Acetone

Other names: (CH3)2CO

2-PROPANONE
Chevron acetone
DIMETHYL KETONE
Dimethylformaldehyde

Dimethylketal

KETONE PROPANE Ketone, dimethyl-Methyl ketone NSC 135802 Propan-2-one Propanone

Pyroacetic ether

Rcra waste number U002

Sasetone UN 1090

«beta»-Ketopropane «beta»-Ketopropane

InChl=1S/C3H6O/c1-3(2)4/h1-2H3

InchiKey: CSCPPACGZOOCGX-UHFFFAOYSA-N

 Formula:
 C3H6O

 SMILES:
 CC(C)=O

 Mol. weight [g/mol]:
 58.08

 CAS:
 67-64-1

Physical Properties

Property code	Value	Unit	Source
af	0.3040		KDB
affp	814.30	kJ/mol	NIST Webbook
affp	811.50 ± 3.40	kJ/mol	NIST Webbook
affp	811.50 ± 3.40	kJ/mol	NIST Webbook
affp	815.20	kJ/mol	NIST Webbook
affp	812.00	kJ/mol	NIST Webbook
affp	812.60 ± 0.20	kJ/mol	NIST Webbook
aigt	738.15	K	KDB
basg	782.10	kJ/mol	NIST Webbook
basg	782.20	kJ/mol	NIST Webbook

basg	782.10 ± 1.50	kJ/mol	NIST Webbook
basg	784.70	kJ/mol	NIST Webbook
basg	782.10 ± 1.50	kJ/mol	NIST Webbook
basg	782.00 ± 0.20	kJ/mol	NIST Webbook
chg	-1821.40 ± 0.84	kJ/mol	NIST Webbook
chl	-1772.00	kJ/mol	NIST Webbook
chl	-1804.20	kJ/mol	NIST Webbook
dm	2.90	debye	KDB
dvisc	0.0003121	Paxs	Densities and Viscosities of Binary Liquid Mixtures of Trichloroethylene and Tetrachloroethylene with Some Polar and Nonpolar Solvents
dvisc	0.0003000	Paxs	Densities and Viscosities
			of 1-Butyl-3-methylimidazolium Tetrafluoroborate + Molecular Solvent Binary Mixtures
ea	0.00	eV	NIST Webbook
fII	2.60	% in Air	KDB
flu	12.80	% in Air	KDB
fpc	257.59	K	KDB
fpo	255.37	K	KDB
gf	-153.20	kJ/mol	KDB
gyrad	2.7400		KDB
hf	-217.10 ± 0.50	kJ/mol	NIST Webbook
hf	-217.70	kJ/mol	KDB
hf	-217.50 ± 0.67	kJ/mol	NIST Webbook
hf	-216.40	kJ/mol	NIST Webbook
hf	-218.50 ± 0.59	kJ/mol	NIST Webbook
hfl	-249.40 ± 0.63	kJ/mol	NIST Webbook
hfus	5.12	kJ/mol	Joback Method
hvap	31.27	kJ/mol	NIST Webbook
hvap	29.70 ± 0.00	kJ/mol	NIST Webbook
hvap	31.30	kJ/mol	NIST Webbook
ie	9.71	eV	NIST Webbook
ie	9.68	eV	NIST Webbook
ie	9.71	eV	NIST Webbook
ie	9.71 ± 0.01	eV	NIST Webbook
ie	9.71	eV	NIST Webbook
ie	9.72	eV	NIST Webbook
ie	9.74	eV	NIST Webbook
ie	9.71 ± 0.01	eV	NIST Webbook
ie	9.74 ± 0.03	eV	NIST Webbook
ie	9.68	eV	NIST Webbook

ie	9.71 ± 0.01	eV	NIST Webbook
ie	9.70 ± 0.10	eV	NIST Webbook
ie	9.68 ± 0.02	eV	NIST Webbook
ie	9.67	eV	NIST Webbook
ie	9.71 ± 0.03	eV	NIST Webbook
ie	9.71 ± 0.03	eV	NIST Webbook
ie	9.69 ± 0.01	eV	NIST Webbook
ie	9.71	eV	NIST Webbook
ie	9.80	eV	NIST Webbook
ie	9.72	eV	NIST Webbook
ie	9.71 ± 0.02	eV	NIST Webbook
ie	9.71 ± 0.01	eV	NIST Webbook
ie	9.71 ± 0.03	eV	NIST Webbook
ie	9.71 ± 0.01	eV	NIST Webbook
ie	9.71	eV	NIST Webbook
ie	9.75 ± 0.03	eV	NIST Webbook
ie	9.68	eV	NIST Webbook
ie	9.69 ± 0.01	eV	NIST Webbook
ie	9.70	eV	NIST Webbook
ie	9.70 ± 0.01	eV	NIST Webbook
ie	9.72	eV	NIST Webbook
ie	9.50	eV	NIST Webbook
ie	9.70	eV	NIST Webbook
ie	9.70 ± 0.00	eV	NIST Webbook
ie	9.71	eV	NIST Webbook
log10ws	-0.36		Crippen Method
logp	0.595		Crippen Method
mcvol	54.700	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=1)		KDB
pc	4700.00	kPa	KDB
rhoc	234.06 ± 1.51	kg/m3	NIST Webbook
rhoc	272.97 ± 1.16	kg/m3	NIST Webbook
rhoc	268.91 ± 2.90	kg/m3	NIST Webbook
rhoc	252.06 ± 1.74	kg/m3	NIST Webbook
rhoc	278.20 ± 9.87	kg/m3	NIST Webbook
rinpol	472.00		NIST Webbook
rinpol	487.00		NIST Webbook
rinpol	474.00		NIST Webbook
rinpol	474.00		NIST Webbook
rinpol	500.00		NIST Webbook
rinpol	509.00		NIST Webbook
rinpol	512.00		NIST Webbook
rinpol	459.00		NIST Webbook

rinnal	471.00	NIST Webbook
rinpol rinpol	450.00	NIST Webbook
rinpol	476.00	NIST Webbook
rinpol	501.00	NIST Webbook
	470.00	NIST Webbook
rinpol		
rinpol	470.00	NIST Webbook
rinpol	450.00	NIST Webbook
rinpol	497.00	NIST Webbook
rinpol	500.00	NIST Webbook
rinpol	500.00	NIST Webbook
rinpol	460.00	NIST Webbook
rinpol	473.00	NIST Webbook
rinpol	473.00	NIST Webbook
rinpol	473.00	NIST Webbook
rinpol	465.00	NIST Webbook
rinpol	460.00	NIST Webbook
rinpol	469.00	NIST Webbook
rinpol	491.00	NIST Webbook
rinpol	474.00	NIST Webbook
rinpol	484.00	NIST Webbook
rinpol	468.00	NIST Webbook
rinpol	469.00	NIST Webbook
rinpol	478.00	NIST Webbook
rinpol	468.00	NIST Webbook
rinpol	503.00	NIST Webbook
rinpol	503.00	NIST Webbook
rinpol	471.00	NIST Webbook
rinpol	470.00	NIST Webbook
rinpol	479.00	NIST Webbook
rinpol	502.00	NIST Webbook
rinpol	477.55	NIST Webbook
rinpol	470.23	NIST Webbook
rinpol	469.50	NIST Webbook
rinpol	469.00	NIST Webbook
rinpol	478.00	NIST Webbook
rinpol	475.00	NIST Webbook
rinpol	465.00	NIST Webbook
rinpol	443.00	NIST Webbook
rinpol	447.00	NIST Webbook
rinpol	476.60	NIST Webbook
rinpol	487.00	NIST Webbook
rinpol	502.00	NIST Webbook
rinpol	502.00	NIST Webbook
rinpol	472.00	NIST Webbook
111,001	2.00	

rinnol	496.00	NIST Webbook
rinpol rinpol	496.00	NIST Webbook
rinpol	500.00	NIST Webbook
rinpol	479.00	NIST Webbook
•		NIST Webbook NIST Webbook
rinpol	466.00	
rinpol	468.00	NIST Webbook
rinpol	466.00	NIST Webbook
rinpol	470.00	NIST Webbook
rinpol	472.00	NIST Webbook
rinpol	473.00	NIST Webbook
rinpol	472.00	NIST Webbook
rinpol	480.00	NIST Webbook
rinpol	471.00	NIST Webbook
rinpol	466.00	NIST Webbook
rinpol	468.00	NIST Webbook
rinpol	474.00	NIST Webbook
rinpol	471.00	NIST Webbook
rinpol	488.60	NIST Webbook
rinpol	500.00	NIST Webbook
rinpol	481.00	NIST Webbook
rinpol	475.30	NIST Webbook
rinpol	500.00	NIST Webbook
rinpol	503.00	NIST Webbook
rinpol	470.00	NIST Webbook
rinpol	510.00	NIST Webbook
rinpol	477.55	NIST Webbook
rinpol	503.00	NIST Webbook
rinpol	439.00	NIST Webbook
rinpol	447.00	NIST Webbook
rinpol	450.00	NIST Webbook
rinpol	475.00	NIST Webbook
rinpol	450.00	NIST Webbook
rinpol	472.00	NIST Webbook
rinpol	443.00	NIST Webbook
rinpol	459.00	NIST Webbook
rinpol	439.00	NIST Webbook
rinpol	444.00	NIST Webbook
rinpol	465.00	NIST Webbook
rinpol	443.50	NIST Webbook
rinpol	450.00	NIST Webbook
rinpol	437.00	NIST Webbook
rinpol	437.00	NIST Webbook
rinpol	475.00	NIST Webbook
rinpol	497.00	NIST Webbook

امون	485.00	NICT Wakhaali
rinpol	488.20	NIST Webbook NIST Webbook
	488.70	NIST Webbook NIST Webbook
rinpol	478.00	
rinpol		NIST Webbook
rinpol	477.00	NIST Webbook
rinpol	484.00	NIST Webbook
rinpol	481.00	NIST Webbook
rinpol	469.00	NIST Webbook
rinpol	469.00	NIST Webbook
rinpol	470.00	NIST Webbook
rinpol	470.00	NIST Webbook
rinpol	469.41	NIST Webbook
rinpol	469.28	NIST Webbook
rinpol	469.50	NIST Webbook
rinpol	469.67	NIST Webbook
rinpol	470.10	NIST Webbook
rinpol	470.70	NIST Webbook
rinpol	470.90	NIST Webbook
rinpol	470.23	NIST Webbook
rinpol	481.00	NIST Webbook
rinpol	500.00	NIST Webbook
rinpol	441.00	NIST Webbook
ripol	846.00	NIST Webbook
ripol	823.00	NIST Webbook
ripol	814.00	NIST Webbook
ripol	825.00	NIST Webbook
ripol	798.00	NIST Webbook
ripol	845.00	NIST Webbook
ripol	814.00	NIST Webbook
ripol	832.00	NIST Webbook
ripol	816.00	NIST Webbook
ripol	820.00	NIST Webbook
ripol	816.00	NIST Webbook
ripol	811.00	NIST Webbook
ripol	825.00	NIST Webbook
ripol	828.00	NIST Webbook
ripol	827.00	NIST Webbook
ripol	827.00	NIST Webbook
ripol	810.00	NIST Webbook
ripol	820.00	NIST Webbook
ripol	823.00	NIST Webbook
ripol	811.00	NIST Webbook
ripol	812.00	NIST Webbook
ripol	821.00	NIST Webbook
Прог	321.00	THE T WODDOOK

rinol	841.00	NIST Webbook
ripol ripol	832.00	NIST Webbook
ripol	834.00	NIST Webbook
	808.00	NIST Webbook
ripol		
ripol	808.00	NIST Webbook
ripol	830.00	NIST Webbook
ripol	812.00	NIST Webbook
ripol	805.00	NIST Webbook
ripol	813.00	NIST Webbook
ripol	819.00	NIST Webbook
ripol	814.00	NIST Webbook
ripol	813.00	NIST Webbook
ripol	822.00	NIST Webbook
ripol	816.00	NIST Webbook
ripol	811.00	NIST Webbook
ripol	818.00	NIST Webbook
ripol	813.00	NIST Webbook
ripol	802.00	NIST Webbook
ripol	814.00	NIST Webbook
ripol	821.30	NIST Webbook
ripol	814.00	NIST Webbook
ripol	842.00	NIST Webbook
ripol	834.00	NIST Webbook
ripol	813.00	NIST Webbook
ripol	809.00	NIST Webbook
ripol	794.00	NIST Webbook
ripol	818.00	NIST Webbook
ripol	820.00	NIST Webbook
ripol	814.00	NIST Webbook
ripol	814.00	NIST Webbook
ripol	814.00	NIST Webbook
ripol	813.00	NIST Webbook
ripol	821.00	NIST Webbook
ripol	824.00	NIST Webbook
ripol	842.00	NIST Webbook
ripol	785.00	NIST Webbook
ripol	847.00	NIST Webbook
ripol	832.00	NIST Webbook
ripol	840.80	NIST Webbook
ripol	837.50	NIST Webbook
ripol	835.00	NIST Webbook
ripol	843.50	NIST Webbook
ripol	820.00	NIST Webbook
ripol	810.00	NIST Webbook
Προι	010.00	INIO I MEDDOOK

ripol	810.00		NIST Webbook
ripol	822.00		NIST Webbook
ripol	810.00		NIST Webbook
ripol	822.00		NIST Webbook
ripol	854.00		NIST Webbook
ripol	816.00		NIST Webbook
ripol	800.00		NIST Webbook
ripol	845.00		NIST Webbook
ripol	814.00		NIST Webbook
ripol	814.00		NIST Webbook
ripol	775.00		NIST Webbook
ripol	821.00		NIST Webbook
ripol	841.00		NIST Webbook
ripol	836.00		NIST Webbook
ripol	816.00		NIST Webbook
ripol	813.00		NIST Webbook
ripol	815.00		NIST Webbook
ripol	814.00		NIST Webbook
ripol	819.00		NIST Webbook
ripol	788.00		NIST Webbook
ripol	823.00		NIST Webbook
ripol	847.00		NIST Webbook
ripol	835.00		NIST Webbook
ripol	810.00		NIST Webbook
ripol	824.00		NIST Webbook
ripol	815.00		NIST Webbook
ripol	820.00		NIST Webbook
ripol	821.00		NIST Webbook
ripol	820.00		NIST Webbook
ripol	816.00		NIST Webbook
ripol	810.00		NIST Webbook
ripol	847.00		NIST Webbook
ripol	819.00		NIST Webbook
ripol	810.00		NIST Webbook
ripol	813.00		NIST Webbook
ripol	830.00		NIST Webbook
ripol	809.00		NIST Webbook
ripol	821.30		NIST Webbook
ripol	811.00		NIST Webbook
ripol	794.00		NIST Webbook
ripol	821.00		NIST Webbook
ripol	818.00		NIST Webbook
sl	200.00	J/mol×K	NIST Webbook
sl	200.40	J/mol×K	NIST Webbook

sl	217.60	J/mol×K	NIST Webbook
sl	220.50	J/mol×K	NIST Webbook
tb	329.25 ± 0.20	K	NIST Webbook
tb	329.20	K	KDB
tb	329.45 ± 1.00	K	NIST Webbook
tb	329.30	K	Vapor-liquid equilibrium in the production of the ionic liquid, 1-hexyl-3-methylimidazolium bromide ([HMIm][Br]), in acetone
tb	329.45 ± 1.00	K	NIST Webbook
tb	330.85 ± 1.00	K	NIST Webbook
tb	329.50 ± 0.50	K	NIST Webbook
tb	329.50 ± 1.00	K	NIST Webbook
tb	329.26	K	Isobaric vapor-liquid equilibrium for acetone + methanol system containing different ionic liquids at 101.3 kPa
tb	328.90 ± 1.00	K	NIST Webbook
tb	329.56	К	Isobaric vapour-liquid equilibrium measurements and extractive distillation process for the azeotrope of (N,N-dimethylisopropylamine + acetone)
tb	329.33	К	Isobaric Vapor-Liquid Equilibrium Data for the Acetone + Hexamethyl Disiloxane + Ethyl Acetate Ternary System at 101.3 kPa: Determination and Correlation
tb	329.35	К	Isobaric Vapor-Liquid Equilibrium of Acetone + Methanol System in the Presence of Calcium Bromide
tb	329.27	K	Measurement of Isobaric Vapor - Liquid Equilibria of Dimethyl Carbonate with Acetone, 2-Butanone and 2-Pentanone at 101.3 kPa and Density and Speed of Sound at 298.15 K
tb	329.55 ± 1.00	K	NIST Webbook
tb	330.15 ± 1.00	K	NIST Webbook
tb	329.55 ± 1.00	K	NIST Webbook
tb	329.40 ± 1.00	K	NIST Webbook
tb	329.15 ± 1.00	K	NIST Webbook
tb	329.34 ± 0.50	K	NIST Webbook
tb	330.20 ± 1.00	K	NIST Webbook
tb	329.25 ± 0.30	K	NIST Webbook

tb	329.30 ± 1.00	K	NIST Webbook
tb	329.30 ± 0.50	K	NIST Webbook
tb	329.25 ± 0.30	K	NIST Webbook
tb	329.40 ± 1.00	K	NIST Webbook
tb	329.30 ± 0.50	K	NIST Webbook
tb	329.70 ± 1.50	K	NIST Webbook
tb	329.65 ± 1.00	K	NIST Webbook
tb	329.15 ± 1.00	K	NIST Webbook
tb	329.30 ± 0.30	K	NIST Webbook
tb	329.65 ± 1.00	K	NIST Webbook
tb	329.45 ± 0.50	K	NIST Webbook
tb	329.35 ± 1.00	K	NIST Webbook
tb	329.65 ± 1.00	K	NIST Webbook
tb	329.25 ± 1.00	K	NIST Webbook
tb	329.48 ± 1.00	K	NIST Webbook
tb	329.20 ± 0.30	K	NIST Webbook
tb	329.30 ± 1.00	K	NIST Webbook
tb	329.23 ± 0.10	K	NIST Webbook
tb	329.22 ± 0.20	K	NIST Webbook
tb	329.35 ± 1.00	K	NIST Webbook
tb	329.15 ± 1.00	K	NIST Webbook
tb	329.65 ± 1.00	K	NIST Webbook
tb	329.32 ± 0.30	K	NIST Webbook
tb	329.50 ± 0.50	K	NIST Webbook
tb	329.17 ± 0.20	K	NIST Webbook
tb	329.35 ± 0.20	K	NIST Webbook
tb	329.30 ± 0.40	K	NIST Webbook
tb	329.35 ± 0.30	K	NIST Webbook
tb	329.45 ± 1.00	K	NIST Webbook
tb	329.35 ± 0.30	K	NIST Webbook
tb	329.35 ± 0.30	K	NIST Webbook
tb	330.00 ± 1.00	K	NIST Webbook
tb	329.39 ± 0.50	K	NIST Webbook
tb	329.40 ± 0.20	K	NIST Webbook
tb	328.95 ± 1.00	K	NIST Webbook
tb	328.75 ± 1.00	K	NIST Webbook
tb	329.65 ± 0.30	K	NIST Webbook
tb	329.55 ± 1.00	K	NIST Webbook
tb	329.30 ± 1.00	K	NIST Webbook
tb	328.57 ± 1.00	K	NIST Webbook
tb	329.15 ± 2.00	K	NIST Webbook
tb	328.85 ± 1.00	K	NIST Webbook
tb	331.15 ± 3.00	K	NIST Webbook
tb	329.26 ± 0.10	K	NIST Webbook

tb	329.15 ± 1.00	K	NIST Webbook
tb	329.20 ± 1.00	K	NIST Webbook
tb	329.65 ± 1.00	K	NIST Webbook
tb	329.25 ± 1.00	K	NIST Webbook
tb	329.75 ± 0.50	K	NIST Webbook
tb	329.20 ± 0.20	K	NIST Webbook
tb	329.25 ± 1.00	K	NIST Webbook
tb	329.40 ± 1.00	K	NIST Webbook
tb	329.30 ± 0.50	K	NIST Webbook
tb	329.27 ± 0.50	K	NIST Webbook
tb	323.40 ± 0.30	K	NIST Webbook
tb	329.15 ± 1.00	K	NIST Webbook
tb	329.30 ± 0.50	K	NIST Webbook
tb	329.65 ± 1.00	K	NIST Webbook
tb	329.35 ± 0.50	K	NIST Webbook
tb	328.65 ± 1.00	K	NIST Webbook
tb	329.65 ± 0.50	K	NIST Webbook
tb	329.30 ± 0.50	K	NIST Webbook
tb	329.50 ± 0.50	K	NIST Webbook
tb	329.28 ± 0.30	K	NIST Webbook
tb	329.33 ± 0.20	K	NIST Webbook
tb	329.35 ± 0.20	K	NIST Webbook
tb	329.35 ± 0.50	K	NIST Webbook
tb	329.35 ± 0.50	K	NIST Webbook
tb	329.35 ± 0.50	K	NIST Webbook
tb	329.25 ± 0.50	K	NIST Webbook
tb	329.15 ± 1.00	K	NIST Webbook
tb	329.28 ± 0.15	K	NIST Webbook
tb	329.35 ± 1.00	K	NIST Webbook
tb	329.25 ± 0.50	K	NIST Webbook
tb	328.90 ± 0.40	K	NIST Webbook
tb	329.75 ± 1.00	K	NIST Webbook
tb	329.25 ± 1.00	K	NIST Webbook
tb	329.33 ± 0.20	K	NIST Webbook
tb	326.15 ± 1.00	K	NIST Webbook
tb	329.15 ± 1.00	K	NIST Webbook
tb	329.26 ± 0.50	K	NIST Webbook
tb	329.25 ± 0.50	K	NIST Webbook
tb	330.95 ± 1.00	K	NIST Webbook
tb	329.26 ± 0.30	K	NIST Webbook
tb	329.25 ± 0.30	K	NIST Webbook
tb	329.21 ± 0.10	K	NIST Webbook
tb	329.25 ± 0.30	K	NIST Webbook
tb	329.25 ± 0.50	K	NIST Webbook

tb	329.40 ± 0.40	K	NIST Webbook
tb	329.30 ± 0.30	K	NIST Webbook
tb	329.30 ± 0.20	K	NIST Webbook
tb	329.00 ± 1.00	K	NIST Webbook
tb	329.15 ± 0.30	K	NIST Webbook
tb	329.40 ± 0.20	K	NIST Webbook
tb	329.38 ± 0.30	K	NIST Webbook
tb	329.25 ± 0.15	K	NIST Webbook
tb	329.25	K	NIST Webbook
tb	329.30 ± 0.06	K	NIST Webbook
tb	329.30 ± 0.20	K	NIST Webbook
tb	329.00 ± 0.20	K	NIST Webbook
tb	329.26 ± 0.30	K	NIST Webbook
tb	329.25 ± 0.05	K	NIST Webbook
tb	329.23 ± 0.05	K	NIST Webbook
tb	329.47 ± 0.50	K	NIST Webbook
tb	329.25 ± 0.30	K	NIST Webbook
tb	329.40 ± 0.40	K	NIST Webbook
tb	329.45 ± 0.30	K	NIST Webbook
tb	329.30	K	NIST Webbook
tb	329.21 ± 0.04	K	NIST Webbook
tb	329.00	K	NIST Webbook
tb	329.45 ± 0.30	K	NIST Webbook
tb	329.45 ± 0.15	K	NIST Webbook
tb	329.30 ± 0.20	K	NIST Webbook
tb	330.15 ± 0.50	K	NIST Webbook
tb	329.37	K	Vapor Liquid Equilibrium for the 1,1,1-Trifluorotrichloroethane + Sulfuryl Chloride System at 101.3 kPa
tb	329.65 ± 1.00	K	NIST Webbook
tc	508.10	K	KDB
tf	178.30	K	KDB
tt	177.60 ± 0.30	K	NIST Webbook
tt	176.60 ± 0.15	K	NIST Webbook
tt	178.50 ± 0.30	K	NIST Webbook
tt	177.60 ± 0.20	K	NIST Webbook
VC	0.209	m3/kmol	KDB
ZC	0.2325190		KDB
zra	0.25		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	80.58 ± 0.81	J/mol×K	332.60	NIST Webbook	
cpg	92.93 ± 0.19	J/mol×K	405.20	NIST Webbook	
cpg	80.96 ± 0.81	J/mol×K	334.00	NIST Webbook	
cpg	81.50 ± 0.16	J/mol×K	338.20	NIST Webbook	
cpg	83.35 ± 0.83	J/mol×K	347.80	NIST Webbook	
cpg	83.39 ± 0.83	J/mol×K	348.00	NIST Webbook	
cpg	87.03 ± 0.87	J/mol×K	363.00	NIST Webbook	
cpg	87.19 ± 0.17	J/mol×K	371.20	NIST Webbook	
cpg	87.53 ± 0.88	J/mol×K	372.30	NIST Webbook	
cpg	89.24 ± 0.89	J/mol×K	378.00	NIST Webbook	
cpg	91.84 ± 0.92	J/mol×K	393.00	NIST Webbook	
cpg	94.18 ± 0.94	J/mol×K	408.00	NIST Webbook	
cpg	93.30	J/mol×K	410.00	NIST Webbook	
cpg	96.80 ± 1.90	J/mol×K	422.60	NIST Webbook	
cpg	99.40 ± 2.00	J/mol×K	428.00	NIST Webbook	
cpg	100.50 ± 2.00	J/mol×K	438.00	NIST Webbook	
cpg	98.66 ± 0.20	J/mol×K	439.20	NIST Webbook	
cpl	123.80	J/mol×K	298.15	NIST Webbook	
cpl	133.90	J/mol×K	298.00	NIST Webbook	
cpl	121.30	J/mol×K	283.00	NIST Webbook	
cpl	125.90	J/mol×K	293.20	NIST Webbook	
cpl	123.80	J/mol×K	298.40	NIST Webbook	
cpl	124.30	J/mol×K	260.00	NIST Webbook	
cpl	124.68	J/mol×K	296.99	NIST Webbook	
cpl	124.70	J/mol×K	298.00	NIST Webbook	
cpl	124.70	J/mol×K	298.00	NIST Webbook	
cpl	128.40	J/mol×K	302.40	NIST Webbook	
cpl	128.24	J/mol×K	298.00	NIST Webbook	
cpl	125.56	J/mol×K	298.20	NIST Webbook	
cpl	126.30	J/mol×K	293.00	NIST Webbook	
cpl	129.70	J/mol×K	298.00	NIST Webbook	
cpl	125.90	J/mol×K	298.15	NIST Webbook	
cpl	123.80	J/mol×K	298.15	NIST Webbook	
cpl	123.80	J/mol×K	298.15	NIST Webbook	
cpl	126.60	J/mol×K	298.15	NIST Webbook	
cpl	126.60	J/mol×K	298.15	NIST Webbook	
cpl	124.70	J/mol×K	289.40	NIST Webbook	
cpl	125.45	J/mol×K	298.15	NIST Webbook	
cps	96.00	J/mol×K	173.00	NIST Webbook	

dvisc	0.0003027	Paxs	298.15 Excess parameter studies on the binary mixtures of toluene with ketones at different temperatures
dvisc	0.0002939	Paxs	308.15 Density and Viscosity of (2,2-Dichloro-N,N-di-2-propenylacetamide + Acetone) and (2,2-Dichloro-N,N-di-2-propenylacetamide + Ethanol) at T = (278.15 to 313.15) K
dvisc	0.0002839	Paxs	313.15 Density and Viscosity of (2,2-Dichloro-N,N-di-2-propenylacetamide + Acetone) and (2,2-Dichloro-N,N-di-2-propenylacetamide + Ethanol) at T = (278.15 to 313.15) K
dvisc	0.0002920	Paxs	303.15 Physical properties of the binary systems methylcyclopentane with ketones (acetone, butanone and 2-pentanone) at T = (293.15, 298.15, and 303.15) K. New UNIFAC-VISCO interaction parameters
dvisc	0.0002809	Paxs	308.15 Excess parameter studies on the binary mixtures of toluene with ketones at different temperatures
dvisc	0.0003200	Paxs	293.15 Dynamic Viscosities of the Binary Systems Cyclohexane and Cyclopentane with Acetone, Butanone, or 2-Pentanone at Three Temperatures T) (293.15, 298.15, and 303.15) K

dvisc	0.0003060	Paxs	298.15 Dynamic Viscosities of the Binary Systems Cyclohexane and Cyclopentane with Acetone, Butanone, or 2-Pentanone at Three Temperatures T) (293.15, 298.15, and 303.15) K
dvisc	0.0003200	Paxs	293.15 Physical properties of the binary systems methylcyclopentane with ketones (acetone, butanone and 2-pentanone) at T = (293.15, 298.15, and 303.15) K. New UNIFAC-VISCO interaction parameters
dvisc	0.0003086	Paxs	303.15 Density and Viscosity of (2,2-Dichloro-N,N-di-2-propenylacetamide + Acetone) and (2,2-Dichloro-N,N-di-2-propenylacetamide + Ethanol) at T = (278.15 to 313.15) K
dvisc	0.0003212	Paxs	298.15 Density and Viscosity of (2,2-Dichloro-N,N-di-2-propenylacetamide + Acetone) and (2,2-Dichloro-N,N-di-2-propenylacetamide + Ethanol) at T = (278.15 to 313.15) K
dvisc	0.0003339	Paxs	293.15 Density and Viscosity of (2,2-Dichloro-N,N-di-2-propenylacetamide + Acetone) and (2,2-Dichloro-N,N-di-2-propenylacetamide + Ethanol) at T = (278.15 to 313.15) K
dvisc	0.0003511	Paxs	288.15 Density and Viscosity of (2,2-Dichloro-N,N-di-2-propenylacetamide + Acetone) and (2,2-Dichloro-N,N-di-2-propenylacetamide + Ethanol) at T = (278.15 to 313.15) K

dvisc	0.0003657	Paxs	283.15 Density and Viscosity of (2,2-Dichloro-N,N-di-2-propenylacetamide + Acetone) and (2,2-Dichloro-N,N-di-2-propenylacetamide + Ethanol) at T = (278.15 to 313.15) K
dvisc	0.0002920	Paxs	303.15 Dynamic Viscosities of the Binary Systems Cyclohexane and Cyclopentane with Acetone, Butanone, or 2-Pentanone at Three Temperatures T) (293.15, 298.15, and 303.15) K
dvisc	0.0003849	Paxs	278.15 Density and Viscosity of (2,2-Dichloro-N,N-di-2-propenylacetamide + Acetone) and (2,2-Dichloro-N,N-di-2-propenylacetamide + Ethanol) at T = (278.15 to 313.15) K
dvisc	0.0002809	Paxs	308.15 Density and Viscosity of Ketones with Toluene at Different Temperatures and at Atmospheric Pressure
dvisc	0.0003060	Paxs	298.15 Physical properties of the binary systems methylcyclopentane with ketones (acetone, butanone and 2-pentanone) at T = (293.15, 298.15, and 303.15) K. New UNIFAC-VISCO interaction parameters
dvisc	0.0002918	Pa×s	303.15 Density and Viscosity of Ketones with Toluene at Different Temperatures and at Atmospheric Pressure

dvisc	0.0002918	Paxs	303.15	Excess parameter studies on the binary mixtures of toluene with ketones at different temperatures	
dvisc	0.0003027	Paxs	298.15	Density and Viscosity of Ketones with Toluene at Different Temperatures and at Atmospheric Pressure	
hfust	5.69	kJ/mol	177.60	NIST Webbook	
hfust	4.77	kJ/mol	178.50	NIST Webbook	
hfust	5.72	kJ/mol	176.60	NIST Webbook	
hfust	5.72	kJ/mol	176.60	NIST Webbook	
hfust	5.69	kJ/mol	177.60	NIST Webbook	
hfust	5.71	kJ/mol	176.62	NIST Webbook	
hvapt	30.70	kJ/mol	271.50	NIST Webbook	
hvapt	32.10	kJ/mol	271.50	NIST Webbook	
hvapt	35.00	kJ/mol	271.50	NIST Webbook	
hvapt	29.09	kJ/mol	338.00	NIST Webbook	
hvapt	31.10	kJ/mol	319.50	NIST Webbook	
hvapt	32.60	kJ/mol	285.50	NIST Webbook	
hvapt	29.10	kJ/mol	329.30	NIST Webbook	
hvapt	31.80	kJ/mol	319.00	NIST Webbook	
hvapt	9.20	kJ/mol	498.00	NIST Webbook	
hvapt	15.30	kJ/mol	473.00	NIST Webbook	
hvapt	21.70	kJ/mol	423.00	NIST Webbook	
hvapt	26.10	kJ/mol	373.00	NIST Webbook	
hvapt	31.90	kJ/mol	307.00	NIST Webbook	
hvapt	32.70	kJ/mol	294.50	NIST Webbook	
hvapt	32.80	kJ/mol	305.00	NIST Webbook	
hvapt	29.70	kJ/mol	482.50	NIST Webbook	
hvapt	30.60	kJ/mol	351.00	NIST Webbook	
hvapt	33.80	kJ/mol	236.00	NIST Webbook	
hvapt	32.90	kJ/mol	210.50	NIST Webbook	
hvapt	29.90	kJ/mol	408.50	NIST Webbook	
hvapt	32.10	kJ/mol	308.00	NIST Webbook	
hvapt	29.50	kJ/mol	419.00	NIST Webbook	
hvapt	29.12	kJ/mol	329.40	KDB	

pvap	57.96	kPa	314.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa	
pvap	60.29	kPa	314.76	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	64.95	kPa	317.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa	
pvap	72.60	kPa	320.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa	
pvap	80.96	kPa	323.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa	
pvap	90.08	kPa	326.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa	
pvap	100.00	kPa	329.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa	
pvap	110.78	kPa	332.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa	
pvap	122.47	kPa	335.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa	
pvap	101.33	kPa	329.30 1-he	Vapor-liquid equilibrium in the production of the ionic liquid, exyl-3-methylimidazo bromide ([HMIm][Br]), in acetone	ilium

pvap	101.30	kPa	329.26 Isobaric vapor-liquid equilibrium for acetone + methanol system containing different ionic liquids at 101.3 kPa
pvap	115.70	kPa	333.15 Thermodynamics
pvap	101.30	kPa	329.56 Isobaric vapour-liquid equilibrium measurements and extractive distillation process for the azeotrope of (N,N-dimethylisopropylamine + acetone)
pvap	96.15	kPa	327.90 Vapor Liquid Equilibrium Data for Binary Mixtures of Acetic Acid + Anisole, Acetone + Anisole, and Isopropanol + Anisole at Pressure 96.15 kPa
pvap	68.20	kPa	318.15 Isothermal Vapor-Liquid Equilibria for Binary Mixtures of Methyl Nonafluorobutyl Ether + Acetone, Cyclopentyl Methyl Ether, Ethyl Acetate, n-Heptane, Methanol, and Toluene

pvap	101.30	kPa	329.33	Isobaric Vapor-Liquid Equilibrium Data for the Acetone + Hexamethyl Disiloxane + Ethyl Acetate Ternary System at 101.3 kPa: Determination and Correlation	
pvap	101.00	kPa	329.35	Isobaric Vapor-Liquid Equilibrium of Acetone + Methanol System in the Presence of Calcium Bromide	
pvap	297.10	kPa	364.51	Vapor Liquid Equilibrium for Six Binary Systems of C4-Hydrocarbons + 2-Propanone	
pvap	70.07	kPa	318.77	Vapor Liquid Equilibrium for Binary Systems of 2,3-Pentanedione with Diacetyl and Acetone	
pvap	65.08	kPa	316.80	Vapor Liquid Equilibrium for Binary Systems of 2,3-Pentanedione with Diacetyl and Acetone	
pvap	60.29	kPa	314.76	Vapor Liquid Equilibrium for Binary Systems of 2,3-Pentanedione with Diacetyl and Acetone	
pvap	55.29	kPa	312.52	Vapor Liquid Equilibrium for Binary Systems of 2,3-Pentanedione with Diacetyl and Acetone	
pvap	50.40	kPa	310.08	Vapor Liquid Equilibrium for Binary Systems of 2,3-Pentanedione with Diacetyl and Acetone	

pvap	45.21	kPa	307.33 Vapor Liquid Equilibrium for Binary Systems of 2,3-Pentanedione with Diacetyl and Acetone
pvap	35.22	kPa	301.25 Vapor Liquid Equilibrium for Binary Systems of 2,3-Pentanedione with Diacetyl and Acetone
pvap	30.23	kPa	297.67 Vapor Liquid Equilibrium for Binary Systems of 2,3-Pentanedione with Diacetyl and Acetone
pvap	101.30	kPa	329.37 Vapor Liquid Equilibrium for the 1,1,1-Trifluorotrichloroethane + Sulfuryl Chloride System at 101.3 kPa
pvap	100.00	kPa	329.00 1-Ethyl-3-methylimidazolium Dicyanamide as a Very Efficient Entrainer for the Extractive Distillation of the Acetone + Methanol System
pvap	100.00	kPa	329.00 Influence of Some Ionic Liquids Containing the Trifluoromethanesulfonate Anion on the Vapor Liquid Equilibria of the Acetone + Methanol System
pvap	81.65	kPa	323.15 Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone
pvap	70.07	kPa	318.77 Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone

pvap	65.08	kPa	316.80	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	294.30	kPa	364.51	Vapor Liquid Equilibrium for Six Binary Systems of C4-Hydrocarbons + 2-Propanone	
pvap	56.64	kPa	313.15	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	55.29	kPa	312.52	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	50.40	kPa	310.08	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	45.21	kPa	307.33	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	40.00	kPa	304.37	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	38.04	kPa	303.15	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	35.22	kPa	301.25	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	30.23	kPa	297.66	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	

pvap	302.56	kPa	365.43	Vapor Liquid Equilibrium for Six Binary Systems of C4-Hydrocarbons + 2-Propanone
pvap	296.80	kPa	364.52	Vapor Liquid Equilibrium for Six Binary Systems of C4-Hydrocarbons + 2-Propanone
pvap	296.40	kPa	364.51	Vapor Liquid Equilibrium for Six Binary Systems of C4-Hydrocarbons + 2-Propanone
pvap	135.11	kPa	338.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa
rfi	1.35860		293.15	Isobaric Vapor Liquid Equilibrium for Nine Binary Systems of Cracking C5 Fraction at 250 kPa
rfi	1.35890		293.15	Isothermal and Isobaric Vapor-Liquid Equilibria of the Ternary System of 2,2-Dimethoxypropane + Acetone +
rfi	1.35057		308.15	Methanol Densities, Refractive indices and Viscosities for Binary and Ternary Mixtures of Acetone, Ethanol and 2,2,4-Trimethylpentane at T = (288.15, 298.15, and 308.15) K

rfi	1.35605	298.15 Densities, Refractive indices and Viscosities for Binary and Ternary Mixtures of Acetone, Ethanol and 2,2,4-Trimethylpentane at T = (288.15, 298.15, and 308.15) K
rfi	1.36152	288.15 Densities, Refractive indices and Viscosities for Binary and Ternary Mixtures of Acetone, Ethanol and 2,2,4-Trimethylpentane at T = (288.15, 298.15, and 308.15) K
rfi	1.35553	298.15 Quaternary, Ternary and Binary LLE Measurements for 2-Methoxy-2-methylbutane + Furfural + Acetic Acid + Water at Temperatures between 298 and 341 K
rfi	1.35553	298.15 Quaternary, Ternary, and Binary LLE Measurements for 2-Methoxy-2-methylpropane + Furfural + Acetic Acid + Water at Temperatures between 298 and 307 K
rfi	1.35553	298.15 Ternary and Binary LLE Measurements for Solvent (4- Methyl-2-pentanone and 2-Methyl-2-butanol) + Furfural + Water between 298 and 401 K
rfi	1.35900	293.15 Solubilities of Some Phosphaspirocyclic Compounds in Selected Solvents

rfi	1.35620	298.15 Solubility of a-Carotene in Binary Solvents Formed by Some Hydrocarbons with 2,5,8-Trioxanonane, 2-Propanone, and Cyclohexanone
rfi	1.35550	298.00 Quaternary and ternary LLE measurements for solvent (2-methyltetrahydrofuran and cyclopentyl methyl ether) + furfural + acetic acid + water between 298 and 343 K
rfi	1.35900	293.15 Solubilities of (2,5-Dihydroxyphenyl)diphenyl Phosphine Oxide in Selected Solvents
rfi	1.35550	298.15 Ternary and binary LLE measurements for solvent (2-methyltetrahydrofuran and cyclopentyl methyl ether) + furfural + water between 298 and 343 K
rfi	1.34491	318.15 Density, Speed of Sound, and Refractive Index of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate with Acetone, Methyl Acetate, and Ethyl Acetate at Temperatures from (278.15 to 328.15) K
rfi	1.35054	308.15 Density, Speed of Sound, and Refractive Index of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate with Acetone, Methyl Acetate, and Ethyl Acetate at Temperatures from (278.15 to 328.15) K

rfi	1.35597	298.15 Density, Speed of Sound, and Refractive Index of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate with Acetone, Methyl Acetate, and Ethyl Acetate at Temperatures from (278.15 to 328.15) K
rfi	1.36146	288.15 Density, Speed of Sound, and Refractive Index of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate with Acetone, Methyl Acetate, and Ethyl Acetate at Temperatures from (278.15 to 328.15) K
rfi	1.35566	298.15 Properties of ionic liquid HMIMPF6 with carbonates, ketones and alkyl acetates
rfi	1.35880	293.15 Isothermal vapour-liquid equilibrium data for the binary systems 2-propanone + (2-butanol or propanoic acid)
rfi	1.35732	298.15 Phase equilibria and interfacial tensions in the systems methyl tert-butyl ether + acetone + cyclohexane, methyl tert-butyl ether + acetone and methyl tert-butyl ether + cyclohexane
rfi	1.35732	298.15 Vapor liquid equilibria and interfacial tensions for the ternary system acetone + 2,2 -oxybis[propane] + cyclohexane and its constituent binary systems

rfi	1.35597	298.15 Isobaric vapor liquid equilibria for mixtures of acetone, ethanol, and 2,2,4-trimethylpentane at 101.3 kPa
rfi	1.35900	293.15 Solubilities of Phosphorus-Containing Compounds in Selected Solvents
rfi	1.35820	298.15 Isobaric Vapor Liquid Equilibria for Binary Systems of Acetone + Isopropenyl Acetate, 2-Butanone + Isopropenyl Acetate, and Isopropenyl Acetate + Acetylacetone at 101.3 kPa
rfi	1.35900	293.15 Solubilities of 3,9-Dimethyl-3,9-dioxide-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]under in Selected Solvents
rfi	1.35880	293.15 Solubilities of Methyldiphenylphosphine Oxide in Selected Solvents
rfi	1.35600	298.15 Physical properties and their corresponding changes of mixing for the ternary mixture acetone + n-hexane +water at 298.15K
rfi	1.35900	293.15 Solubilities of 2-(6-Oxido-6H-dibenz[c,e][1,2]oxaphosphorin-6-yl)-1,4-dihydroxy Phenylene in the Selected Solvents
rhol	785.00	kg/m3 298.15 Vapor Liquid Equilibrium Data for 2,3-Pentanedione + (Acetaldehyde or Acetone) at (100, 150, and 200) kPa

rhol	790.31	kg/m3	293.15	Excess Molar Enthalpies for Binary Mixtures of Ethanol + Acetone, + Octane, + Cyclohexane and 1-Propanol + Acetone, +	
	224.07		000.45	Octane, + Heptane at 323.15	
rhol	801.67	kg/m3	283.15	Experimental Densities and Excess Volumes for Binary Mixtures Containing Propionic Acid, Acetone and Water from 283.15 K to 323.15 K at Atmospheric Pressure	
rhol	767.00	kg/m3	313.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures	
rhol	779.00	kg/m3	303.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures	
rhol	790.00	kg/m3	293.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures	

rhol	778.63	kg/m3	303.15 Thermodynamics	
rhol	784.43	kg/m3	298.15 Thermodynamics	
rhol	790.19	kg/m3	293.15 Thermodynamics	
rhol	785.10	kg/m3	298.15 Measurement and correlation of solubility and solution thermodynamics of 1,3-dimethylurea in different solvents from T = (288.15 to 328.15) K	
rhol	778.70	kg/m3	303.20 Ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate, an efficient solvent for extraction of acetone from aqueous solutions	

rhol	796.04	kg/m3	288.15 Experimental Densities and Excess Volumes for Binary Mixtures Containing Propionic Acid, Acetone and Water from 283.15 K to 323.15 K at Atmospheric Pressure
rhol	790.36	kg/m3	293.15 Experimental Densities and Excess Volumes for Binary Mixtures Containing Propionic Acid, Acetone and Water from 283.15 K to 323.15 K at Atmospheric Pressure
rhol	790.66	kg/m3	293.20 Ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate, an efficient solvent for extraction of acetone from aqueous solutions
rhol	790.21	kg/m3	293.15 (Liquid + liquid) equilibria for (water + 1-propanol or acetone + .betacitronellol) at different temperatures
rhol	783.80	kg/m3	298.15 Solubility and solution thermodynamics of sorbic acid in eight pure organic solvents
rhol	785.32	kg/m3	298.15 Extraction desulfurization process of fuels with ionic liquids
rhol	785.32	kg/m3	298.15 Effect of the alkyl side chain of the 1-alkylpiperidinium-based ionic liquids on desulfurization of fuels

rhol	785.23	kg/m3	298.15 Separation of sulfur compounds from alkanes with 1-alkylcyanopyridinium-based ionic liquids
rhol	773.07	kg/m3	308.15 Thermodynamic properties of binary mixtures of the ionic liquid [emim][BF4] with acetone and dimethylsulphoxide
rhol	784.40	kg/m3	298.20 Ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate, an efficient solvent for extraction of acetone from aqueous solutions
rhol	784.40	kg/m3	298.15 Thermodynamic properties of binary mixtures of the ionic liquid [emim][BF4] with acetone and dimethylsulphoxide
rhol	789.99	kg/m3	293.15 Thermodynamic properties of binary mixtures of the ionic liquid [emim][BF4] with acetone and dimethylsulphoxide
rhol	784.24	kg/m3	298.15 Apparent molar volumes and compressibilities of tetrabutyl-ammonium bromide in organic solvents
rhol	784.23	kg/m3	298.15 Density and speed of sound of lithium bromide with organic solvents: Measurement and correlation
rhol	784.65	kg/m3	298.15 Excess molar enthalpies and volumes of binary mixtures of nonafluorobutylmethylether with ketones at T = 298.15 K
rhol	784.50	kg/m3	293.15 (Vapour + liquid) equilibria for (2-ethoxypropene + acetone) and (2-ethoxypropene + butanone)

rhol	761.26	kg/m3	318.15	Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15-318.15) K and ambient pressure	
rhol	766.95	kg/m3	313.15	Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15-318.15) K and ambient pressure	
rhol	784.64	kg/m3	298.15	Experimental Densities and Excess Volumes for Binary Mixtures Containing Propionic Acid, Acetone and Water from 283.15 K to 323.15 K at Atmospheric Pressure	
rhol	773.07	kg/m3	308.15	Experimental Densities and Excess Volumes for Binary Mixtures Containing Propionic Acid, Acetone and Water from 283.15 K to 323.15 K at Atmospheric Pressure	

rhol	773.08	kg/m3	308.15	Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15-318.15) K and ambient	
rhol	767.21	kg/m3	313.14	Experimental Densities and Excess Volumes for Binary Mixtures Containing Propionic Acid, Acetone and Water from 283.15 K to 323.15 K at Atmospheric Pressure	
rhol	761.29	kg/m3	318.14	Experimental Densities and Excess Volumes for Binary Mixtures Containing Propionic Acid, Acetone and Water from 283.15 K to 323.15 K at Atmospheric Pressure	
rhol	755.31	kg/m3	323.14	Experimental Densities and Excess Volumes for Binary Mixtures Containing Propionic Acid, Acetone and Water from 283.15 K to 323.15 K at Atmospheric Pressure	
rhol	784.39	kg/m3	298.15	Excess Molar Volumes and Surface Tensions of Xylene with Acetone or 2-Butanone at 298.15 K	

rhol	785.09	kg/m3	298.15	Thermodynamics of Ketone + Amine Mixtures. Part VIII. Molar Excess Enthalpies at 298.15 K for n-Alkanone + Aniline or + N-Methylaniline Systems
rhol	784.30	kg/m3	293.15	Liquid Liquid Equilibrium for the Ternary System Acetone Oxime Methyl Ether Acetone Water
rhol	784.30	kg/m3	298.15	Phase equilibrium study of binary and ternary mixtures of ionic liquids + acetone + methanol
rhol	778.66	kg/m3	303.15	Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15-318.15) K and ambient pressure
rhol	785.23	kg/m3	298.15	Separation of pyridine from heptane with tricyanomethanide-based ionic liquids
rhol	785.09	kg/m3	298.15	Thermodynamics of ketone + amine mixtures. Part X. Excess molarenthalpies at 298.15 K for N,N,N-triethylamine + 2-alkanone systems.Characterization of tertiary amine + 2-alkanone,

rhol	785.09	kg/m3	298.15	Thermodynamics of ketone + amine mixtures. Part IX. Excess molar enthalpies at 298.15K for dipropylamine, or dibutylamine + 2-alkanone systems and modeling of linear or aromatic amine + 2-alkanone mixtures in terms of DISQUAC and ERAS	
rhol	790.00	kg/m3	293.00	KDB	
rhol	786.77	kg/m3	298.15	Separation of ethylbenzene/styrene systems using ionic liquids in ternary LLE	
rhol	783.81	kg/m3	298.15	Partial Molar Volumes of Butyltriethylammonium Iodide in Single Nonaqueous Solvents at 298.15 K	
rhol	766.90	kg/m3	313.15 ([EMIN	Density, Speed of Sound, and Derived Thermodynamic Properties of Ionic Liquids [EMIM]+[BETI]- or M]+[CH3(OCH2CH2)2C + Methanol or + Acetone) at T = (298.15 or 303.15 or 313.15) K	DSO3]-
rhol	778.40	kg/m3	303.15 ([EMIN	Density, Speed of Sound, and Derived Thermodynamic Properties of Ionic Liquids [EMIM]+[BETI]- or M]+[CH3(OCH2CH2)2C + Methanol or + Acetone) at T = (298.15 or 303.15 or 313.15) K	DSO3]-

rhol	784.10	kg/m3	298.15 ([EMIM	Density, Speed of Sound, and Derived Thermodynamic Properties of Ionic Liquids [EMIM]+[BETI]- or f]+[CH3(OCH2CH2)2OSO3]- + Methanol or + Acetone) at T = (298.15 or 303.15 or 313.15) K	
rhol	784.41	kg/m3	298.15	Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15-318.15) K and ambient pressure	
rhol	778.87	kg/m3	303.15	Thermodynamic properties of binary mixtures of the ionic liquid [emim][BF4] with acetone and dimethylsulphoxide	
rhol	778.88	kg/m3	303.14	Experimental Densities and Excess Volumes for Binary Mixtures Containing Propionic Acid, Acetone and Water from 283.15 K to 323.15 K at Atmospheric Pressure	
sfust	26.70	J/mol×K	178.50	NIST Webbook	
sfust	32.00	J/mol×K	177.60	NIST Webbook	
sfust	32.36	J/mol×K	176.62	NIST Webbook	
sfust	32.03	J/mol×K	177.60	NIST Webbook	
speedsl	1162.00	m/s	298.15	Vapor liquid equilibria for systems of diethyl carbonate and ketones and determination of group interaction parameters for the UNIFAC and ASOG methods	

srf	0.02	N/m	328.15	Surface Tension of the Ternary System Water + Acetone + Toluene	
srf	0.02	N/m	308.15	Surface Tension of the Ternary System Water + Acetone + Toluene	
srf	0.02	N/m	298.15	Surface Tension of the Ternary System Water + Acetone + Toluene	
srf	0.02	N/m	288.15	Surface Tension of the Ternary System Water + Acetone + Toluene	
srf	0.02	N/m	327.88	Surface Tension of Pure Liquids and Binary Liquid Mixtures	
srf	0.02	N/m	317.86	Surface Tension of Pure Liquids and Binary Liquid Mixtures	
srf	0.02	N/m	307.86	Surface Tension of Pure Liquids and Binary Liquid Mixtures	
srf	0.02	N/m	297.82	Surface Tension of Pure Liquids and Binary Liquid Mixtures	
srf	0.02	N/m	287.81	Surface Tension of Pure Liquids and Binary Liquid Mixtures	
srf	0.02	N/m	298.20	KDB	
srf	0.02	N/m	318.15	Surface Tension of the Ternary System Water + Acetone + Toluene	
srf	0.02	N/m	293.15 1-Vin	Investigation of Surface Properties and Solubility of yl-3-alkyl/Esterimidazol Halide Ionic Liquids by Density Functional Methods	ium

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbrp	329.30	K	2.70	NIST Webbook

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.48340e+01
Coeff. B	-3.02945e+03
Coeff. C	-3.26710e+01
Temperature range (K), min.	240.93
Temperature range (K), max.	508.10

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	6.69693e+01
Coeff. B	-5.78459e+03
Coeff. C	-7.85881e+00
Coeff. D	7.10496e-06
Temperature range (K), min.	178.45
Temperature range (K), max.	508.20

Datasets

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid	
303.15	101.30	0.0002974	

Speed of sound, m/s

Temperature, K - Liquid	Pressure, kPa - Liquid	Speed of sound, m/s - Liquid
265.67	102.00	1298.93
265.67	504.00	1301.09
265.67	750.00	1302.5
265.67	1003.00	1303.56
265.67	1255.00	1304.92
265.67	1501.00	1306.29
265.67	2007.00	1308.73
265.67	2506.00	1311.28
265.67	3005.00	1313.79
265.67	4004.00	1318.59
265.67	5004.00	1323.31
265.67	6005.00	1328.01
265.67	8002.00	1338.69
265.67	10001.00	1349.81
265.67	12001.00	1358.7
265.67	14003.00	1366.48
265.67	16050.00	1375.48
265.67	18001.00	1384.77
265.67	20003.00	1394.13
265.67	23001.00	1407.08
265.67	27004.00	1425.32
265.67	31003.00	1439.78
265.67	34997.00	1455.17
265.67	39999.00	1476.05
265.67	45002.00	1494.61
265.67	49999.00	1511.6
265.67	55001.00	1528.77
265.67	60002.00	1548.05
265.67	65000.00	1564.17
265.67	18001.00	1384.54
273.16	102.00	1264.48
273.16	504.00	1266.57
273.16	750.00	1267.96
273.16	1003.00	1269.39
273.16	1255.00	1270.74

273.16	1501.00	1272.23
273.16	2007.00	1275.12
273.16	2506.00	1277.93
273.16	3005.00	1281.1
273.16	4004.00	1287.23
273.16	5004.00	1291.97
273.16	6005.00	1296.6
273.16	8002.00	1306.58
273.16	10001.00	1316.19
273.16	12001.00	1325.58
273.16	14003.00	1335.9
273.16	16005.00	1346.87
273.16	18001.00	1355.99
273.16	20003.00	1363.63
273.16	23001.00	1376.52
273.16	27004.00	1394.61
273.16	31003.00	1412.24
273.16	34997.00	1428.86
273.16	39999.00	1446.67
273.16	45002.00	1467.44
273.16	49999.00	1485.84
273.16	55001.00	1504.31
273.16	60002.00	1520.08
273.16	65000.00	1538.71
273.16	3005.00	1281.19
273.16	4004.00	1286.78
273.16	5004.00	1292.02
280.74	75.00	1233.63
280.74	504.00	1234.94
280.74	750.00	1236.39
280.74	1003.00	1237.85
280.74	1255.00	1239.22
280.74	1501.00	1240.59
280.74	2007.00	1243.75
280.74	2506.00	1247.03
280.74	3005.00	1249.76
280.74	4004.00	1255.13
280.74	5004.00	1259.87
280.74	6005.00	1264.8
280.74	8002.00	1275.79
280.74	10001.00	1286.82
280.74	12001.00	1296.79
280.74	14003.00	1306.71
280.74	16005.00	1316.23

280.74	18001.00	1325.46
280.74	20003.00	1335.09
280.74	23001.00	1350.8
280.74	27004.00	1366.99
280.74	31003.00	1384.26
280.74	34997.00	1401.32
280.74	39999.00	1423.56
280.74	45002.00	1441.37
280.74	49999.00	1461.28
280.74	55001.00	1480.44
280.74	60002.00	1498.97
280.74	65000.00	1514.56
280.74	75.00	1232.04
280.74	23001.00	1350.8
280.74	39999.00	1423.74
280.74	45002.00	1441.37
280.74	60002.00	1498.91
280.74	65000.00	1514.63
288.23	109.00	1199.01
288.23	504.00	1201.24
288.23	750.00	1202.57
288.23	1003.00	1204.2
288.23	1255.00	1205.54
288.23	1501.00	1206.97
288.23	2007.00	1209.92
288.23	2506.00	1212.8
288.23	3005.00	1215.61
288.23	4004.00	1221.35
288.23	5004.00	1227.14
288.23	6005.00	1232.71
288.23	8002.00	1244.39
288.23	10001.00	1255.4
288.23	12001.00	1265.22
288.23	14003.00	1275.63
288.23	16005.00	1286.61
288.23	18001.00	1296.18
288.23	20003.00	1305.89
288.23	23001.00	1319.61
288.23	27004.00	1339.05
288.23	31003.00	1357.37
288.23	34997.00	1373.83
288.23	39999.00	1395.08
288.23	45002.00	1416.1
288.23	49999.00	1435.37

288.23	55001.00	1453.97
288.23	60002.00	1473.72
288.23	65000.00	1492.08
298.23	109.00	1153.69
298.23	504.00	1156.23
298.23	750.00	1157.82
298.23	1003.00	1159.5
298.23	1255.00	1161.14
298.23	1501.00	1162.71
298.23	2007.00	1165.65
298.23	2506.00	1168.6
298.23	3005.00	1171.49
298.23	4004.00	1177.4
298.23	5004.00	1182.9
298.23	6005.00	1189.6
298.23	8002.00	1201.45
298.23	10001.00	1212.8
298.23	12001.00	1223.83
298.23	14003.00	1234.83
298.23	16005.00	1246.18
298.23	18001.00	1256.46
298.23	20003.00	1265.92
298.23	23001.00	1281.93
298.23	27004.00	1301.17
298.23	31003.00	1319.28
298.23	34997.00	1337.9
298.23	39999.00	1359.25
298.23	45002.00	1380.44
298.23	49999.00	1400.61
298.23	55001.00	1421.32
298.23	60002.00	1439.68
298.23	65000.00	1458.59
308.22	109.00	1107.74
308.22	504.00	1110.52
308.22	750.00	1112.35
308.22	1003.00	1114.01
308.22	1255.00	1115.75
308.22	1501.00	1117.34
308.22	2007.00	1120.69
308.22	2506.00	1123.91
308.22	3005.00	1127.11
308.22	4004.00	1133.79
308.22	5004.00	1140.56
308.22	6005.00	1146.98

308.22	8002.00	1159.51
308.22	10001.00	1171.13
308.22	12001.00	1182.37
308.22	14003.00	1194.75
308.22	16005.00	1205.76
308.22	18001.00	1216.57
308.22	20003.00	1227.49
308.22	23001.00	1244.05
308.22	27004.00	1263.44
308.22	31003.00	1283.97
308.22	34997.00	1302.46
308.22	39999.00	1324.45
308.22	45002.00	1347.09
308.22	49999.00	1367.79
308.22	55001.00	1388.31
308.22	60002.00	1408.07
308.22	65000.00	1427.73
318.22	109.00	1062.32
318.22	504.00	1065.38
318.22	750.00	1067.34
318.22	1003.00	1069.21
318.22	1255.00	1071.11
318.22	1501.00	1072.72
318.22	2007.00	1076.32
318.22	2506.00	1079.71
318.22	3005.00	1083.5
318.22	4004.00	1090.38
318.22	5004.00	1096.85
318.22	6005.00	1103.61
318.22	8002.00	1116.61
318.22	10001.00	1129.13
318.22	12001.00	1142.47
318.22	14003.00	1154.62
318.22	16005.00	1166.43
318.22	18001.00	1177.61
318.22	20003.00	1189.14
318.22	23001.00	1205.63
318.22	27004.00	1226.77
318.22	31003.00	1247.41
318.22	34997.00	1266.28
318.22	39999.00	1290.76
318.22	45002.00	1313.78
318.22	49999.00	1334.83
318.22	55001.00	1356.46

318.22	60002.00	1376.77
318.22	65000.00	1395.43
328.22	129.00	1018.3
328.22	504.00	1021.14
328.22	750.00	1023.1
328.22	1003.00	1024.91
328.22	1255.00	1026.82
328.22	1501.00	1028.6
328.22	2007.00	1032.33
328.22	2506.00	1036.21
328.22	3005.00	1040.05
328.22	4004.00	1047.07
328.22	5004.00	1053.76
328.22	6005.00	1060.7
328.22	8002.00	1074.73
328.22	10001.00	1088.42
328.22	12001.00	1101.14
328.22	14003.00	1113.97
328.22	16005.00	1126.49
328.22	18001.00	1138.92
328.22	20003.00	1151.08
328.22	23001.00	1168.1
328.22	27004.00	1190.45
328.22	31003.00	1211.66
328.22	34997.00	1231.66
328.22	39999.00	1256.67
328.22	45002.00	1280.63
328.22	49999.00	1303.34
328.22	55001.00	1324.67
328.22	60002.00	1345.81
328.22	65000.00	1365.57
338.22	170.00	972.8
338.22	504.00	976.32
338.22	750.00	978.88
338.22	1003.00	981.05
338.22	1255.00	982.97
338.22	1501.00	984.75
338.22	2007.00	988.42
338.22	2506.00	992.07
338.22	3005.00	996.0
338.22	4004.00	1004.26
338.22	5004.00	1011.63
338.22	6005.00	1019.16
338.22	8002.00	1033.34

338.22	10001.00	1047.72
338.22	12001.00	1061.19
338.22	14003.00	1074.71
338.22	16005.00	1088.09
338.22	18001.00	1100.33
338.22	20003.00	1112.58
338.22	23001.00	1131.02
338.22	27004.00	1154.76
338.22	31003.00	1176.19
338.22	34997.00	1197.57
338.22	39999.00	1223.29
338.22	45002.00	1248.14
338.22	49999.00	1271.19
338.22	55001.00	1293.31
338.22	60002.00	1315.39
338.22	65000.00	1336.38

Reference

https://www.doi.org/10.1016/j.jct.2003.12.001

Temperature, K	Pressure, kPa	Speed of sound, m/s
248.15	100.00	1390.16
248.15	10000.00	1435.51
248.15	20000.00	1478.36
248.15	30000.00	1518.03
248.15	40000.00	1550.78
248.15	50000.00	1590.88
248.15	60000.00	1625.12
248.15	70000.00	1657.38
248.15	80000.00	1688.07
248.15	90000.00	1717.48
248.15	100000.00	1745.43
253.15	100.00	1367.16
253.15	10000.00	1413.84
253.15	20000.00	1457.41
253.15	30000.00	1497.98
253.15	40000.00	1536.44
253.15	50000.00	1572.26
253.15	60000.00	1606.9
253.15	70000.00	1639.52
253.15	8000.00	1670.88
253.15	90000.00	1700.93
253.15	100000.00	1729.65
258.15	100.00	1344.2

050.45	10000.00	1201.00
258.15	10000.00	1391.98
258.15	20000.00	1436.58
258.15	30000.00	1478.11
258.15	4000.00	1517.33
258.15	50000.00	1553.89
258.15	60000.00	1588.88
258.15	70000.00	1621.91
258.15	80000.00	1653.89
258.15	90000.00	1684.43
258.15	100000.00	1713.62
263.15	100.00	1320.92
263.15	10000.00	1370.35
263.15	20000.00	1415.99
263.15	30000.00	1458.25
263.15	40000.00	1498.44
263.15	50000.00	1535.81
263.15	60000.00	1570.98
263.15	70000.00	1604.54
263.15	80000.00	1637.11
263.15	90000.00	1668.1
263.15	100000.00	1697.74
268.15	100.00	1298.67
268.15	10000.00	1349.08
268.15	20000.00	1395.62
268.15	30000.00	1438.54
268.15	40000.00	1479.77
268.15	50000.00	1517.83
268.15	60000.00	1553.2
268.15	70000.00	1587.43
268.15	80000.00	1620.54
268.15	90000.00	1651.96
268.15	100000.00	1682.01
273.15	100.00	1275.4
273.15	10000.00	1327.81
273.15	20000.00	1375.45
273.15	30000.00	1418.96
273.15	40000.00	1461.31
273.15	50000.00	1499.98
273.15	60000.00	1535.77
273.15	70000.00	1570.58
273.15	80000.00	1604.15
273.15	90000.00	1636.02
273.15	100000.00	1666.45
278.15	100.00	1253.32
210.10	100.00	120.02

278.15	10000.00	1306.75
278.15	20000.00	1355.49
278.15	30000.00	1400.47
278.15	40000.00	1443.03
278.15	50000.00	1481.78
278.15	60000.00	1518.62
278.15	70000.00	1553.98
278.15	80000.00	1587.94
278.15	90000.00	1620.26
278.15	100000.00	1650.92
283.15	100.00	1231.06
283.15	10000.00	1285.85
283.15	20000.00	1335.74
283.15	30000.00	1381.4
283.15	4000.00	1424.94
283.15	50000.00	1464.43
283.15	60000.00	1502.23
283.15	70000.00	1537.63
283.15	80000.00	1571.96
283.15	90000.00	1604.68
283.15	100000.00	1635.63
288.15	100.00	1208.58
288.15	10000.00	1265.05
288.15	20000.00	1316.19
288.15	30000.00	1362.56
288.15	40000.00	1407.06
288.15	50000.00	1447.7
288.15	60000.00	1485.52
288.15	70000.00	1521.53
288.15	80000.00	1556.22
288.15	90000.00	1589.2
288.15	100000.00	1620.74
293.15	100.00	1186.09
293.15	10000.00	1244.14
293.15	20000.00	1296.86
293.15	30000.00	1344.06
293.15	40000.00	1389.16
293.15	50000.00	1430.7
293.15	60000.00	1469.0
293.15	70000.00	1505.7
293.15	80000.00	1540.77
293.15	90000.00	1574.27
293.15	100000.00	1605.01
298.15	100.00	1165.34

298.15	10000.00	1223.74
298.15	20000.00	1277.93
298.15	30000.00	1325.68
298.15	40000.00	1371.61
298.15	50000.00	1413.84
298.15	60000.00	1452.64
298.15	70000.00	1490.14
298.15	80000.00	1525.25
298.15	90000.00	1559.14
298.15	100000.00	1591.53

Reference

https://www.doi.org/10.1016/j.jct.2008.11.005

Sources

Solid Liquid Phase Equilibrium and Phase Diagram for the Ternary Batterniasion of the Ternary Batternia Solid Liquid Phase Equilibrium and https://www.doi.org/10.1021/je100918d https://www.doi.org/10.1016/j.jct.2016.10.022 https://www.doi.org/10.1021/je1009812 https://www.doi.org/10.1021/je9010954 https://www.doi.org/10.1016/j.fluid.2017.12.004 https://www.doi.org/10.1021/je301029j https://www.chemeo.com/doc/models/crippen_log10ws in Selected Solvents: Cosolvent effect on solubility of Tosolvent effect on solubility of aripiprazole in mixed solvents and solubility (Mognetic mantional Assistation and Solubility (Mognetic mantional Missistation and Solubility of the Aministry of the Asimide in tention and Modeling of Solubility (Modeling of Solubility of the Aministry of the Asimide in the Mognetic mantion and Missistation and Modeling of Solubility (Modeling of Solubility of the Aministry of the Asimide in the Modeling of Solubility of the Aministry of the Asimide in the Modeling of Solubility of the Aministry of the Asimide in the Modeling of Solubility of the Aministry of the Asimide in the Missistry of the Aministry of the Asimide in the Missistry of the Asimid https://www.doi.org/10.1016/j.jct.2019.03.021 https://www.doi.org/10.1021/je7004038

https://www.doi.org/10.1021/je7004038

https://www.doi.org/10.1021/je7004038

https://www.doi.org/10.1021/je7004038

https://www.doi.org/10.1021/je7004038

https://www.doi.org/10.1021/je05048800196

https://www.doi.org/10.1021/je0504880

https://www.doi.org/10.1021/je050346t

https://www.doi.org/10.1021/je000346t

https://www.doi.org/10.1021/je00046s

https://www.doi.org/10.1021/je00046s

https://www.doi.org/10.1021/je00046s

https://www.doi.org/10.1021/je00046s

https://www.doi.org/10.1021/je00046s

https://www.doi.org/10.1021/je00046s

https://www.doi.org/10.1021/je00046s

https://www.doi.org/10.1021/je00046s

https://www.doi.org/10.1021/je00046s Solvents:

Solubility of Desmosterol in Five https://www.doi.org/10.1021/je8006088 Organic Solvents: Solubility of https://www.doi.org/10.1021/je700434b Tetrahydroxybenzophenone (THBP) in (Schieneliquid) phase equilibria of https://www.doi.org/10.1016/j.jct.2014.06.021 Special Specia https://www.doi.org/10.1021/acs.jced.9b00802 https://www.doi.org/10.1016/j.jct.2018.08.028 https://www.doi.org/10.1021/je0201323 Alcohols from (298.2 to 333.2) K and Theirmonymension of string of their manymension of string of the string of the string of their manymension of the string of the st https://www.doi.org/10.1021/je1001945 https://www.doi.org/10.1016/j.fluid.2015.06.026 Bellijk para disselution and personal form of the second o https://www.doi.org/10.1021/acs.jced.5b00192 gamma infinity data using https://www.doi.org/10.1021/je8006869 https://www.doi.org/10.1021/je8006869 https://www.doi.org/10.1021/je8005979 Solvents and Its Mixtures: Activity Coefficients at Infinite Dilution https://www.doi.org/10.1021/je1000582 Activity Coefficients at Infinite Dilution
Measurements for Organic Solutes and
Witermination of Agtivity Coefficients
attaining to Dilution of Agtivity Coefficients
attaining to Dilution of Agtivity Coefficients
attaining to Dilution of Cativity Coefficients pure solvents and binary solvent Measweement and Correlation of the https://www.doi.org/10.1021/acs.jced.8b00425 Solubility of 5-Fluorouracil in Pure and Shubility of 5-Fluorouracil in Pure and Shubilities of Some https://www.doi.org/10.1021/je060138i

Phosphaspirocyclic Compounds in Sereelation of https://www.doi.org/10.1016/j.fluid.2013.05.008 https://www.doi.org/10.1016/j.jct.2016.07.043 ### In Different Solvents at (283.0 to 323.0) a polubilities of conazole nitrate in twelve pure the intrate in twelve pure the intraction of the intrate in twelve pure the intrate in https://www.doi.org/10.1016/j.jct.2013.08.030 https://www.doi.org/10.1021/acs.jced.8b00578 https://www.doi.org/10.1021/acs.jced.7b00238 1,1'-[1,2-Ethanediylbis(oxy-1,2-ethanediyl)]bis-[3-methyl-1H-imidazolium-1-yl]

Imps://www.doi.org/10.1021/je004460

1,1'-[1,2-Ethanediylbis(oxy-1,2-ethanediyl)]bis-[3-methyl-1H-imidazolium-1-yl]

Imps://www.doi.org/10.1021/je004460

Imps://www.doi.org/10.1021/je0341763

Imps://www.doi.org/10.1021/je0341763

Imps://www.doi.org/10.1016/j.jct.2013.09.032

Interest of the confinite of the confinit ARABUS WITH MARRIEM SEASIFICION AND ARABUS A https://www.doi.org/10.1016/j.fluid.2018.01.019 https://www.doi.org/10.1021/acs.jced.7b01085 https://www.doi.org/10.1016/j.jct.2016.12.002 Solumbitum of some inquid
Solumbitum of the Solu https://www.doi.org/10.1021/acs.jced.5b01053 https://www.doi.org/10.1021/acs.jced.6b00361 Pure and Water + Ethanol Mixed

Solvents at Temperatures from 293.15

to 333.15 K:

Solubility of Form III Piracetam in a https://www.doi.org/10.1021/je1003934 Range of Solvents: Determination and correlation of https://www.doi.org/10.1016/j.jct.2016.06.032 solubility of Solubility on PolybeitenettAylezrişinibilin Aeyen in Different Twin Solyenis from 6283.15 to Assiyis Kochicleris at infinite dilution of organic solutes in the jonic liquid https://www.doi.org/10.1021/je800515w https://www.doi.org/10.1016/j.fluid.2012.04.008 or organic solutes in the ionic liquid Activity proposition of solution in the ionic liquid Activity proposition of solution in the ionic liquid Activity proposition of solution in the ionic liquid in the i https://www.doi.org/10.1021/acs.jced.9b00275 The properties of some state o https://www.doi.org/10.1016/j.fluid.2013.05.002 https://www.doi.org/10.1016/j.jct.2013.05.030 https://www.doi.org/10.1021/acs.jced.5b00714 https://www.doi.org/10.1021/je060178m Dalicy emisealization: Ternary Diffusion Coefficients of https://www.doi.org/10.1021/je050082c Glycerol + Acetone + Water by Taylor
Bigliphisting Medysofrements at 298.15 K: https://www.doi.org/10.1021/je050082c

(2E)-1-(3-Pyridyl)-3-(dimethylamino)-2-propen-1-one
Medicinal Medici https://www.doi.org/10.1021/je0495435 https://www.doi.org/10.1021/acs.jced.5b00607 https://www.doi.org/10.1021/je8008039 https://www.doi.org/10.1021/je060174h https://www.doi.org/10.1021/acs.jced.7b00542 The most yearness of Thiamphenical in Water and The Better of 278.15 to 318.15 K.

Better of the Property of 18.15 to 318.15 K.

Better of 18.16 to 18.16 to 18.15 K.

Better of 18.16 to 18.16 to 18.15 K.

Better of 18.16 to 18.16 to 18.15 K.

Better of 18.16 to https://www.doi.org/10.1021/je9005618 https://www.doi.org/10.1016/j.fluid.2009.07.011 measurements for organic solutes and watsplyence one not the modern of t https://www.doi.org/10.1016/j.jct.2019.06.018 https://www.doi.org/10.1021/je900401z Enparationer, bind of inviviace ate; hexane/hex-1-ene, Measurement are the same of solving the same of https://www.doi.org/10.1016/j.jct.2017.11.017 https://www.doi.org/10.1021/je700131z

Combined Nearly Ideal Binary Solvent/

Redlich-Kister Equation:

```
Thermodynamic properties of
                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2016.10.017
            -Theanine in different solvents:
                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/je900038m
   Solubility of
  p-Aminobenzenesulfonamide in
BriteleilitySgiventserioacolesង:asetic Acid https://www.doi.org/10.1021/je700200b
ip Diffarent Solvents between 283 K
ទីកិត្តប្រើប្រជុំdetermination and modelling https://www.doi.org/10.1016/j.jct.2016.1
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2016.11.023
     For phthalimide in mixed solvents of Solventinie + Endeninie of Solventinie + Endeninie in the solvent of the Administration of the Administration of the Solvente in the Solv
                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/je500482k
                                                                                                                                                                                                                                                                                                                      https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
     Solubilities of
                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1021/je4009816
 Solubilities of
4-(Hydroxymethyl)-1-oxido-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane
Measuangestages(Sorrelation of
Solubility of Calcium Formate (Form
Solubility of Gatifeed (Formate) (Form
Solubility of Gatifeed (Formate) (F
  Solvents and in Azeotropic Solvent
                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/je4003114
 nttps://www.doi.org/10.1021/je4003114
1,3,2-Dioxaphosphorinane-2-methanol-a,a-5,5-tetramethyl
Detectae in research first to hills to 273.15
Activity Genetic into of Several Organic
Beness in no Bethylly entennes tyrene
System in Cinglionic in inticipation of ternary
Bellifit of the ground of ternary

https://www.doi.org/10.1021/je800621p

https://www.doi.org/10.1021/je800621p

https://www.doi.org/10.1016/j.fluid.2004.
                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/acs.jced.7b00244
                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1016/j.jct.2016.09.003
                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1016/j.fluid.2004.11.010
vapor-liquid equilibria of ternary Soundal Phasamas tion equilibrium for dinydromyrcene hydration system:
Solubility of 2-Hydroxybenzoic Acid in Water, 1-Propanol, 2-Propanol, and Panajous his appropriate and termany sides and as 12 partiand in the solidary in a steering land in a management of the solidary in the so
     vapor-liquid equilibria of ternary
   Methyldiphenylphosphine Oxide in
                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/je0501033
   Solvents:
Solubility of d-Aspartic Acid in Several
                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/acs.jced.9b00320
  Neat Solvents: Determination, Moubilities คน Solvents: Compounds in Selected Solvents: Abraham model correlations for
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je100341q
                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2018.05.003
   describing the thermodynamic soluble with seminal semi
                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.fluid.2013.08.032
 HETTATION OF THE INCOMENTATION OF THE PROPERTY OF THE INCOMENTATION OF THE PROPERTY OF THE PRO
                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/je700664g
                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1016/j.jct.2016.03.007
                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1016/j.fluid.2018.01.015
                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/je101344v
                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.fluid.2017.09.007
                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/acs.jced.9b00562
  Forly bility and Propey in Survey of the special of
                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/acs.jced.9b00854
```

Solvent Systems:

```
Solubilities of Betulinic Acid in Thirteen https://www.doi.org/10.1021/je200531k
    Organic Solvents at Different
The disactuation behavior and apparent https://www.doi.org/10.1016/j.jct.2018.11.026
   thermodynamic analysis of the modynamic anal
                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.tca.2012.03.023
      Mezanicesoantesoaheovialeition né thaic
   Bejulaility of maleic acid in hydrical method of maleic acid in hydrifinal of the maleic acid in hydrifical of the maleic acid in hydrifinal of the male
    r dingheamis and different aqueous solvented the second s
                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je5010565
      Արթւուջգությունը, որ մետրի բործ բութերի ի Միթե։//www.doi.org/10.1016/j.fluid.2014.01.029
    Selebility in Street Screening solvents:
Measurements of activity coefficients
Measurements of activity coefficients at infinite dilution for organic solutes Activity coefficients at infinite dilution for organic solutes Activity coefficients at infinite dilution for organic solutes Activity coefficients and infinite dilution for organic solutes Activity and in
                                                                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2013.02.004
                                                                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.fluid.2013.07.037
   The second state of the second state of the second 
   https://www.doi.org/10.1021/acs.jced.7b00615
                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2016.12.012
                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.5b00355
https://www.doi.org/10.1021/je100220c

Acetone at Pressures from (9.00 to spoor may embedied hearthing for the sylvanic language of (propylene oxide fiers and language of propylene oxide fiers and language of the sylvanic language of the sylvanic language of manifest in the sylvanic language of manifest in
                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je100220c
                                                                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.fluid.2008.01.014
                                                                                                                                                                                                                                                                                                                                                                             https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1191
      Antisolvent Precipitation of Vitamin B6: https://www.doi.org/10.1021/je200853g
    A Thermodynamic Study:
Solid-liquid phase equilibrium and
                                                                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2016.07.050
    mixing properties of properties of pure
                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.8b00416
 Programment The Programment of the Programment of the Senting April of 
                                                                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2018.02.014
                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je1013262
                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2003.10.006
                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/acs.jced.8b01144
                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2018.05.017
       separation based on activity
                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je050010l
       Deersities tBefrantiyee adiges and
   ประการ อยากสาเทย เพละเอการ
ประการเรียม เละ สำเทย เลากับโลกาลาง
พิทินที่เทียกระบายกาย เลกกับโลก
ประการเกาะ เล่าเลากับโลกาล
ประการเกาะ เลากับโลกาลาง
เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง
เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง
เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโลกาลาง เลากับโ
                                                                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2016.11.032
                                                                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/je900730w
                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.fluid.2005.02.006
```

compounds:

Solubility of https://www.doi.org/10.1021/acs.jced.5b00033 Solubility of 3,7-Dinitro-1,3,5,7-tetraazabicyclo (Appropriate Company of the Com Enthibity was ethical cidwater in an extra provided and control of the angle of the Entunitity water by Batick tion & cidwinter https://www.doi.org/10.1021/je7005693 https://www.doi.org/10.1021/acs.jced.9b00560 https://www.doi.org/10.1016/j.fluid.2006.11.011 https://www.doi.org/10.1016/j.fluid.2007.07.030 in Different Pure Solvents and Acetone Solvents and Acetone Solvents and Acetone https://www.doi.org/10.1016/j.fluid.2014.12.020 ##CF3201 acid in pure and https://www.doi.org/10.1021/acs.jced.8b00023

Binary Solvents: Effect of Molecular

Measuremental armitistic of control of the provided in the control of the provided in the control of the provided in the control of the prioritie dilution for organic solutes in the designation of the many particular impression in the many particular in the many particular impression in the many particular impression in the many particular impression in the many particular in t The properties of the properti https://www.doi.org/10.1021/acs.jced.8b00801 https://www.doi.org/10.1021/acs.jced.5b00395 https://www.doi.org/10.1021/acs.jced.7b00518 https://www.doi.org/10.1016/j.jct.2012.11.021 https://www.doi.org/10.1021/acs.jced.6b00646 Behavior of Veramoss in Different Pure Solvbilisvand(Edve)d Fivetal AcetarispidinTbizesnove3clvents Sepangusuk svidnovisedEnatol: https://www.doi.org/10.1021/acs.jced.9b00294 https://www.doi.org/10.1016/j.fluid.2014.03.022 Solubility and solution thermodynamics of the solubility and solution thermodynamics of the solubility of chloroquine Diphosphate https://www.doi.org/10.1021/acs.jced.8b00632 https://www.doi.org/10.1021/je8007099 and 4,7-Dichloroquinoline in Water, Measurement by activity is creditionally infinite clusters on (239) 250-953-25 in https://www.doi.org/10.1016/j.jct.2013.10.017 the ionic liquid 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate at T =

(308.15, 313.15, 323.15 and 333.15) K using gas + liquid chromatography:

Solubility of 3-Aminopyridine in
Acetone + n-Butyl Acetate from (288.15
Fortypility) of 3-Nitrophthalic Acid in
Different Solvents between 278 K and
Solubility Measurement and Modeling
of 1-(3-nitrophenyl)Ethanone and
Ischarico (hieryl)Ethichenelliphiliphilip of the period and property of the property of the property of the property of the period and property of the period and property of the period and property of the propert Solubility of 3-Aminopyridine in https://www.doi.org/10.1021/je800945e compounds with the ionic liquids separation of (water dutantino) binary systems losed or againty to coefficients with the ionic liquid binary systems losed or againty to coefficients with the information of the liquid binary in the information of the liquid binary againt of the liq https://www.doi.org/10.1021/acs.jced.9b00658 https://www.doi.org/10.1016/j.fluid.2012.05.006 The system of th https://www.doi.org/10.1016/j.fluid.2006.09.007 Solvent systems: An experimental and compod are natiseation solubility of dicarboxylic acids in organic solvents: Research on the application of https://www.doi.org/10.1016/j.jct.2014.05.009 https://www.doi.org/10.1016/j.jct.2019.02.002 7-chloro-quinaldine adducts in Thanmodynamaidine septies tribinary mixtures of the ionic liquid [emim][BF4] With natividue inholiding liquidue inholidi 7-chloro-quinaldine adducts in https://www.doi.org/10.1016/j.jct.2013.01.010 https://www.doi.org/10.1016/j.jct.2010.06.004 https://www.doi.org/10.1021/acs.jced.8b01196 https://www.doi.org/10.1016/j.jct.2012.08.016 https://www.doi.org/10.1021/je5010627 https://www.doi.org/10.1016/j.fluid.2015.01.009 https://www.doi.org/10.1021/je0600956 2-Ketones in Salt Solutions: Measurement and Correlation of https://www.doi.org/10.1021/acs.jced.7b00695 The street and Correlation of the st for the Acetone + Hexamethyl Tor the Acetone + nexametry!

Solubility de experience de ernary

Sperme dy namic it population of sale to find the first of september of the first https://www.doi.org/10.1021/acs.jced.8b00720 https://www.doi.org/10.1016/j.fluid.2017.11.035 https://www.doi.org/10.1016/j.fluid.2008.02.007 https://www.doi.org/10.1021/acs.jced.9b00490 https://www.doi.org/10.1021/je200074c https://www.doi.org/10.1016/j.jct.2017.07.012 ionic liquid

1-butyl-3-methylimidazolium

perchlorate:

```
coefficients at infinite dilution for
     The structure of the second of
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.jct.2018.07.024
 of the party is the party of th
                                                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1191
for Aztwicks Goeff priest matricipite, Diution of Various Solid Scivents at the principle of Various Solid Scivents at the principal Scient Scivents at the principal Scients at the principal Scivents at the principal Scients at the principal Scivents a
   for
 Telvanioxy เขาง พุทธาลายสายเกมาและอาเนา

Telvanio roborate Using Gas-Liquid

อาเมาและ อาเมา
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/je700017b
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2012.01.019
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/acs.jced.9b00703
     คือใหม่ชาง โทษสาทรรฐงานตู้เตร of
Imidazolium-Based Ionic Liquids and
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/je500986b
This of a chief to position and position of a chief to the position of a chief to position of the chief to position of a chief to position 
                                                                                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je060289l
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/je700639s
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.jct.2015.12.022
                                                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.jct.2013.09.007
 properties of a them in the them is not yet an any stricted by them for a resemble them and some and them and some and them and some and them and some and them are the some and them are the some and t
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.tca.2018.04.018
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/je900021g
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2014.01.008
 solubility of maleic anhydride in article in
                                                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je800277a
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2013.11.030
https://www.doi.org/10.1016/j.fluid.2018.07.028
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2016.10.024
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.jct.2010.05.017
   Theringte didution of conganic solutes by a see a por-liquid equilibria of the
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2012.12.028
BODWARE TABOT-III UID EQUITIDITA OF THE BIDEON SYSTEM TO STAND THE BIDEON SOLVENTS OF THE BIDEON SOLVENTS OF THE BIDEON SOLVENTS OF THE BIDEON SOLVENT BIDEON SOL
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2015.03.027
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/je500396b
                                                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je101020m
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/je800790g
   Measurement and Correlation of
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/je100030j
 Griseofulvin Solubility in Different
Sone insental នគមមានបែបខេត្ត
the snootype mic aspects of methylene
ទី៧២ ម៉ា ម៉ា ម៉ែងទីបនុសាខាវនា៧
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.tca.2019.03.024
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/acs.jced.8b00025
 Thermodynamic Modeling of Benzoic Measur Modeling of General Solvents from (283.2 to 323.2) Retermination and Correlation of Control Measure of Measure of Measure Measure of Measure Measure of Measure Measure of Measure of Measure Measure of M
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.jct.2015.05.019
                                                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je8007028
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/acs.jced.9b00381
            Solubilities of
 Msক্রদানাতেল ক্রিয়ার, Carifelation present in 
চিন্নান্ত্রীয়ার ক্রিয়ার ক্রিয়া 
                                                                                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/acs.jced.6b00721
```

https://www.doi.org/10.1016/j.jct.2016.07.021

Thermodynamics and activity

Solubility of https://www.doi.org/10.1021/je400965y 1-Fluoro-4-(methylsulfonyl)benzene in **BNU Pilitie o of Alho Solvenie Agi**d, PA'n (14 Alipsi azine diskloje (18,839) & Returi in Baledrigo Bojov Hisidazole in https://www.doi.org/10.1021/je400412z traphenyl https://www.doi.org/10.1016/j.jct.2016.12.028 inine pure organic solvents and liquid https://www.doi.org/10.1016/j.jct.2015.08.027

They result the first of the first o The determination and correlation of the solubility of naproxen in acetone

https://www.doi.org/10.1016/j.jct.2014.04

https://www.doi.org/10.1016/j.fluid.2017.

https://www.doi.org/10.1016/j.fluid.2017.

https://www.doi.org/10.1016/j.fluid.2017.

https://www.doi.org/10.1016/j.fluid.2018.

https://www.doi.org/10.1016/j.fluid.2018. Astivity reasticion that indinated bution https://www.doi.org/10.1016/j.jct.2014.04.020 https://www.doi.org/10.1016/j.fluid.2017.06.001 https://www.doi.org/10.1021/acs.jced.8b00977 https://www.doi.org/10.1016/j.fluid.2018.05.005 https://www.doi.org/10.1016/j.jct.2018.11.025 https://www.doi.org/10.1016/j.fluid.2013.12.001 https://www.doi.org/10.1016/j.fluid.2014.02.034 the solubility of naproxen in acetone https://www.doi.org/10.1016/j.jct.2015.02.013 1-propanol or acetone +
Setter in the similar for (water +
1-propanol or acetone +
Setter in the similar for (water +
1-propanol or acetone +
Setter in the similar for (water +
1-propanol or acetone Solibility of Theobromine, Theophyline in the control of Solibility of Theobromine, Theophyline is control of Solibility of Theophyline is control of Solibility of Theophyline is control of Solibility of Solibilit Salicylic Acid: Measurement and Correlation of https://www.doi.org/10.1021/acs.jced.7b00065 (CO2 (1) + Acetone (2) + Ivermectin (3)) Solubility in Bifferest Solvents, Correlation, and Solvent Effect in the https://www.doi.org/10.1021/acs.jced.8b01101 https://www.doi.org/10.1021/acs.jced.7b00665 Detremication mind Correlations of Solubility and Thermodynamic Petipernieatisment Control of the process of the policy of the process of the proc

Trihydrate in Seven Pure Solvents:

Thermodynamic functions of 1-methyl-4-(methylsulfonyl)benzene Ashivithty on finite designation is described by the ionic liquid for the killife as desyr) the solubilities of the solubiliti https://www.doi.org/10.1016/j.jct.2016.08.021 https://www.doi.org/10.1021/acs.jced.7b01134 Crystal Structures, Reaction Rates, and https://www.doi.org/10.1021/je3005112
Selected Physical Properties of Harman and https://www.doi.org/10.1016/j.jct.2015.11.005
Harman and https://www.doi.org/10.1016/j.jct.2015.11.005
Harman and https://www.doi.org/10.1016/j.jct.2015.11.005
Https://www.doi.org/10.1021/je100255z
Https://www.doi.org/10.1021/je100255z
Https://www.doi.org/10.1021/acs.jced.9b00232
Https://www.doi.org/10.1016/j.tca.2006.01.019
Https://www.doi.org/10.1016/j.fluid.2018.08.013
Https://www.doi.org/10.1016/j.fluid.2018.08.013 https://www.doi.org/10.1021/acs.jced.9b00232 https://www.doi.org/10.1016/j.tca.2006.01.019 https://www.doi.org/10.1016/j.fluid.2018.08.014 https://www.doi.org/10.1016/j.fluid.2018.08.014
https://www.doi.org/10.1016/j.fluid.2018.08.014
https://www.doi.org/10.1016/j.fluid.2018.08.014
https://www.doi.org/10.1016/j.fluid.2018.08.014
https://www.doi.org/10.1016/j.fluid.2018.08.014
https://www.doi.org/10.1016/j.fluid.2018.08.014
https://www.doi.org/10.1016/j.ft.2016.09.039
https://www.doi.org/10.1016/j.fluid.2015.09.003
https://www.doi.org/10.1016/j.jct.2012.03.005
https://www.doi.org/10.1016/j.jct.2012.03.005
https://www.doi.org/10.1016/j.jct.2012.03.005
https://www.doi.org/10.1016/j.jct.2012.03.005
https://www.doi.org/10.1016/j.jct.2012.03.005
https://www.doi.org/10.1016/j.jct.2012.03.005 https://www.doi.org/10.1016/j.fluid.2015.09.003 Men Sineene proportion of antibuty and efficients Economication of 2002 and 318 K: Some buty as sine was en Hydrogen https://www.doi.org/10.1016/j.jct.2010.10.026 https://www.doi.org/10.1021/je100022w
https://www.doi.org/10.1021/je100022w
https://www.doi.org/10.1016/j.jct.2015.02.024
https://www.doi.org/10.1016/j.jct.2015.02.024
https://www.doi.org/10.1016/j.jct.2016.10.020
https://www.doi.org/10.1016/j.jct.2016.10.020
https://www.doi.org/10.1016/j.jct.2016.10.020
https://www.doi.org/10.1016/j.jct.2016.10.020
https://www.doi.org/10.1021/je050013y
https://www.doi.org/10.1016/j.jct.2017.03.015
https://www.doi.org/10.1016/j.jct.2017.03.015
https://www.doi.org/10.1016/j.jct.2017.03.015
https://www.doi.org/10.1016/j.jct.2004.08.002
https://www.doi.org/10.1016/j.jct.2017.03.036 https://www.doi.org/10.1021/je100022w https://www.doi.org/10.1016/j.fluid.2015.03.036 antenapheantening to 18ifer 16.15 https://www.doi.org/10.1016/j.fluid.2014.08.036 មិនប្រជាជា https://www.doi.org/10.1021/acs.jced.9b00308 ទុំដំបូងជាជា កំបូងជា ទេសាស្រ្ត់ https://www.doi.org/10.1021/je500469a acetone + solketal + glycerol at 303.2, Desermination and Correlation of Solubilities of 2-Isopropylthioxanthone https://www.doi.org/10.1021/je501011t भूम्। भारिक्षण Different Solvents from https://www.doi.org/10.1021/je800238y https://www.doi.org/10.1021/acs.jced.6b00349 https://www.doi.org/10.1021/acs.jced.9b00286 Its Correlation with Different

Thermodynamic functions of

Thermodynamic Models:

Measurements of activity coefficients https://www.doi.org/10.1016/j.jct.2011.11.025 at infinite dilution for organic solutes https://www.doi.org/10.1016/j.jct.2003.12.001 Andowale on intrusing margeell for Andowateron-the usine indiacell for square present in liquids. Enter the many specification in liquids. Enter the many specification of clipit transversions and binary the enterthe many specification of Gibberellin A4 in the light of the property of the light of the enterthe many respective to the enterthe many respe https://www.doi.org/10.1016/j.jct.2018.12.044 https://www.doi.org/10.1021/acs.jced.5b00190 https://www.doi.org/10.1021/je0496239 https://www.doi.org/10.1016/j.fluid.2007.06.001 https://www.doi.org/10.1016/j.jct.2011.04.018
https://www.doi.org/10.1016/j.jct.2011.04.018
https://www.doi.org/10.1016/j.jct.2011.04.018
https://www.doi.org/10.1016/j.jct.2011.04.018
https://www.doi.org/10.1016/j.jct.2011.04.018
https://www.doi.org/10.1016/j.jct.2011.04.018
https://www.doi.org/10.1016/j.jct.2011.04.018
https://www.doi.org/10.1016/j.jct.2011.04.018 https://www.doi.org/10.1016/j.fluid.2015.01.001 Soffwaien & quefficients of 80 pages 2, Son power of pirace in the second of the secon https://www.doi.org/10.1021/je3007111

https://www.doi.org/10.1021/je3007111

https://www.doi.org/10.1021/je3007111

https://www.doi.org/10.1021/je3007111

https://www.doi.org/10.1021/je3007111

https://www.doi.org/10.1016/j.jct.2009.08.012

https://www.doi.org/10.1016/j.jct.2009.08.012

https://www.doi.org/10.1016/j.fluid.2019.03.023

https://www.doi.org/10.1021/je034160c

https://www.doi.org/10.1021/je034160c

https://www.doi.org/10.1016/j.jct.2016.10.006

https://www.doi.org/10.1016/j.jct.2016.10.006 https://www.doi.org/10.1016/j.fluid.2019.03.023 প্রনিটোর Pháse Regions: Behrie শুর্নিদেশ্যবিদ্যান্ত্র্যানী ক্রিয়াটা in https://www.doi.org/10.1016/j.jct.2018.03.019 Solvents is charactery through a service to a control of the contr Tharpundysymviassandi(Éitigg/aceivity+ https://www.doi.org/10.1016/j.jct.2016.08.008 Methanol + (Ethanol,

N,N-Dimethylformamide or Ethyl

Acetate):

Solubility of Lovastatin in Acetone, https://www.doi.org/10.1021/je0500781 Methanol, Ethanol, Ethyl Acetate, and Solvbilite (at Diox (accom 28) ac in a 323 Mydrochloride in Different Solvents: Thermodynamic study of the solubility https://www.doi.org/10.1021/je700453v https://www.doi.org/10.1016/j.jct.2016.07.001 of 2,4'-dihydroxydiphenyl sulfone in គ្នាស្រស់ថ្ងៃអ្នកជុំ នៃចំណុខាល់ពីរទេសា ជាដំបូរវាស់ 15 https://www.doi.org/10.1021/je7007457 দিন্দ্র প্রাথি বিশ্বর বিশ্ব Thermodynamic Dissolution Properties
DeBeitiesneadilibiagasitiesnofe Neat
\$3.444.3 methyrimidaeoipunts K:
Therminglysometa and ethilitis Solvent
Doctific impta actioninite dilution
Missilubility in initial dilution
Mitps://www.doi.org/10.1021/je900535d
Mttps://www.doi.org/10.1021/je900535d
Mttps://www.doi.org/10.1021/je501026m
Mttps://www.doi.org/10.1021/je501026m
Mttps://www.doi.org/10.1021/je900524t
Mttps://www.doi.org/10.1016/j.jct.2016.08.035
Mttps://www.doi.org/10.1016/j.jct.2018.09.017
Mttps://www.doi.org/10.1021/je900524t
Mttps://www.doi.org/10.1021/je900524t
Mttps://www.doi.org/10.1021/je900524t
Mttps://www.doi.org/10.1021/je900524t
Mttps://www.doi.org/10.1021/je900524t
Mttps://www.doi.org/10.1021/je700312r
Mttps://www.doi.org/1 https://www.doi.org/10.1021/acs.jced.9b00353 https://www.doi.org/10.1021/acs.jced.8b00717 Correlation of Glibenclamide in 11 Minagent englished from the property of the pr https://www.doi.org/10.1016/j.jct.2011.01.005 https://www.doi.org/10.1021/je101008y https://www.doi.org/10.1016/j.jct.2013.05.008 and water wither to her liquide dilution and leaves for mined water there for which the first of the second water there end her finds the first of t https://www.doi.org/10.1021/je100949x https://www.doi.org/10.1021/je200822w https://www.doi.org/10.1021/je800063d https://www.doi.org/10.1021/je050406x Containing 1,4-Dioxan-2-one: Solubility measurements and https://www.doi.org/10.1016/j.fluid.2019.06.004 Thermodynamic modeling of spermodynamic modeling of spermodynamic modeling of spermodynamic size threschibility of granding dropping special s https://www.doi.org/10.1016/j.fluid.2012.02.011 https://www.doi.org/10.1016/j.jct.2016.11.014 https://www.doi.org/10.1021/je400513s https://www.doi.org/10.1016/j.fluid.2013.09.023 https://www.doi.org/10.1021/acs.jced.8b01080 https://www.doi.org/10.1016/j.jct.2011.11.007 https://www.doi.org/10.1021/je301243f https://www.doi.org/10.1016/j.jct.2016.03.011 https://www.doi.org/10.1016/j.jct.2015.11.025
the modern splation in nine
the modern s SANHOURSEAR HEART STANDARD THAT IC APPLIED TO THE SERVENCE OF https://www.doi.org/10.1021/acs.jced.7b00118 https://www.doi.org/10.1016/j.jct.2014.03.026 https://www.doi.org/10.1021/je400544h https://www.doi.org/10.1021/acs.jced.6b00700 Rnisters of Aigetine and isopicotinic acid https://www.doi.org/10.1016/j.jct.2013.0 isopicotinic acid https://www.doi.org/10.1016/j.jct.2013.0 https://www.doi.org/10.1021/je500205z Solubility of https://www.doi.org/10.1016/j.jct.2013.01.024 1-Vinyl-3-alkyl/Esterimidazolium Halide

Ionic Liquids by Density Functional

Methods:

Ternary and Binary LLE Measurements https://www.doi.org/10.1021/acs.jced.5b00738 For Solvent (4- Methyl-2-pentanone and Solvent (4- Methyl-2-pentanone and Solvent (4- Methyl-2-pentanone and Solvent (4- Methyl-2-pentanone and Solvent (4- Methyl-2-pentanone) of Bollethylogens of Bollethylogen https://www.doi.org/10.1021/acs.jced.8b01256 https://www.doi.org/10.1021/je900542y https://www.doi.org/10.1016/j.fluid.2011.09.027 https://www.doi.org/10.1016/j.fluid.2013.01.011 mixibiling:Part IX. Excess molar ទូកម្រាប់ខ្លែះ នៅប្រាប់ខ្លែក ប្រាប់ខ្លែង in acetone, https://www.doi.org/10.1016/j.fluid.2010.06.021 Solubility Measurement and Correlation

Solubility of the control https://www.doi.org/10.1021/acs.jced.9b00350 https://www.doi.org/10.1021/acs.jced.5b00783 https://www.doi.org/10.1021/acs.jced.5b00306 https://www.doi.org/10.1021/acs.jced.9b00341 Tonic Liquid for the Separation of Shubilim Measuresent and Correlation https://www.doi.org/10.1021/acs.jced.8b00863 coefficients in the intervention of Setup intervention of Setup intervention of Setup intervention intervention of Setup intervention of Setu 4',5,7-Triacetoxyflavanone in Fourteen
Sellahiitiesios Acid + Acetone or
Acid in initiase equilibrium of https://www.doi.org/10.1016/j.fluid.2012 https://www.doi.org/10.1016/j.fluid.2012.05.003 glyphosate in selected solvents: High-Pressure Multiphase Behavior of https://www.doi.org/10.1021/je100609r the Ternary Systems (Ethene + Water + Settleility Mercultanent Water + Thermodynamic Modeling for onedwaamdaamidenideo Sommas https://www.doi.org/10.1021/acs.jced.9b00445 https://www.doi.org/10.1016/j.jct.2016.02.016 Title : Title Minterent Application of the Country of the Measurement and correlation of the https://www.doi.org/10.1021/je800768x Messusement and correlation of the solubilities of servicing solubilities of https://www.doi.org/10.1016/j.fluid.2014.01.043 solubilities of Testario de la companya del la companya de la compa https://www.doi.org/10.1021/je200252c https://www.doi.org/10.1021/acs.jced.9b00411 Beternis ation Brise a Societa Ascorbate
Selubility of Nine Pine Selvens and Five Beterns a Fthyl 2709 tate 5thy formate, and Butyl

Acetate from (288.2 to 318.2) K:

Solubility of 4-Hydroxybenzaldehyde in https://www.doi.org/10.1021/je401082x Supercritical Carbon Dioxide with and with and with and with the constant of t https://www.doi.org/10.1021/acs.jced.8b01265 Correlation, and Solvent Effect of Fixed a superior that in the condition of the land of guxjuras of toluene with ketones at ទីតាម្នាត់ស្វែប៉ុន្មែក្រាស្រ្តានិត្ត កុច្ចមួរlibrium and dissolution properties of ethyl vanillin ក្រុខព្រះទាំងសេខាទេន and activity https://www.doi.org/10.1016/j.jct.2016.10.029 https://www.doi.org/10.1016/j.fluid.2018.06.013 coefficients at infinite dilution for coefficients at infinite dilution for Selahilitishures in the ionic liquid 3-Earlockyn-thyd-soxynentanacioic Acid Gryshithyngertan-thyllowarsy/locations, Arthmethingertan-thyllowarsy/locations, Arthmethingertan-thyllowarsy/locations, arthmethingertan-thyllowarsy/locations, arthmethingertan-thyllowarsy/larid-soxynentanacions, arthmethingertan-thyllowarsy/locations, arthmethingertan-thyllowars, arthmethingertan-thyllowars, arthmethingertanacions, arthmethinger https://www.doi.org/10.1021/je101167z https://www.doi.org/10.1021/je700426k https://www.doi.org/10.1016/j.jct.2011.09.028 https://www.doi.org/10.1016/j.jct.2013.07.004 รถะเพิ่นโลก ดับ นิสาโปลหลาเปล่ากา in Pure รถในอาเราะ from (283-15) to สิโสา 5) K: Intugrican (283-15) to financial (283-15) https://www.doi.org/10.1021/je800801x https://www.doi.org/10.1016/j.fluid.2012.12.006 https://www.doi.org/10.1021/acs.jced.6b00180 https://www.doi.org/10.1021/je034087q https://www.doi.org/10.1021/je7002463 https://www.doi.org/10.1021/je030115t https://www.doi.org/10.1016/j.fluid.2017.03.014 ternary mixtures of acetone + methanol soluble in Market in Solubility of I-Valine in Water Pthase ดำวนเทยาราคอสกุศอกหัยใค่เตอ (ครองกอ: tswaten victips) อุ่นที่อำกับกลรอ รูงใช้เราสังพระโรสอันที่ เราชายาการ K and ครองการ เการาคาที่ สาม 278 ครองการ Pure เราสามารถ คราคาที่ สาม 278 ครองการ Pure เราสามารถ หัวการ K: https://www.doi.org/10.1016/j.jct.2012.03.026 https://www.doi.org/10.1021/acs.jced.8b01193 https://www.doi.org/10.1021/je400899e Boldbilitk na Apistermine in Manghydrate
Wiese Programme in Wiese Programme in Wiese Programme in Wiese Programme in Wiese P Killethyl-1,4-naphthoquinone + https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1191 phthalic anhydride + acetone system: Solubility of https://www.doi.org/10.1021/je060329l https://www.doi.org/10.1016/j.jct.2016.09.011 https://www.doi.org/10.1021/je800869g https://www.doi.org/10.1016/j.jct.2017.01.004 https://www.doi.org/10.1016/j.jct.2005.10.001 https://www.doi.org/10.1021/je100352r https://www.doi.org/10.1016/j.jct.2016.03.037 https://www.doi.org/10.1021/je060099a https://www.doi.org/10.1016/j.jct.2016.09.036 https://www.doi.org/10.1021/je800371a Binaryd Bittwess of Carbon Dioxide with Emprior in The Binary Systems of 2,3-Pentanedione with https://www.doi.org/10.1021/je7005924 Balle ility ក្នុង paremeter hydrochloride https://www.doi.org/10.1016/j.jct.2004.12.006 hemi-hydrate in (water + acetone): Measurement and correlation of https://www.doi.org/10.1016/j.jct.2013.09.012 solubility of dodecanedioic acid in prierrampting and model in (288.15 https://www.doi.org/10.1016/j.jct.2016.09.015 https://www.doi.org/10.1016/j.tca.2013.02.007 https://www.doi.org/10.1016/j.jct.2016.10.037 https://www.doi.org/10.1021/je7000396 https://www.doi.org/10.1021/je7001094 Solubility of Difloxacin in Acetone, https://www.doi.org/10.1021/je800742d Methanol, and Ethanol from (293.15 to

313.15) K:

Measurement and Correlation of https://www.doi.org/10.1021/acs.jced.5b00617 Solubility of Cefathiamidine in Water + **(Ayeethoasés Benda Sol**ubil**i24PP**épanol) from 2757 is eligible (spinent) (phenylamino) methyl)-1,3,2-dioxaphosphinane https://www.doi.org/10.1016/j.fluid.2014.04.028 solubility in page organic solvents:

Solubility Determination of https://www.doi.org/10.1021/acs.jced.8b00560 Nicotinamide and Its Application for the Counties in the comment of the contraction of the c thermodynamic modelling for Solwhilidy and Metastable agger Wirthen https://www.doi.org/10.1021/je0600552 efganic solvents from T = (278.15 to syright years) and the content of the syright years and the content of the syright years and the content of the syright years and the content of the content of the syright years and the content of the syright years and the content of the Solubility of Dimethyl Activity is negliaries at installed by the second of the s Peterpirationinelly arrelation of Solutility of Bosto as in Grand with a solution of Bosto and Grand with a solution of Bosto and Grand Gr Measurement and Correlation of the Solubility of Tetramethylpyrazine in Naterminiation of Solutes in Na Measurement and Correlation of the https://www.doi.org/10.1021/je300401c

https://www.doi.org/10.1021/je300401c

https://www.doi.org/10.1021/je300401c

https://www.doi.org/10.1021/je300401c

https://www.doi.org/10.1021/je300401c

https://www.doi.org/10.1021/je300401c

https://www.doi.org/10.1021/je300401c

https://www.doi.org/10.1021/je300401c Thermodynamic Mixing Properties of Manaukaraphication and https://www.doi.org/10.1021/acs.jced.9b00406

Thermodynamic Mixing Properties of Manaukaraphicatheories properties properti Pententianate in ternanden yleaetian cid incleding and sort spirition of Ethyl bandhin Anthenitity in Melitarent Binary sort in Anthenitity in Melitarent Binary sort in Anthenitity in Melitarent Binary sort in Anthenitity in Melitarent Binary for anthenitity in Melitarent Binary of the Strategy of the Comment of the Comment of the Strategy of the Comment of the Comment of the Strategy of the Comment of the C https://www.doi.org/10.1016/j.tca.2012.06.025
https://www.doi.org/10.1016/j.tca.2012.06.025
https://www.doi.org/10.1021/je9004855
https://www.doi.org/10.1021/je9004855
https://www.doi.org/10.1021/je9004855
https://www.doi.org/10.1021/je9004855
https://www.doi.org/10.1021/je500038u
https://www.doi.org/10.1021/je500038u
https://www.doi.org/10.1021/je500038u
https://www.doi.org/10.1021/je201354k
https://www.doi.org/10.1021/je800056h
https://www.doi.org/10.1021/je800056h
https://www.doi.org/10.1016/j.jct.2016.05.027
https://www.doi.org/10.1016/j.jct.2016.05.027
https://www.doi.org/10.1016/j.jct.2016.05.027
https://www.doi.org/10.1016/j.jct.2016.05.027
https://www.doi.org/10.1016/j.jct.2016.05.027
https://www.doi.org/10.1016/j.jct.2016.05.027

12 Pure Solvents:

https://www.doi.org/10.1021/acs.jced.7b00585 https://www.doi.org/10.1016/j.jct.2016.11.019 https://www.doi.org/10.1021/acs.jced.9b00045 http://pubs.acs.org/doi/abs/10.1021/ci990307l https://www.doi.org/10.1021/acs.jced.8b00888 https://www.doi.org/10.1016/j.fluid.2014.04.006 https://www.doi.org/10.1016/j.fluid.2008.08.012 https://www.doi.org/10.1016/j.jct.2017.02.011 https://www.doi.org/10.1021/acs.jced.6b00972 https://www.doi.org/10.1021/je500286x https://www.doi.org/10.1021/acs.jced.9b00564 https://www.doi.org/10.1016/j.jct.2018.09.023 https://www.doi.org/10.1016/j.tca.2012.06.025 https://www.doi.org/10.1021/acs.jced.5b00619 https://www.doi.org/10.1016/j.jct.2008.11.005 https://www.doi.org/10.1021/acs.jced.8b00931

Solubility of CO2 in (Acetone + Water): Solubility Determination of https://www.doi.org/10.1021/acs.jced.9b00661 2-Chloronicotinic Acid and Analysis of 2-Chloronicotinic Acid and Analysis of Shrahmermodel linear free energy relationships for describing the Saturding and suruding feera vitor of different following factors of the Saturding feera vitor of different following feera vitor of different feera vitor of dif https://www.doi.org/10.1016/j.fluid.2016.10.009 https://www.doi.org/10.1021/je100819f Solubilities of N-[(4-Bromo-3,5-difluorine)-phenyl]maleimide https://defines/factome/f https://www.doi.org/10.1021/je300611q https://www.doi.org/10.1021/acs.jced.8b01205 https://www.doi.org/10.1016/j.jct.2016.07.009 https://www.doi.org/10.1016/j.jct.2016.07.009
the manage of some of the manage o The mydroxy et nane-1,1-dipnosphonic acid The mydragological for determination of the solid-liquid Dissipsing and Solid-liquid Solid-liqui ETHER WOODEN HEREN HAUDT AND CALCULATION of the Critical curves for the Massy system and Gozelei and the Kolshiel and Gozelei and the Kolshiel and Gozelei and the Cost of the https://www.doi.org/10.1021/je100397q https://www.doi.org/10.1016/j.jct.2018.01.003 https://www.doi.org/10.1021/je0495942 The series and water in the foric from the series and the series a https://www.doi.org/10.1021/acs.jced.8b01163 http://www.ddbst.com/en/EED/VLE/VLE%20Acetonitrile%3BAcetone.php Equilibrium Data: Solubility determination and https://www.doi.org/10.1016/j.jct.2016.09.038 thermodynamic modeling of គ្នាសម្រើដែនស្ថា ក្រុមគ្នាស ថាស្វុធាច់ទេសម៉ានេះ ទូវធ្វាញ ទីស្វាមកថ្មី ទីប្រសាស (វង្គិង2៨១៨23.2) ក្រុមគ្នាស្វាមក្រុម ទីប្រើប្រើប្រើប្រកិច្ច corresponding changes of mixing for https://www.doi.org/10.1021/je4001334 https://www.doi.org/10.1016/j.tca.2006.01.008

https://www.doi.org/10.1021/je600571v

Experimental Investigation of the

the ternary mixture acetone + n-hexane

+water at 298.15K:

Solubilities of Lauric Acid in n-Hexane, Acetone, Propanol, 2-Propanol, Liguida for the TIBE WHI BET THE TOTAL TOTAL TOTAL STATES AND THE SERVICE STATES AND

Activity Coefficients at Infinite Dilution of Organic Solutes and Water in Ambatistic Mychrosolume and Entry Mychrosolume and Coefficients at Infinite Dilution of Organic Solution and Solution of Dibromomethane with Acetone, 1,4-Dioxane, Pyridine, Bolubilities of Ethylandishy Cetone, in the State of Cetone and Cetone GRIAGON AND YOUR STORES OF THE PROPERTY OF THE various solutes in 1-allyl-3-methylimidazolium

bis{(trifluoromethyl)sulfonyl}imide

ionic liquid:

https://www.doi.org/10.1021/je800739y https://www.doi.org/10.1021/acs.jced.8b01105 https://www.doi.org/10.1021/acs.jced.7b00316 https://www.doi.org/10.1016/j.jct.2019.02.005 https://www.doi.org/10.1021/acs.jced.8b01051 Exhability reactions of the result of the re **ទីស្រមាំរ៉ាស្រែស្នេត្តាបាលសម្រាស់ស្រាស់ and Model** https://www.doi.org/10.1016/j.jct.2016.11.029 https://www.doi.org/10.1021/acs.jced.6b00816 https://www.doi.org/10.1021/je300517q https://www.doi.org/10.1021/je200972w https://www.doi.org/10.1021/acs.jced.8b00309 https://www.doi.org/10.1016/j.fluid.2018.06.003 https://www.doi.org/10.1016/j.fluid.2018.06.008 http://webbook.nist.gov/cgi/cbook.cgi?ID=C67641&Units=SI https://en.wikipedia.org/wiki/Joback_method Activity Coefficients at Infinite Dilution https://www.doi.org/10.1021/acs.jced.5b00980 https://www.doi.org/10.1016/j.jct.2017.10.003 https://www.doi.org/10.1016/j.jct.2017.12.015 https://www.doi.org/10.1021/je8003639 https://www.doi.org/10.1021/acs.jced.8b01062 https://www.doi.org/10.1021/acs.jced.8b00536 https://www.doi.org/10.1021/je301014d https://www.doi.org/10.1021/je800837z https://www.doi.org/10.1016/j.fluid.2008.06.006 tensions for the ternary system
Sceening 20 encyptological depth of the ternary system
Sceening 20 encyptological depth o https://www.doi.org/10.1016/j.fluid.2012.09.027

Isobaric Vapor Liquid Equilibrium for Acetone + Methanol + Phosphate Ionic Determination and Correlation of Prefermentation and Correlation of Solubility of Phenylbutazone in Measurement enrops half by Solvent and force solvate in several solvate in several solvate in solv Amidinothiourea in Monosolvents: BeheriliterelipesertanatiermMdel Dutesentosparatsonobweetreze K and AAaksis:

https://www.doi.org/10.1021/je5007373

https://www.doi.org/10.1021/acs.jced.6b00911

https://www.doi.org/10.1016/j.fluid.2008.10.016

https://www.doi.org/10.1021/je060350m

https://www.doi.org/10.1021/acs.jced.9b00458

https://www.doi.org/10.1021/je700296x

Legend

Acentric Factor af: affp: Proton affinity

aigt: Autoignition Temperature

basg: Gas basicity

Standard gas enthalpy of combustion chg: chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacity cpl: Liquid phase heat capacity cps: Solid phase heat capacity

dm: **Dipole Moment** dvisc: Dynamic viscosity Electron affinity ea:

fII: Lower Flammability Limit flu: Upper Flammability Limit

Flash Point (Closed Cup Method) fpc: fpo: Flash Point (Open Cup Method)

Standard Gibbs free energy of formation gf:

Radius of Gyration gyrad:

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: mcvol: McGowan's characteristic volume

NFPA Fire Rating nfpaf: nfpah: NFPA Health Rating pc: Critical Pressurepvap: Vapor pressurerfi: Refractive Indexrhoc: Critical densityrhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

tb: Normal Boiling Point Temperaturetbrp: Boiling point at reduced pressure

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility
zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/50-301-1/Acetone.pdf

Generated by Cheméo on 2025-12-24 00:20:36.238447929 +0000 UTC m=+6283833.768488584.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.