Propane, 2-methoxy-2-methyl-

Other names: 1,1-Dimethylethyl methyl ether

1,1-dimethyl-1-methoxyethane

2-METHOXY-2-METHYLPROPANE

2-Methyl-2-methoxypropane 3,3-dimethyl-2-oxabutane

Driveron

Ether, tert-butyl methyl

METHYL-1,1-DIMETHYLETHYL ETHER

MTBE

Methyl 1,1-dimethylethyl ether

Methyl t-butyl ether Methyl tert-butyl ether

TERT-BUTYL METHYL ETHER

UN 2398

methyl tert-butyl ether (MTBE)

t-Butyl methyl ether tert-C4H9OCH3

Inchi: InChI=1S/C5H12O/c1-5(2,3)6-4/h1-4H3
InchiKey: BZLVMXJERCGZMT-UHFFFAOYSA-N

Formula: C5H12O SMILES: COC(C)(C)C

Mol. weight [g/mol]: 88.15 **CAS:** 1634-04-4

Physical Properties

Property code	Value	Unit	Source
af	0.2690		KDB
affp	841.60	kJ/mol	NIST Webbook
basg	812.40	kJ/mol	NIST Webbook
chl	-3368.97	kJ/mol	NIST Webbook
chl	-3359.70 ± 6.50	kJ/mol	NIST Webbook
dm	1.20	debye	KDB

dvisc	0.0003610	Paxs	Densities and Viscosities for the Ternary Systems of Methyl tert-Butyl Ether + Methanol + Benzene and Methyl tert-Butyl Ether + Methanol + Toluene and Their Sub-binary Systems at 298.15 K
gf	-125.50	kJ/mol	KDB
hf	-282.20 ± 1.90	kJ/mol	NIST Webbook
hf	-285.00	kJ/mol	NIST Webbook
hf	-293.10	kJ/mol	KDB
hf	-283.20 ± 1.30	kJ/mol	NIST Webbook
hfl	-313.60 ± 1.30	kJ/mol	NIST Webbook
hfl	-322.90 ± 5.00	kJ/mol	NIST Webbook
hfl	-315.40	kJ/mol	NIST Webbook
hfus	2.48	kJ/mol	Joback Method
hvap	27.84	kJ/mol	Joback Method
ie	9.41	eV	NIST Webbook
ie	9.24	eV	NIST Webbook
ie	9.48	eV	NIST Webbook
log10ws	-0.24		Estimated Solubility Method
log10ws	-0.24		Aqueous Solubility Prediction Method
logp	1.431		Crippen Method
mcvol	87.180	ml/mol	McGowan Method
рс	3397.00 ± 8.00	kPa	NIST Webbook
рс	3430.00	kPa	KDB
рс	3430.00 ± 10.00	kPa	NIST Webbook
rinpol	570.12		NIST Webbook
rinpol	562.00		NIST Webbook
rinpol	544.00		NIST Webbook
rinpol	549.00		NIST Webbook
rinpol	562.70		NIST Webbook
rinpol	568.00		NIST Webbook
rinpol	563.70		NIST Webbook
rinpol	566.00		NIST Webbook
rinpol	567.00		NIST Webbook
rinpol	554.50		NIST Webbook
rinpol	558.00		NIST Webbook
rinpol	563.00		NIST Webbook
rinpol	570.00		NIST Webbook
rinpol	560.00		NIST Webbook
rinpol	556.00		NIST Webbook
rinpol	556.00		NIST Webbook
rinpol	556.00		NIST Webbook

rinpol	560.00		NIST Webbook
rinpol	568.00		NIST Webbook
rinpol	563.00		NIST Webbook
rinpol	556.00		NIST Webbook
rinpol	566.00		NIST Webbook
ripol	666.00		NIST Webbook
ripol	688.00		NIST Webbook
sg	357.80	J/mol×K	NIST Webbook
sl	265.30	J/mol×K	NIST Webbook
tb	328.25	K	Vapor-Liquid Equilibria for the Binary Systems of Dimethoxymethane with Some Fuel Oxygenates
tb	328.30	K	KDB
tc	497.00	K	Measurement of critical temperatures and critical pressures for binary mixtures of methyl tert-butyl ether (MTBE) + alcohol and MTBE + alkane
tc	497.10 ± 0.20	K	NIST Webbook
tc	497.10	K	KDB
tc	496.40 ± 0.30	K	NIST Webbook
tc	497.10	K	NIST Webbook
tf	164.25	K	Aqueous Solubility Prediction Method
tf	164.50 ± 0.20	K	NIST Webbook
tf	164.50	K	KDB
tt	164.56 ± 0.07	K	NIST Webbook
VC	0.323	m3/kmol	KDB
ZC	0.2676350		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	167.93	J/mol×K	391.53	Joback Method
cpg	158.08	J/mol×K	362.26	Joback Method
cpg	203.44	J/mol×K	508.60	Joback Method
cpg	195.13	J/mol×K	479.33	Joback Method
cpg	186.44	J/mol×K	450.06	Joback Method
cpg	177.38	J/mol×K	420.79	Joback Method
cpg	147.83	J/mol×K	332.99	Joback Method
срІ	187.80	J/mol×K	298.15	NIST Webbook
cpl	187.50	J/mol×K	298.15	NIST Webbook

cpl	188.00	J/mol×K	298.00	NIST Webbook
dvisc	0.0003190	Paxs	298.15	Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]
dvisc	0.0003040	Paxs	303.15	Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]
dvisc	0.0002780	Paxs	313.15	Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]
dvisc	0.0003330	Paxs	293.15	Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]
dvisc	0.0004170	Paxs	278.15	Densities and Viscosities of MTBE + Heptane or Octane at p) 0.1 MPa from (273.15 to 363.15) K
dvisc	0.0003920	Paxs	283.15	Densities and Viscosities of MTBE + Heptane or Octane at p) 0.1 MPa from (273.15 to 363.15) K
dvisc	0.0003700	Paxs	288.15	Densities and Viscosities of MTBE + Heptane or Octane at p) 0.1 MPa from (273.15 to 363.15) K

dvisc	0.0003600	Paxs	283.15	Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]	
dvisc	0.0003900	Paxs	273.15	Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Enthalpy of [Chloroform + Methyl tert-Butyl Ether]	
dvisc	0.0002846	Paxs	313.15	Experimental and Predicted Viscosities of Binary Mixtures Containing Chlorinated and Oxygenated Compounds	
dvisc	0.0002994	Paxs	308.15	Experimental and Predicted Viscosities of Binary Mixtures Containing Chlorinated and Oxygenated Compounds	
dvisc	0.0003152	Paxs	303.15	Experimental and Predicted Viscosities of Binary Mixtures Containing Chlorinated and Oxygenated Compounds	
dvisc	0.0003327	Paxs	298.15	Experimental and Predicted Viscosities of Binary Mixtures Containing Chlorinated and Oxygenated Compounds	
dvisc	0.0003482	Paxs	293.15	Experimental and Predicted Viscosities of Binary Mixtures Containing Chlorinated and Oxygenated Compounds	

dvisc	0.0003640	Paxs	288.15	Experimental and Predicted Viscosities of Binary Mixtures Containing Chlorinated and Oxygenated Compounds	
dvisc	0.0004430	Paxs	273.15	Densities and Viscosities of MTBE + Heptane or Octane at p) 0.1 MPa from (273.15 to 363.15) K	
dvisc	0.0003897	Paxs	283.15	Experimental and Predicted Viscosities of Binary Mixtures Containing Chlorinated and Oxygenated Compounds	
hfust	7.60	kJ/mol	164.56	NIST Webbook	
hfust	7.60	kJ/mol	164.60	NIST Webbook	
hfust	7.60	kJ/mol	164.60	NIST Webbook	
hvapt	30.20	kJ/mol	319.00	NIST Webbook	
hvapt	30.40	kJ/mol	306.50	NIST Webbook	
hvapt	29.90	kJ/mol	314.00	NIST Webbook	
hvapt	27.94	kJ/mol	328.30	NIST Webbook	
hvapt	27.90	kJ/mol	328.00	NIST Webbook	
hvapt	31.20	kJ/mol	355.50	NIST Webbook	
hvapt	30.00	kJ/mol	310.00	NIST Webbook	
hvapt	29.60	kJ/mol	340.00	NIST Webbook	
kvisc	0.0000004	m2/s	313.15	Kinematic Viscosities for Ether + Alkane Mixtures: Experimental Results and UNIFAC-VISCO Parameters	
kvisc	0.0000005	m2/s	298.15	Kinematic Viscosities for Ether + Alkane Mixtures: Experimental Results and UNIFAC-VISCO Parameters	
kvisc	0.0000005	m2/s	283.15	Kinematic Viscosities for Ether + Alkane Mixtures: Experimental Results and UNIFAC-VISCO Parameters	

pvap	18.55	kPa	284.82	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers
pvap	43.26	kPa	304.79	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers
pvap	62.95	kPa	314.75	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers
pvap	62.97	kPa	314.76	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers
pvap	62.97	kPa	314.76	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers
pvap	89.66	kPa	324.90	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers
pvap	89.69	kPa	324.90	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers
pvap	124.02	kPa	334.85	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers
pvap	11.59	kPa	274.91	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers
pvap	167.57	kPa	344.85	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers

pvap	221.79	kPa	354.82	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers	
pvap	221.39	kPa	354.82	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers	
pvap	17.79	kPa	283.60	A milliliter-scale setup for the efficient characterization of isothermal vapor-liquid equilibria using Raman spectroscopy	
pvap	22.07	kPa	288.60	A milliliter-scale setup for the efficient characterization of isothermal vapor-liquid equilibria using Raman spectroscopy	
pvap	27.43	kPa	293.50	A milliliter-scale setup for the efficient characterization of isothermal vapor-liquid equilibria using Raman spectroscopy	
pvap	33.72	kPa	298.40	A milliliter-scale setup for the efficient characterization of isothermal vapor-liquid equilibria using Raman spectroscopy	
pvap	41.10	kPa	303.30	A milliliter-scale setup for the efficient characterization of isothermal vapor-liquid equilibria using Raman spectroscopy	

pvap	49.80	kPa	308.20	A milliliter-scale setup for the efficient characterization of isothermal vapor-liquid equilibria using Raman spectroscopy
pvap	59.90	kPa	313.10	A milliliter-scale setup for the efficient characterization of isothermal vapor-liquid equilibria using Raman spectroscopy
pvap	43.24	kPa	304.79	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers
pvap	85.01	kPa	323.00	A milliliter-scale setup for the efficient characterization of isothermal vapor-liquid equilibria using Raman spectroscopy
pvap	100.34	kPa	327.90	A milliliter-scale setup for the efficient characterization of isothermal vapor-liquid equilibria using Raman spectroscopy
pvap	117.70	kPa	332.90	A milliliter-scale setup for the efficient characterization of isothermal vapor-liquid equilibria using Raman spectroscopy
pvap	137.39	kPa	337.80	A milliliter-scale setup for the efficient characterization of isothermal vapor-liquid equilibria using Raman spectroscopy

pvap	6.24	kPa	263.15	Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures	
pvap	6.40	kPa	263.53	Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures	
pvap	10.67	kPa	273.15	Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures	
pvap	10.80	kPa	273.34	Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures	
pvap	17.41	kPa	283.15	Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures	

pvap	17.60	kPa	283.27	Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at
pvap	11.59	kPa	274.90	several temperatures Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers
pvap	27.40	kPa	293.25	Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures
pvap	41.16	kPa	303.15	Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures
pvap	41.20	kPa	303.22	Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures

pvap	60.22	kPa	313.15	Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures	
pvap	60.30	kPa	313.24	Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures	
pvap	85.65	kPa	323.15	Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures	
pvap	85.80	kPa	323.21	Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures	
pvap	119.20	kPa	333.19	Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures	

pvap	118.78	kPa	333.15	Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures	
pvap	62.40	kPa	313.20	Isothermal vapor-liquid equilibrium of binary and ternary systems of anisole, hexane, and toluene and ternary system of methyl tert-butyl ether, hexane, and toluene	
pvap	160.66	kPa	343.15	Thermodynamics of isomeric hexynes +MTBE binary mixtures	
pvap	118.27	kPa	333.15	Thermodynamics of isomeric hexynes +MTBE binary mixtures	
pvap	85.15	kPa	323.15	Thermodynamics of isomeric hexynes +MTBE binary mixtures	
pvap	59.81	kPa	313.15	Thermodynamics of isomeric hexynes +MTBE binary mixtures	
pvap	40.86	kPa	303.15	Thermodynamics of isomeric hexynes +MTBE binary mixtures	
pvap	33.39	kPa	298.15	Thermodynamics of isomeric hexynes +MTBE binary mixtures	
pvap	27.06	kPa	293.15	Thermodynamics of isomeric hexynes +MTBE binary mixtures	
pvap	17.31	kPa	283.15	Thermodynamics of isomeric hexynes +MTBE binary mixtures	

pvap	28.78	kPa	294.80	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers	
pvap	10.64	kPa	273.15	Thermodynamics of isomeric hexynes +MTBE binary mixtures	
pvap	71.61	kPa	318.10	A milliliter-scale setup for the efficient characterization of isothermal vapor-liquid equilibria using Raman spectroscopy	
pvap	6.25	kPa	263.15	Thermodynamics of isomeric hexynes +MTBE binary mixtures	
pvap	28.78	kPa	294.81	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers	
pvap	28.78	kPa	294.80	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers	
рvар	120.40	kPa	333.15	Thermodynamics of binary mixtures containing N-methyl-2-pyrrolidino VLE measurements for systems with ethers Comparison with the Mod. UNIFAC (Do) and DISQUAC models Predictions for VLE, GE m, HEm and SLE?	ne
pvap	167.14	kPa	344.84	Isothermal vapour liquid equilibria of binary systems of 1,2-dichloroethane with ethers	

pvap	27.25	kPa	293.15	Isothermal (vapor + liquid) equilibria and excess enthalpy data of {1-hexene + methyl butyl ether (MBE)} and {1-hexene + methyl tert-butyl ether (MTBE)} binary systems at several temperatures	
rfi	1.36628		298.15	Isobaric Vapor-Liquid Equilibria at 101.32 kPa and Densities, Speeds of Sound, and Refractive Indices at 298.15 K for MTBE or DIPE or TAME + 1-Propanol Binary Systems	
rfi	1.36632		298.20	Vapor-Liquid Equilibrium Measurements of Ether Alcohol Blends for Investigation on Reformulated Gas	
rfi	1.36766		298.15	Phase equilibria and interfacial tensions in the systems methyl tert-butyl ether + acetone + cyclohexane, methyl tert-butyl ether + acetone and methyl tert-butyl ether + cyclohexane	
rfi	1.36764		298.15	Atmospheric densities and interfacial tensions for 1-alkanol (1-butanol to 1-octanol) + water and ether (MTBE, ETBE, DIPE, TAME and THP) + water demixed mixtures.	

rfi	1.36900	293.15	(Vapor + liquid) equilibrium of the binary mixtures formed by acetonitrile with selected compounds at 95.5 kPa
rfi	1.36648	298.15	Volumetric behaviour of binary liquid systems composed of toluene, isooctane, and methyl tert-butyl ether at temperatures from (298.15 to 328.15) K
rfi	1.36648	298.15	Volumetric behavior of the ternary system (methyl tert-butyl ether + methylbenzene + butan-1-ol) and its binary sub-system (methyl tert-butyl ether + butan-1-ol) within the temperature range (298.15 to 328.15) K
rfi	1.36610	298.15	sothermal and Isobaric Vapor-Liquid Equilibrium and Excess Molar Enthalpy of the Binary Mixtures of 2-Methoxy-2-methylpropane + 2-Methyl-2-butanol or + 2-Butanol
rfi	1.36600	298.15	Solubility of a-Carotene in Binary Solvents Formed by Some Hydrocarbons with tert-Butyl Methyl Ether and with tert-Amyl Methyl Ether
rfi	1.36980	293.15	Vapor-Liquid Equilibrium Measurements of MTBE and TAME with Toluene

rfi	1.36594		298.15 2-M	Quaternary, Ternary, and Binary LLE Measurements for lethoxy-2-methylpropane + Furfural + Acetic Acid + Water at Temperatures between 298 and 307 K
rfi	1.36766		298.15 2-M	Vapor-Liquid Equilibria and Interfacial Tensions of the System Ethanol + lethoxy-2-methylpropane
rfi	1.36890		293.15	A novel static analytical apparatus for phase equilibrium measurements
rhol	735.48	kg/m3	298.15	Excess Molar Volumes and Surface Tensions of Xylene with Isopropyl Ether or Methyl tert-Butyl Ether at 298.15 K
rhol	735.35	kg/m3	298.15	Mixing Properties for the Ternary Mixture Methyl tert-Butyl Ether + 1-Butanol + Decane at 298.15 K
rhol	724.60	kg/m3	308.15	Physicochemical Properties of LiFSI Solutions II: LiFSI with Water, MTBE, and Anisole
rhol	713.96	kg/m3	318.15	Densities and Viscosities of MTBE + Nonane or Decane at p = 0.1 MPa from (273.15 to 363.15) K
rhol	745.90	kg/m3	288.15	Physicochemical Properties of LiFSI Solutions II: LiFSI with Water, MTBE, and Anisole

rhol	719.42	kg/m3	313.15	Densities and Viscosities of MTBE + Nonane or Decane at p = 0.1 MPa from (273.15 to 363.15) K	
rhol	761.30	kg/m3	273.15	Physicochemical Properties of LiFSI Solutions II: LiFSI with Water, MTBE, and Anisole	
rhol	724.82	kg/m3	308.15	Densities and Viscosities of MTBE + Nonane or Decane at p = 0.1 MPa from (273.15 to 363.15) K	
rhol	730.10	kg/m3	303.15	Densities and Viscosities of MTBE + Nonane or Decane at p = 0.1 MPa from (273.15 to 363.15) K	
rhol	735.40	kg/m3	298.15	Densities and Viscosities of MTBE + Nonane or Decane at p = 0.1 MPa from (273.15 to 363.15) K	
rhol	740.65	kg/m3	293.15	Densities and Viscosities of MTBE + Nonane or Decane at p = 0.1 MPa from (273.15 to 363.15) K	
rhol	734.10	kg/m3	298.15	Solubility and solution thermodynamics of sorbic acid in eight pure organic solvents	
rhol	735.99	kg/m3	298.15	Excess molar enthalpies of the ternary mixtures (1-hexene + tetrahydrofuran or 2-methyltetrahydrofuran + methyl tert-butyl ether) at the temperature 298.15K.	

rhol	735.00	kg/m3	298.15	Physicochemical Properties of LiFSI Solutions II: LiFSI with Water, MTBE, and Anisole	
rhol	745.85	kg/m3	288.15	Densities and Viscosities of MTBE + Nonane or Decane at p = 0.1 MPa from (273.15 to 363.15) K	
rhol	751.02	kg/m3	283.15	Densities and Viscosities of MTBE + Nonane or Decane at p = 0.1 MPa from (273.15 to 363.15) K	
rhol	756.14	kg/m3	278.15	Densities and Viscosities of MTBE + Nonane or Decane at p = 0.1 MPa from (273.15 to 363.15) K	
rhol	761.34	kg/m3	273.15	Densities and Viscosities of MTBE + Nonane or Decane at p = 0.1 MPa from (273.15 to 363.15) K	
rhol	739.80	kg/m3	293.15 2-M	Measurements of Liquid Liquid Equilibria for the Quaternary System lethoxy-2-methylprop + Phenol + Hydroquinone + Water at 313.15 K	ane
rhol	735.99	kg/m3	298.15 2	Excess molar enthalpies of the ternary mixtures: (tetrahydrofuran or -methyltetrahydrofura + methyl tert-butyl ether + n-octane) at the temperature 298.15 K	ลท

rhol	735.21	kg/m3	298.15	Excess Volumes of Ternary Mixtures 2,2,4-Trimethylpentane + Diisopropyl Ether or Methyl tert-Butyl Ether + Methanol, Ethanol, or 1-Propanol at 298.15 K
rhol	735.99	kg/m3	298.15	Excess molar enthalpies of the ternary mixtures: {tetrahydrofuran or 2-methyltetrahydrofuran + methyl tert-butyl ether + n-dodecane} at the temperature 298.15 K
rhol	724.85	kg/m3	308.15	Densities and derived thermodynamic properties of the binary systems of 1,1-dimethylethyl methyl ether with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at T = (298.15 and 308.15) K
rhol	735.36	kg/m3	298.15	Densities and derived thermodynamic properties of the binary systems of 1,1-dimethylethyl methyl ether with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at T = (298.15 and 308.15) K

rhol	740.60	kg/m3	298.15	Vapor-Liquid
				Equilibria for the Ternary Systems of Methyl tert-Butyl Ether + Methanol + Methylcyclohexane and Methyl tert-Butyl Ether + Methanol + n-Heptane and Constituent Binary Systems at 313.15 K
rhol	718.08	kg/m3	313.20	Liquid-liquid equilibrium data and thermophysical properties for ternary systems composed of water, acetic acid and different solvents
rhol	739.45	kg/m3	293.20	Liquid-liquid equilibrium data and thermophysical properties for ternary systems composed of water, acetic acid and different solvents
rhol	737.80	kg/m3	298.20	Phase equilibria of (water + propionic acid or butyric acid + 2-methoxy- 2-methylpropane) ternary systems at 298.2 K and 323.2 K
rhol	735.40	kg/m3	298.15	Phase equilibria for binary systems of octane boosters with 2,2,4-trimethylpentane
rhol	735.69	kg/m3	298.15	Excess molar enthalpies of the ternary mixtures: methyl tert-butyl ether +2-methylpentane + (n-decane or n-dodecane) at the temperature 298.15 K

rhol	735.69	kg/m3	298.15	Excess molar enthalpies of the ternary mixtures: methyl tert-butyl ether + 3-methylpentane + (n-decane or n-dodecane) at 298.15K
sfust	46.18	J/mol×K	164.56	NIST Webbook
speedsl	580.10	m/s	398.11 2-M	Speed of Sound Measurements of lethoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	537.60	m/s	408.23 2-M	Speed of Sound Measurements of lethoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	515.80	m/s	413.20 2-M	Speed of Sound Measurements of lethoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	494.40	m/s	418.24 2-M	Speed of Sound Measurements of lethoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	476.00	m/s	423.15 2-M	Speed of Sound Measurements of lethoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa

speedsl	453.80	m/s	428.24 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	430.30	m/s	433.05 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	405.80	m/s	438.19 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	387.30	m/s	443.09 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	103.70	m/s	493.06 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	360.30	m/s	448.23 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa

speedsl	339.50	m/s	453.10 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	313.60	m/s	458.19 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	287.10	m/s	463.23 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	265.00	m/s	468.18 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	236.50	m/s	473.17 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	206.10	m/s	478.08 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa

speedsl	177.70	m/s	483.20 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	142.80	m/s	488.11 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	1086.62	m/s	288.15 Mixing Properties for Binary Liquid Mixtures of Methyl tert-Butyl Ether with Propylamine and Dipropylamine at Temperatures from (288.15 to 308.15) K
speedsl	1086.92	m/s	288.15 Mixing Properties for Binary Liquid Mixtures of Methyl tert-Butyl Ether with Propylamine and Dipropylamine at Temperatures from (288.15 to 308.15) K
speedsl	1063.43	m/s	293.15 Mixing Properties for Binary Liquid Mixtures of Methyl tert-Butyl Ether with Propylamine and Dipropylamine at Temperatures from (288.15 to 308.15) K
speedsl	1040.35	m/s	298.15 Mixing Properties for Binary Liquid Mixtures of Methyl tert-Butyl Ether with Propylamine and Dipropylamine at Temperatures from (288.15 to 308.15) K

speedsl	1017.42	m/s	303.15 Mixing Properties for Binary Liquid Mixtures of Methyl tert-Butyl Ether with Propylamine and Dipropylamine at Temperatures from (288.15 to 308.15) K
speedsl	994.68	m/s	308.15 Mixing Properties for Binary Liquid Mixtures of Methyl tert-Butyl Ether with Propylamine and Dipropylamine at Temperatures from (288.15 to 308.15) K
speedsl	1013.90	m/s	303.15 Influence of temperature on thermodynamics of ethers + xylenes
speedsl	609.10	m/s	393.16 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	627.50	m/s	388.11 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	646.40	m/s	383.08 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa

speedsl	668.30	m/s	378.05 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	698.90	m/s	373.05 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	707.10	m/s	368.17 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	727.10	m/s	363.16 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	748.60	m/s	358.22 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	558.00	m/s	403.24 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa

speedsl	797.50	m/s	348.24 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	826.30	m/s	343.12 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	855.10	m/s	338.07 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	876.80	m/s	333.13 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	904.70	m/s	328.21 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	912.40	m/s	323.07 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa

speedsl	942.70	m/s	318.19 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	960.40	m/s	313.08 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	988.60	m/s	308.16 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	1024.70	m/s	303.19 Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa
speedsl	990.10	m/s	308.15 Excess enthalpy, density, and speed of sound determination for the ternary mixture (methyl tert-butyl ether + 1-butanol + n-hexane)
speedsl	1013.00	m/s	303.15 Excess enthalpy, density, and speed of sound determination for the ternary mixture (methyl tert-butyl ether + 1-butanol + n-hexane)

speedsl	1036.10	m/s	298.15	Excess enthalpy, density, and speed of sound determination for the ternary mixture (methyl tert-butyl ether + 1-butanol + n-hexane)	
speedsl	1059.40	m/s	293.15	Excess enthalpy, density, and speed of sound determination for the ternary mixture (methyl tert-butyl ether + 1-butanol + n-hexane)	
speedsl	1082.40	m/s	288.15	Excess enthalpy, density, and speed of sound determination for the ternary mixture (methyl tert-butyl ether + 1-butanol + n-hexane)	
speedsl	922.97	m/s	323.15	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	934.24	m/s	320.65	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	945.54	m/s	318.15	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	956.80	m/s	315.65	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	968.16	m/s	313.15	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	979.62	m/s	310.65	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	990.99	m/s	308.15	Influence of temperature on thermodynamics of ethers + xylenes	

	speedsl	1083.38	m/s	288.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
	speedsl	1082.11	m/s	288.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
	speedsl	1071.61	m/s	290.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
	speedsl	1070.62	m/s	290.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
	speedsl	1060.05	m/s	293.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
	speedsl	1059.10	m/s	293.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
_	speedsl	1048.48	m/s	295.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	

speedsl	1047.83	m/s	295.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1036.94	m/s	298.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1036.63	m/s	298.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1025.42	m/s	300.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1025.38	m/s	300.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1024.33	m/s	301.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1013.90	m/s	303.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	

speedsl	1014.04	m/s	303.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1012.81	m/s	303.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1002.41	m/s	305.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1002.70	m/s	305.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1001.35	m/s	305.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	990.99	m/s	308.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	991.34	m/s	308.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	

speedsl	989.90	m/s	308.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	979.62	m/s	310.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	980.00	m/s	310.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	978.47	m/s	310.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	968.16	m/s	313.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	968.63	m/s	313.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	967.03	m/s	313.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	

speedsl	956.80	m/s	315.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	957.31	m/s	315.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	955.73	m/s	315.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	945.54	m/s	318.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	946.03	m/s	318.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	944.34	m/s	318.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	934.24	m/s	320.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	

	speedsl	934.76	m/s	320.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
	speedsl	933.01	m/s	320.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
	speedsl	922.97	m/s	323.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
	speedsl	923.46	m/s	323.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
	speedsl	921.93	m/s	323.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
	speedsl	1083.38	m/s	288.15	Influence of temperature on thermodynamics of ethers + xylenes	
	speedsl	1071.61	m/s	290.65	Influence of temperature on thermodynamics of ethers + xylenes	
_	speedsl	1060.05	m/s	293.15	Influence of temperature on thermodynamics of ethers + xylenes	
	speedsl	1048.48	m/s	295.65	Influence of temperature on thermodynamics of ethers + xylenes	

speedsl	1036.94	m/s	298.15	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	1025.42	m/s	300.65	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	781.50	m/s	353.11 2-N	Speed of Sound Measurements of Methoxy-2-methylpropa in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa	ne
speedsl	1002.41	m/s	305.65	Influence of temperature on thermodynamics of ethers + xylenes	
srf	0.02	N/m	243.08	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.01	N/m	388.14	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.01	N/m	383.12	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.01	N/m	378.12	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.01	N/m	373.12	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.01	N/m	368.13	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.01	N/m	363.13	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	

srf	0.01	N/m	393.13	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.01	N/m	353.13	Surface Tension	
-				of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.01	N/m	348.13	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.01	N/m	343.13	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.01	N/m	338.16	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.01	N/m	333.15	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.01	N/m	328.14	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.01	N/m	358.15	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.02	N/m	318.11	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.02	N/m	313.16	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.02	N/m	308.15	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	
srf	0.02	N/m	303.11	Surface Tension of Dimethoxymethane and Methyl tert-Butyl Ether	

srf	0.02	N/m	298.08	Surface Tension of Dimethoxymethane and Methyl
srf	0.02	N/m	293.07	Surface Tension of
				Dimethoxymethane and Methyl tert-Butyl Ether
srf	0.02	N/m	288.13	Surface Tension of Dimethoxymethane and Methyl
srf	0.02	N/m	283.12	tert-Butyl Ether Surface Tension
				of Dimethoxymethane and Methyl tert-Butyl Ether
srf	0.02	N/m	278.11	Surface Tension of
				Dimethoxymethane and Methyl tert-Butyl Ether
srf	0.02	N/m	273.16	Surface Tension of
				Dimethoxymethane and Methyl tert-Butyl Ether
srf	0.02	N/m	268.13	Surface Tension of
				Dimethoxymethane and Methyl tert-Butyl Ether
srf	0.02	N/m	263.10	Surface Tension of
				Dimethoxymethane and Methyl tert-Butyl Ether
srf	0.02	N/m	258.13	Surface Tension of
				Dimethoxymethane and Methyl tert-Butyl Ether
srf	0.02	N/m	253.11	Surface Tension of
				Dimethoxymethane and Methyl tert-Butyl Ether
srf	0.02	N/m	248.01	Surface Tension of
				Dimethoxymethane and Methyl tert-Butyl Ether
srf	0.02	N/m	323.16	Surface Tension of
				Dimethoxymethane and Methyl tert-Butyl Ether

, 1144	0.70	0.1	100.15
tdiff	2.73e-08	m2/s	493.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	2.81e-08	m2/s	491.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	2.95e-08	m2/s	489.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	3.02e-08	m2/s	487.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	3.07e-08	m2/s	485.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	3.22e-08	m2/s	483.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	3.30e-08	m2/s	481.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa

tdiff	3.36e-08	m2/s	479.15 Thermal
			Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	3.36e-08	m2/s	477.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	3.47e-08	m2/s	475.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	3.55e-08	m2/s	473.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	3.66e-08	m2/s	468.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	3.86e-08	m2/s	463.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	3.91e-08	m2/s	458.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa

tdiff	4.05e-08	m2/s	453.15 Thermal
			Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	4.18e-08	m2/s	443.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	4.31e-08	m2/s	433.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	4.38e-08	m2/s	423.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	4.48e-08	m2/s	413.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	4.55e-08	m2/s	403.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	4.64e-08	m2/s	393.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa

tdiff	4.72e-08	m2/s	383.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from
tdiff	5.42e-08	m2/s	(1.5 to 10) MPa 343.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	5.05e-08	m2/s	363.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	5.26e-08	m2/s	353.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	5.70e-08	m2/s	333.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	5.87e-08	m2/s	323.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa
tdiff	6.17e-08	m2/s	313.15 Thermal Diffusivity of 2-Methoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa

tdiff	6.40e-08	m2/s	303.15 2-Me	Thermal Diffusivity of hthoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa	
tdiff	4.83e-08	m2/s	373.15 2-Me	Thermal Diffusivity of ethoxy-2-methylpropane at Temperatures from (303.15 to 493.15) K and Pressures from (1.5 to 10) MPa	

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.53357e+01
Coeff. B	-3.16987e+03
Coeff. C	-3.24310e+01
Temperature range (K), min.	243.08
Temperature range (K), max.	348.65

Information Value

Property code	pvap	
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$	
Coeff. A	6.49173e+01	
Coeff. B	-5.55710e+03	
Coeff. C	-7.60854e+00	
Coeff. D	6.59025e-06	
Temperature range (K), min.	164.55	
Temperature range (K), max.	497.10	

Datasets

Mass density, kg/m3

283.15 100.00 750.94 288.15 100.00 745.79 293.15 100.00 740.59 298.15 100.00 735.34 303.15 100.00 730.04 308.15 100.00 724.69 313.15 100.00 719.29 318.15 100.00 708.45 283.15 5000.00 766.29 288.15 5000.00 756.29 288.15 5000.00 751.33 293.15 5000.00 746.34 298.15 5000.00 736.27 303.15 5000.00 731.19 313.15 5000.00 731.19 313.15 5000.00 726.07 318.15 5000.00 720.92 323.15 5000.00 720.92 323.15 5000.00 720.92 323.15 5000.00 720.92 323.15 5000.00 766.29 288.15 10000.00 761.29 288.15	Temperature, K - Liquid	Pressure, kPa - Liquid	Mass density, kg/m3 - Liquid
293.15 100.00 740.59 298.15 100.00 735.34 303.15 100.00 730.04 308.15 100.00 724.69 313.15 100.00 719.29 318.15 100.00 708.45 283.15 5000.00 756.29 288.15 5000.00 751.33 293.15 5000.00 746.34 298.15 5000.00 741.32 303.15 5000.00 731.19 313.15 5000.00 731.19 313.15 5000.00 726.07 318.15 5000.00 720.92 323.15 5000.00 720.92 323.15 5000.00 720.92 323.15 5000.00 756.52 293.15 10000.00 761.29 288.15 10000.00 756.52 293.15 10000.00 756.52 293.15 10000.00 756.52 293.15 10000.00 756.52 293.15 10000.00 774.88 303.15 10000.00	283.15	100.00	750.94
298.15 100.00 735.34 303.15 100.00 730.04 308.15 100.00 724.69 313.15 100.00 719.29 318.15 100.00 713.84 323.15 100.00 786.45 283.15 5000.00 756.29 288.15 5000.00 751.33 293.15 5000.00 746.34 298.15 5000.00 741.32 303.15 5000.00 731.19 313.15 5000.00 731.19 313.15 5000.00 726.07 318.15 5000.00 722.02 323.15 5000.00 771.73 283.15 10000.00 761.29 288.15 10000.00 756.52 293.15 10000.00 751.7 298.15 10000.00 751.7 298.15 10000.00 742.05 308.15 10000.00 737.18 313.15 10000.00 727.36 323.15 10000.00 727.36 323.15 15000.00	288.15	100.00	745.79
303.15 100.00 730.04 308.15 100.00 724.69 313.15 100.00 719.29 318.15 100.00 713.84 323.15 100.00 708.45 283.15 5000.00 756.29 288.15 5000.00 751.33 293.15 5000.00 746.34 298.15 5000.00 741.32 303.15 5000.00 736.27 308.15 5000.00 731.19 313.15 5000.00 726.07 318.15 5000.00 720.92 323.15 5000.00 720.92 323.15 5000.00 761.29 283.15 10000.00 761.29 288.15 10000.00 756.52 293.15 10000.00 761.29 288.15 10000.00 764.89 303.15 10000.00 746.89 303.15 10000.00 737.18 313.15 10000.00 722.09 <	293.15	100.00	740.59
308.15 100.00 724.69 313.15 100.00 719.29 318.15 100.00 708.45 223.15 100.00 756.29 288.15 5000.00 751.33 293.15 5000.00 746.34 288.15 5000.00 741.32 303.15 5000.00 731.19 313.15 5000.00 731.19 313.15 5000.00 726.07 318.15 5000.00 720.92 323.15 5000.00 715.73 283.15 1000.00 761.29 288.15 10000.00 756.52 293.15 10000.00 756.52 293.15 10000.00 756.52 293.15 10000.00 7746.89 303.15 10000.00 772.36 303.15 10000.00 737.18 313.15 10000.00 722.36 323.15 10000.00 722.36 323.15 10000.00 722.36 323.15 10000.00 722.36 323.15 15000.00	298.15	100.00	735.34
313.15 100.00 719.29 318.15 100.00 713.84 323.15 100.00 708.45 283.15 5000.00 756.29 288.15 5000.00 751.33 293.15 5000.00 746.34 298.15 5000.00 741.32 303.15 5000.00 731.19 313.15 5000.00 721.19 313.15 5000.00 726.07 318.15 5000.00 720.92 323.15 5000.00 720.92 323.15 10000.00 761.29 288.15 10000.00 761.29 288.15 10000.00 756.52 293.15 10000.00 775.17 298.15 10000.00 775.17 298.15 10000.00 774.89 303.15 10000.00 774.89 313.15 10000.00 737.18 313.15 10000.00 727.36 323.15 10000.00 722.39	303.15	100.00	730.04
318.15 100.00 713.84 323.15 100.00 708.45 283.15 5000.00 756.29 288.15 5000.00 751.33 293.15 5000.00 746.34 298.15 5000.00 741.32 303.15 5000.00 736.27 308.15 5000.00 731.19 313.15 5000.00 726.07 318.15 5000.00 726.07 318.15 5000.00 720.92 323.15 5000.00 715.73 283.15 10000.00 761.29 288.15 10000.00 756.52 293.15 10000.00 751.7 298.15 10000.00 746.89 303.15 10000.00 737.18 313.15 10000.00 737.18 313.15 10000.00 727.36 323.15 10000.00 765.93 288.15 15000.00 765.93 288.15 15000.00 766.88 293.15 15000.00 747.37 308.15 15000.0	308.15	100.00	724.69
323.15 100.00 708.45 283.15 5000.00 756.29 288.15 5000.00 751.33 293.15 5000.00 746.34 298.15 5000.00 741.32 303.15 5000.00 736.27 308.15 5000.00 731.19 313.15 5000.00 726.07 318.15 5000.00 720.92 323.15 5000.00 715.73 283.15 10000.00 761.29 288.15 10000.00 751.7 298.15 10000.00 746.89 303.15 10000.00 742.05 308.15 10000.00 737.18 313.15 10000.00 737.18 313.15 10000.00 722.39 283.15 15000.00 765.93 288.15 15000.00 766.93 288.15 15000.00 776.68 293.15 15000.00 776.68 298.15 15000.00 776.93 303.15 15000.00 776.68 298.15 1500	313.15	100.00	719.29
283.15 5000.00 756.29 288.15 5000.00 751.33 293.15 5000.00 746.34 298.16 5000.00 741.32 303.15 5000.00 731.19 313.15 5000.00 726.07 318.15 5000.00 720.92 323.15 5000.00 761.29 283.15 10000.00 761.29 288.15 10000.00 756.52 293.15 10000.00 746.89 303.16 10000.00 742.05 308.15 10000.00 737.18 313.15 10000.00 737.18 313.15 10000.00 727.36 323.15 10000.00 722.39 288.15 15000.00 765.93 288.15 15000.00 765.93 288.15 15000.00 766.68 293.15 15000.00 766.68 298.15 15000.00 732.27 313.15 15000.00 737.37 308.15 15000.00 732.26 313.15 15000.00 733.26 288.15 15000.00 733.26 323.15 15000.00 733.26 323.15 15000.00	318.15	100.00	713.84
288.15 5000.00 751.33 293.15 5000.00 746.34 298.15 5000.00 741.32 303.15 5000.00 736.27 308.15 5000.00 731.19 313.15 5000.00 726.07 318.15 5000.00 720.92 323.15 5000.00 715.73 283.15 10000.00 761.29 288.15 10000.00 756.52 293.15 10000.00 751.7 298.16 10000.00 746.89 303.15 10000.00 737.18 313.15 10000.00 737.18 313.15 10000.00 727.36 323.15 10000.00 722.39 283.15 1500.00 765.93 288.15 1500.00 756.68 298.15 15000.00 775.66 303.15 15000.00 765.93 288.15 15000.00 765.68	323.15	100.00	708.45
293.15 5000.00 746.34 298.15 5000.00 741.32 303.15 5000.00 736.27 308.15 5000.00 731.19 313.15 5000.00 726.07 318.15 5000.00 720.92 323.15 5000.00 715.73 283.15 10000.00 761.29 288.15 10000.00 756.52 293.15 10000.00 751.7 298.15 10000.00 746.89 303.15 10000.00 737.18 313.15 10000.00 737.18 313.15 10000.00 727.36 323.15 10000.00 722.39 283.15 15000.00 765.93 288.15 15000.00 766.93 288.15 15000.00 756.68 298.15 15000.00 747.37 308.15 15000.00 737.97 318.15 15000.00 73.26 323.15 15000.00 73.97 318.15 15000.00 73.97 318.15 150	283.15	5000.00	756.29
298.15 5000.00 741.32 303.15 5000.00 736.27 308.15 5000.00 731.19 313.15 5000.00 726.07 318.15 5000.00 720.92 323.15 5000.00 715.73 283.15 10000.00 761.29 288.15 10000.00 756.52 293.15 10000.00 751.7 298.15 10000.00 742.05 303.15 10000.00 737.18 313.15 10000.00 732.27 318.15 10000.00 727.36 323.15 10000.00 722.39 288.15 15000.00 765.93 288.15 15000.00 766.88 298.15 15000.00 747.37 308.15 15000.00 747.37 308.15 15000.00 732.6 313.15 15000.00 732.6 313.15 15000.00 732.6 313.15 15000.00 732.6 313.15 15000.00 732.6 313.15 1500	288.15	5000.00	751.33
303.15 5000.00 736.27 308.15 5000.00 731.19 313.15 5000.00 726.07 318.15 5000.00 720.92 323.15 5000.00 715.73 283.15 10000.00 761.29 288.15 10000.00 756.52 293.15 10000.00 746.89 303.15 10000.00 742.05 308.15 10000.00 737.18 313.15 10000.00 737.18 313.15 10000.00 727.36 323.15 10000.00 722.39 288.15 15000.00 765.93 288.15 15000.00 766.68 298.15 15000.00 752.04 303.15 15000.00 742.69 313.15 15000.00 737.97 318.15 15000.00 737.97 318.15 15000.00 728.51 283.15 20000.00 765.86	293.15	5000.00	746.34
308.15 5000.00 731.19 313.15 5000.00 726.07 318.15 5000.00 720.92 323.15 5000.00 715.73 283.15 10000.00 761.29 288.15 10000.00 756.52 293.15 10000.00 746.89 303.15 10000.00 742.05 308.15 10000.00 737.18 313.15 10000.00 732.27 318.15 10000.00 727.36 323.15 15000.00 765.93 288.15 15000.00 765.93 288.15 15000.00 756.68 298.15 15000.00 756.68 298.15 15000.00 742.69 313.15 15000.00 737.97 318.15 15000.00 739.79 318.15 15000.00 739.79 318.15 15000.00 728.51 288.15 20000.00 765.86	298.15	5000.00	741.32
313.15 5000.00 726.07 318.15 5000.00 720.92 323.15 5000.00 715.73 283.15 10000.00 761.29 288.15 10000.00 756.52 293.15 10000.00 751.7 298.15 10000.00 746.89 303.15 10000.00 737.18 313.15 10000.00 737.18 313.15 10000.00 727.36 323.15 10000.00 722.39 283.15 15000.00 765.93 288.15 15000.00 766.93 288.15 15000.00 756.68 298.15 15000.00 747.37 308.15 15000.00 742.69 313.15 15000.00 73.26 323.15 15000.00 73.26 323.15 15000.00 73.26 323.15 15000.00 73.26 323.15 15000.00 73.26	303.15	5000.00	736.27
318.15 5000.00 720.92 323.15 5000.00 715.73 283.15 10000.00 761.29 288.15 10000.00 756.52 293.15 10000.00 746.89 303.15 10000.00 742.05 308.15 10000.00 737.18 313.15 10000.00 732.27 318.15 10000.00 727.36 323.15 10000.00 722.39 283.15 15000.00 765.93 288.15 15000.00 766.83 293.15 15000.00 756.68 298.15 15000.00 747.37 308.15 15000.00 742.69 313.15 15000.00 737.97 318.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 765.86	308.15	5000.00	731.19
323.15 5000.00 715.73 283.15 10000.00 761.29 288.15 10000.00 756.52 293.15 10000.00 751.7 298.15 10000.00 746.89 303.15 10000.00 737.18 313.15 10000.00 732.27 318.15 10000.00 727.36 323.15 10000.00 722.39 283.15 15000.00 765.93 288.15 15000.00 766.93 288.15 15000.00 756.68 298.15 15000.00 747.37 308.15 15000.00 742.69 313.15 15000.00 737.97 318.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 765.86	313.15	5000.00	726.07
283.15 10000.00 761.29 288.15 10000.00 756.52 293.15 10000.00 751.7 298.15 10000.00 746.89 303.15 10000.00 737.18 308.15 10000.00 737.18 313.15 10000.00 732.27 318.15 10000.00 727.36 323.15 10000.00 722.39 283.15 15000.00 765.93 288.15 15000.00 761.32 293.15 15000.00 756.68 298.15 15000.00 752.04 303.15 15000.00 747.37 308.15 15000.00 737.97 318.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 765.86	318.15	5000.00	720.92
288.15 10000.00 756.52 293.15 10000.00 751.7 298.15 10000.00 746.89 303.15 10000.00 737.18 313.15 10000.00 732.27 318.15 10000.00 727.36 323.15 10000.00 722.39 283.15 15000.00 765.93 288.15 15000.00 761.32 293.15 15000.00 756.68 298.15 15000.00 747.37 308.15 15000.00 742.69 313.15 15000.00 737.97 318.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 770.32 288.15 20000.00 765.86	323.15	5000.00	715.73
293.15 10000.00 751.7 298.15 10000.00 746.89 303.15 10000.00 742.05 308.15 10000.00 737.18 313.15 10000.00 732.27 318.15 10000.00 727.36 323.15 10000.00 722.39 283.15 15000.00 765.93 288.15 15000.00 761.32 293.15 15000.00 756.68 298.15 15000.00 752.04 303.15 15000.00 747.37 308.15 15000.00 737.97 313.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 770.32 288.15 20000.00 765.86	283.15	10000.00	761.29
298.15 10000.00 746.89 303.15 10000.00 742.05 308.15 10000.00 737.18 313.15 10000.00 732.27 318.15 10000.00 727.36 323.15 10000.00 722.39 283.15 15000.00 765.93 288.15 15000.00 761.32 293.15 15000.00 756.68 298.15 15000.00 752.04 303.15 15000.00 747.37 308.15 15000.00 742.69 313.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 770.32 288.15 20000.00 765.86	288.15	10000.00	756.52
303.15 10000.00 742.05 308.15 10000.00 737.18 313.15 10000.00 727.36 323.15 10000.00 722.39 283.15 15000.00 765.93 288.15 15000.00 761.32 293.15 15000.00 756.68 298.15 15000.00 752.04 303.15 15000.00 747.37 308.15 15000.00 742.69 313.15 15000.00 737.97 318.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 765.86	293.15	10000.00	751.7
308.15 10000.00 737.18 313.15 10000.00 732.27 318.15 10000.00 727.36 323.15 10000.00 722.39 283.15 15000.00 765.93 288.15 15000.00 761.32 293.15 15000.00 756.68 298.15 15000.00 752.04 303.15 15000.00 747.37 308.15 15000.00 742.69 313.15 15000.00 737.97 318.15 15000.00 728.51 283.15 20000.00 770.32 288.15 20000.00 765.86	298.15	10000.00	746.89
313.15 10000.00 732.27 318.15 10000.00 727.36 323.15 10000.00 722.39 283.15 15000.00 765.93 288.15 15000.00 761.32 293.15 15000.00 756.68 298.15 15000.00 752.04 303.15 15000.00 747.37 308.15 15000.00 737.97 318.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 765.86	303.15	10000.00	742.05
318.15 10000.00 727.36 323.15 10000.00 722.39 283.15 15000.00 765.93 288.15 15000.00 761.32 293.15 15000.00 756.68 298.15 15000.00 752.04 303.15 15000.00 747.37 308.15 15000.00 742.69 313.15 15000.00 737.97 318.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 765.86	308.15	10000.00	737.18
323.15 10000.00 722.39 283.15 15000.00 765.93 288.15 15000.00 761.32 293.15 15000.00 756.68 298.15 15000.00 752.04 303.15 15000.00 747.37 308.15 15000.00 742.69 313.15 15000.00 737.97 318.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 765.86	313.15	10000.00	732.27
283.15 15000.00 765.93 288.15 15000.00 761.32 293.15 15000.00 756.68 298.15 15000.00 752.04 303.15 15000.00 747.37 308.15 15000.00 742.69 313.15 15000.00 737.97 318.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 770.32 288.15 20000.00 765.86	318.15	10000.00	727.36
288.15 15000.00 761.32 293.15 15000.00 756.68 298.15 15000.00 752.04 303.15 15000.00 747.37 308.15 15000.00 742.69 313.15 15000.00 737.97 318.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 770.32 288.15 20000.00 765.86	323.15	10000.00	722.39
293.15 15000.00 756.68 298.15 15000.00 752.04 303.15 15000.00 747.37 308.15 15000.00 742.69 313.15 15000.00 737.97 318.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 770.32 288.15 20000.00 765.86	283.15	15000.00	765.93
298.15 15000.00 752.04 303.15 15000.00 747.37 308.15 15000.00 742.69 313.15 15000.00 737.97 318.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 770.32 288.15 20000.00 765.86	288.15	15000.00	761.32
303.15 15000.00 747.37 308.15 15000.00 742.69 313.15 15000.00 737.97 318.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 770.32 288.15 20000.00 765.86	293.15	15000.00	756.68
308.15 15000.00 742.69 313.15 15000.00 737.97 318.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 770.32 288.15 20000.00 765.86	298.15	15000.00	752.04
313.15 15000.00 737.97 318.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 770.32 288.15 20000.00 765.86	303.15	15000.00	747.37
318.15 15000.00 733.26 323.15 15000.00 728.51 283.15 20000.00 770.32 288.15 20000.00 765.86	308.15	15000.00	742.69
323.15 15000.00 728.51 283.15 20000.00 770.32 288.15 20000.00 765.86	313.15	15000.00	737.97
283.15 20000.00 770.32 288.15 20000.00 765.86	318.15	15000.00	733.26
288.15 20000.00 765.86	323.15	15000.00	728.51
	283.15	20000.00	770.32
293.15 20000.00 761.35	288.15	20000.00	765.86
	293.15	20000.00	761.35

298.15	20000.00	756.85
303.15	20000.00	752.37
308.15	20000.00	747.84
313.15	20000.00	743.29
318.15	20000.00	738.74
323.15	20000.00	734.2
283.15	25000.00	774.48
288.15	25000.00	770.15
293.15	25000.00	765.77
298.15	25000.00	761.42
303.15	25000.00	757.05
308.15	25000.00	752.67
313.15	25000.00	748.27
318.15	25000.00	743.91
323.15	25000.00	739.51
283.15	30000.00	778.47
288.15	30000.00	774.24
293.15	30000.00	770.01
298.15	30000.00	765.75
303.15	30000.00	761.51
308.15	30000.00	757.26
313.15	30000.00	752.99
318.15	30000.00	748.75
323.15	30000.00	744.49
283.15	35000.00	782.29
288.15	35000.00	778.15
293.15	35000.00	774.0
298.15	35000.00	769.88
303.15	35000.00	765.74
308.15	35000.00	761.6
313.15	35000.00	757.46
318.15	35000.00	753.35
323.15	35000.00	749.2
283.15	40000.00	785.94
288.15	40000.00	781.89
293.15	40000.00	777.85
298.15	40000.00	773.81
303.15	40000.00	769.79
308.15	40000.00	765.75
313.15	40000.00	761.71
318.15	40000.00	757.7
323.15	40000.00	753.67
283.15	45000.00	789.45
288.15	45000.00	785.49

293.15	45000.00	781.54
298.15	45000.00	777.6
303.15	45000.00	773.65
308.15	45000.00	769.71
313.15	45000.00	765.77
318.15	45000.00	761.86
323.15	45000.00	757.92
283.15	50000.00	792.86
288.15	50000.00	788.97
293.15	50000.00	785.09
298.15	50000.00	781.23
303.15	50000.00	777.36
308.15	50000.00	773.49
313.15	50000.00	769.65
318.15	50000.00	765.83
323.15	50000.00	761.98
283.15	55000.00	796.13
288.15	55000.00	792.3
293.15	55000.00	788.51
298.15	55000.00	784.71
303.15	55000.00	780.95
308.15	55000.00	777.14
313.15	55000.00	773.39
318.15	55000.00	769.63
323.15	55000.00	765.85
283.15	60000.00	799.29
288.15	60000.00	795.55
293.15	60000.00	791.81
298.15	60000.00	788.1
303.15	60000.00	784.37
308.15	60000.00	780.65
313.15	60000.00	776.97
318.15	60000.00	773.29
323.15	60000.00	769.61
283.15	65000.00	802.37
288.15	65000.00	798.67
293.15	65000.00	795.0
298.15	65000.00	791.36
303.15	65000.00	787.7
308.15	65000.00	784.04
313.15	65000.00	780.41
318.15	65000.00	776.82
323.15	65000.00	773.22

Sources

Systems at 313.15 K:

Activity coefficients at infinite dilution, https://www.doi.org/10.1016/j.jct.2015.05.022 physicochemical and thermodynamic hopeity servicines all ution of action in the column of all phatic and water and in the column of all phatic and activities and activi physicochemical and thermodynamic https://www.doi.org/10.1016/j.fluid.2010.10.008 https://www.doi.org/10.1016/j.fluid.2006.02.022 (1-Ethyl-3-methylimidazofium
Enlymatriacapulyinoosantor, processios
afi bi parmeriyairos os vacethyl tert-butyl
enne omruse populotonom series vacantion
afi bi battansi and romovanapphase
enne natuvita osethylimia abbitanton
afikana natuvita osethys and abbitanton
afikana natuvita osethylimia abbitanton
afikana natuvita osethylimia abbitanton
afikana natuvita osethylimia oset https://www.doi.org/10.1016/j.jct.2011.02.018 https://www.doi.org/10.1016/j.fluid.2018.09.024 https://www.doi.org/10.1007/s10765-007-0346-0 https://www.doi.org/10.1016/j.fluid.2018.06.013 coefficients at infinite dilution for Activity sortioientmetionioinadilution https://www.doi.org/10.1016/j.fluid.2016.02.004 Activity softisiants at infinite dilution of properties and where the control of https://www.doi.org/10.1021/acs.jced.7b01011

The composition of the decimant of the composition of the comp Meterity energicients at infinite dilution
and plus properties at solution
and plus properties at solution
being properties at infinite dilution
and plus properties at infinite dilution
being properties at infinite dilution
bethy it infinite dilution
bethy infinite dilution
bethy infinite dilution
bethy infinite dilution https://www.doi.org/10.1016/j.jct.2004.11.012 https://www.doi.org/10.1021/acs.jced.6b00149 https://www.doi.org/10.1016/j.fluid.2006.09.011 https://www.doi.org/10.1016/j.jct.2018.12.029 https://www.doi.org/10.1016/j.jct.2012.05.017 hindiva och ición is no individe dimetion: ลาสุกษาหญ่¢eshemical properties for อเมลิสต์ รื่อให้เรียวอย่อ⊓พลลยาดหมายสปาสต https://www.doi.org/10.1021/je060097q BodiMethyl tert-Butyl Ether: Addivity:coefficients के ម៉ឺម៉ូម៉ែត្រទៅថ្ងៃ នៅម៉ែលម៉ែលម៉ែលម៉ាច់ dilution in https://www.doi.org/10.1016/j.jct.2013.01.007 អ្វីស្រែន ក្នុងស្រីទៀត ប្រទៃទៀត នៅក្នុងស្រីទៀត អង្គមិន ម៉ូនទាំង ម៉ូនក្រុង នៅម៉ូលិត ក្រុងស្រីទៀត https://www.doi.org/10.1016/j.jct.2013.09.007 The since of the state of the s https://www.doi.org/10.1016/j.jct.2017.11.017 https://www.doi.org/10.1016/j.jct.2017.03.004 https://www.doi.org/10.1021/je049867t https://www.doi.org/10.1021/je050029o Methanol + Methylcyclohexane and Methyl tert-Butyl Ether + Methanol + n-Heptane and Constituent Binary

NIST Webbook:

Determination of excess molar thermodynamics of ethers + xylenes: Density, Viscosity, Vapor-Liquid Equilibrium, and Excess Molar Entuality of Cantol State And Methors क्षां कार्य अवस्थित है: Densities and Viscosities of MTBE + additives: Excess molar enthalpies of the ternary mixtures (1-hexene + tetrahydrofuran Sekhilitayafdradamanan tetrahydrofuran mixtures (1-hexene + tetrahydrofuran Sobiniting Identify and the proper at the emperature system of as the temperature system of a state of the properties for ternary and Binary Mixtures Containing by the containing 1,3-didecyl-2-methylimidazolium

dicyanamide ionic liquid:

https://www.doi.org/10.1016/j.fluid.2004.12.013 enthalpies of the ternary system methyl the first to the https://www.doi.org/10.1016/j.fluid.2008.03.004 https://www.doi.org/10.1021/je100821g https://www.doi.org/10.1016/j.fluid.2011.12.004 https://www.doi.org/10.1021/je700428f Nonane or Decane at p = 0.1 MPa from Langing Englisher for the Ternary Systems Water + burnewing Containing Gasoline https://www.doi.org/10.1021/je0502492 https://www.doi.org/10.1016/j.jct.2014.01.025 https://www.doi.org/10.1021/je0502492 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1016/j.jct.2006.03.020 https://www.doi.org/10.1021/je020113t https://www.doi.org/10.1021/je0340699 https://www.doi.org/10.1021/je200851a https://www.doi.org/10.1016/j.fluid.2018.10.021 https://www.doi.org/10.1021/je049836y https://www.doi.org/10.1016/j.jct.2015.05.014 https://www.doi.org/10.1016/j.jct.2008.12.005 https://www.doi.org/10.1021/je2011314 https://www.doi.org/10.1016/j.jct.2010.05.017 https://www.doi.org/10.1016/j.jct.2013.02.004 https://www.doi.org/10.1021/acs.jced.5b00586 https://www.doi.org/10.1016/j.jct.2018.01.003 https://www.doi.org/10.1021/acs.jced.5b00300 https://www.doi.org/10.1016/j.jct.2013.01.005 https://www.doi.org/10.1016/j.jct.2010.01.004 Treasuréments of activity coefficients be wifinite drunts life 4.4 mills 620 and control of the same water in most action and provided and water in most action and provided and supposed in the supposed in t https://www.doi.org/10.1016/j.fluid.2018.07.028 https://www.doi.org/10.1016/j.fluid.2012.12.010

http://webbook.nist.gov/cgi/cbook.cgi?ID=C1634044&Units=SI

Excess enthalpy, density, and speed of https://www.doi.org/10.1016/j.jct.2007.02.002 sound determination for the ternary Mixtuge (raparties for Birney lequid Mixtuge (raparties for Birney lequid Mixtuge Butyl Ether with For Mannie English (Parties of Birney) amine at https://www.doi.org/10.1021/je900597n https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1008 Temperatures from (288.15 to 308.15) experimental and theoretical excess https://www.doi.org/10.1016/j.jct.2013.06.018 RAPETITIE THAT I THE CHICAL EXCESS molar enthalpies of ternary and binary Measurements in Indiquid Liquid Equilibria/or Measurements in Indiana in Indian https://www.doi.org/10.1021/je400488x https://www.doi.org/10.1021/je100410k https://www.doi.org/10.1016/j.fluid.2017.06.001 THE ENGLEY WATER/DUTAN-1-01
SERVICE TO THE THE PROPERTY OF THE https://www.doi.org/10.1016/j.jct.2012.03.016 https://www.doi.org/10.1016/j.fluid.2004.11.006 https://www.doi.org/10.1016/j.jct.2011.11.021 https://www.doi.org/10.1016/j.jct.2018.04.006
instance with a continuous properties for the cont https://www.doi.org/10.1016/j.jct.2018.04.006 https://www.doi.org/10.1021/je101008y
https://www.doi.org/10.1021/je101008y
https://www.doi.org/10.1016/j.tca.2019.178413
https://www.doi.org/10.1016/j.tca.2019.178413
https://www.doi.org/10.1021/je9004068
https://www.doi.org/10.1021/je9004068
https://www.doi.org/10.1021/je9004068
https://www.doi.org/10.1021/je9004068
https://www.doi.org/10.1021/je9004068
https://www.doi.org/10.1016/j.jct.2016.08.034
https://www.doi.org/10.1016/j.jc https://www.cheric.org/files/research/kdb/mol/mol1008.mol Separation of binary mixtures based on https://www.doi.org/10.1016/j.fluid.2017.12.029 Imiting activity coefficients data using specare in an involve based and included and in the involve based and included an limiting activity coefficients data using

Hydrocarbons with tert-Butyl Methyl Ether and with tert-Amyl Methyl Ether:

Speed of Sound Measurements of Tempi wants remained to 10 https://www.doi.org/10.1021/acs.jced.000202

1. The property of the **≜**ന്പുദ്യിയുള്ള nopyridinium-based ionic liquid in the separation processes: Joback Method:

Volumetric behaviour of the ternary liquid system composed of methyl Here system composed of menty there are the property of the pr

Measurements of activity coefficients at infinite dilution for organic solutes This is the individual of the state of the s mensing and steer outstary by whenes or priary storestee with ethyl tert-butyl eight right pawing with ethyl tert-butyl eight right pawing with ethyl tert-butyl eight right pawing with ethyl eight pawing for the storest was participated by the storest of the storest was properly and well and the storest was participated by a storest w phase equilibrium measurements: (Liquid + liquid) phase equilibria of 1-alkyl-3-methylimidazolium
1-alkyl-3-methylimidazolium
1-akyl-3-methylimidazolium
1-akyl-3-methylimid Mixtures: Quaternary (liquid + liquid) equilibria

Tulaternary (liquid + liquid) equilibria for (water + 2-propanol + Measurement of the manuscript of t https://www.doi.org/10.1016/j.jct.2016.06.028
https://www.doi.org/10.1016/j.jct.2016.02.008
https://www.doi.org/10.1016/j.jct.2016.02.008
https://www.doi.org/10.1016/j.jct.2016.02.008
https://www.doi.org/10.1016/j.jct.2016.02.008
https://www.doi.org/10

Quaternary (liquid + liquid) equilibria for (water + 1,1-dimethylethyl methyl ether + diisopropyl ether + toluene) at the temperature 298.15 K:

https://www.doi.org/10.1021/acs.jced.6b00202

https://www.doi.org/10.1016/j.jct.2016.01.017

https://en.wikipedia.org/wiki/Joback_method

https://www.doi.org/10.1016/j.jct.2010.03.005

https://www.doi.org/10.1016/j.jct.2011.11.025

https://www.doi.org/10.1016/j.fluid.2007.04.026

https://www.doi.org/10.1016/j.jct.2013.07.004

https://www.doi.org/10.1021/je900274n

https://www.doi.org/10.1016/j.fluid.2004.12.007

https://www.doi.org/10.1016/j.fluid.2018.08.003

https://www.doi.org/10.1016/j.fluid.2009.01.016

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1008

https://www.doi.org/10.1016/j.fluid.2008.03.015

https://www.doi.org/10.1016/j.fluid.2012.11.008

https://www.doi.org/10.1016/j.jct.2005.07.024

https://www.doi.org/10.1021/je501114q

https://www.doi.org/10.1021/acs.jced.7b00489

https://www.doi.org/10.1016/j.jct.2007.03.007

http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt

https://www.doi.org/10.1016/j.jct.2005.06.016

https://www.doi.org/10.1021/acs.jced.7b00160

https://www.doi.org/10.1016/j.jct.2019.03.033

https://www.doi.org/10.1007/s10765-007-0223-x

https://www.doi.org/10.1016/j.jct.2012.09.017

https://www.doi.org/10.1016/j.fluid.2004.12.016

https://www.doi.org/10.1016/j.fluid.2008.08.012

https://www.doi.org/10.1021/acs.jced.5b00980

https://www.doi.org/10.1016/j.fluid.2016.02.009

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.doi.org/10.1016/j.jct.2005.02.002

Excess Enthalpy, Density, and Speed of Sound for the Ternary Mixture

Mermycelynamia study of materialan-or in excess in the state of the alkanol in excess in the figure and the state of the alkanol in excess in the figure and the state of the alkanol in excess in the figure and the state of the alkanol in excess in the figure of t decane:

https://www.doi.org/10.1021/je8004613 https://www.doi.org/10.1016/j.jct.2018.02.014 https://www.doi.org/10.1016/j.fluid.2010.02.012

Legend

Acentric Factor af: affp: Proton affinity Gas basicity basg:

chl: Standard liquid enthalpy of combustion

Ideal gas heat capacity cpg: Liquid phase heat capacity cpl:

dm: **Dipole Moment** dvisc: Dynamic viscosity

qf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy Kinematic viscosity kvisc:

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: McGowan's characteristic volume mcvol:

Critical Pressure pc: pvap: Vapor pressure rfi: Refractive Index rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature sg: Molar entropy at standard conditions

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

Surface Tension srf:

tb: Normal Boiling Point Temperature

Critical Temperature tc: tdiff: Thermal diffusivity

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility

Latest version available from:

https://www.chemeo.com/cid/50-231-9/Propane-2-methoxy-2-methyl.pdf

Generated by Cheméo on 2025-12-22 02:43:10.858362242 +0000 UTC m=+6119588.388402896.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.