/10.1021/acs.jced.8b00271 The straight and the property of the straight and the str http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1016/j.jct.2006.03.018 https://www.doi.org/10.1021/acs.jced.6b00219 https://www.doi.org/10.1021/je049610v https://www.doi.org/10.1016/j.fluid.2014.07.004 https://www.doi.org/10.1016/j.jct.2005.12.005 https://www.doi.org/10.1016/j.jct.2012.12.009 https://www.doi.org/10.1016/j.jct.2006.09.007 https://www.doi.org/10.1016/j.jct.2013.04.008 https://www.doi.org/10.1021/je100362p https://www.doi.org/10.1016/j.fluid.2014.02.025 https://www.doi.org/10.1016/j.jct.2012.01.008 https://www.doi.org/10.1016/j.jct.2012.06.009 https://www.doi.org/10.1016/j.jct.2013.12.025 https://www.doi.org/10.1016/j.tca.2019.178413 in the second of Binary Mixtures of Benzene, The selection of Binary Mixtures of Benzene, and westware and refraible devices and speeds of benzene, the selection of Binary Mixtures of Benzene, the sele https://www.doi.org/10.1016/j.fluid.2014.09.024 https://www.doi.org/10.1021/acs.jced.6b00700 https://www.doi.org/10.1021/acs.jced.8b00063 https://www.doi.org/10.1021/je0502546 https://www.doi.org/10.1021/acs.jced.8b01257 https://www.doi.org/10.1021/je900058p https://www.doi.org/10.1021/je100921h
systems Containing Ethylene Glycol, hebafishoroal Behatishoroal Behatishoroa https://www.doi.org/10.1021/je100921h https://www.doi.org/10.1016/j.fluid.2011.10.022 https://www.doi.org/10.1016/j.fluid.2018.03.021 https://www.doi.org/10.1016/j.fluid.2007.02.026 https://www.doi.org/10.1021/je700594n

Legend

affp: Proton affinity **basg:** Gas basicity

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacitycpl: Liquid phase heat capacity

dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressurerfi: Refractive Indexrhoc: Critical densityrhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/49-827-0/Anisole.pdf

Generated by Cheméo on 2025-12-23 13:54:50.154791325 +0000 UTC m=+6246287.684831980.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.