Hydrogen sulfide

Other names: Acide sulfhydrique

DIHYDROGEN MONOSULFIDE

Dihydrogen sulfide

H2S

HYDROSULFURIC ACID

Hepatic acid Hepatic gas

Hydrogen monosulfide Hydrogen sulfide (H2S) Hydrogen sulphide Hydrogene sulfure Idrogeno solforato

Rcra waste number U135

SULFUR HYDRIDE Schwefelwasserstoff

Sewer gas Siarkowodor Stink damp

Sulfureted hydrogen Sulfuretted hydrogen

UN 1053

Zwavelwaterstof

Inchi: InChi=1S/H2S/h1H2

InchiKey: RWSOTUBLDIXVET-UHFFFAOYSA-N

 Formula:
 H2S

 SMILES:
 S

 Mol. weight [g/mol]:
 34.08

 CAS:
 7783-06-4

Physical Properties

Property code	Value	Unit	Source
af	0.0810		KDB
affp	705.00	kJ/mol	NIST Webbook
basg	673.80	kJ/mol	NIST Webbook
dm	0.90	debye	KDB
gf	-33.08	kJ/mol	KDB

gyrad	0.6040		KDB
hf	20.18	kJ/mol	KDB
hf	-20.60 ± 0.50	kJ/mol	NIST Webbook
ie	12.76	eV	NIST Webbook
ie	10.45 ± 0.01	eV	NIST Webbook
ie	10.00 ± 4.00	eV	NIST Webbook
ie	10.48	eV	NIST Webbook
ie	10.47 ± 0.00	eV	NIST Webbook
ie	10.56 ± 0.05	eV	NIST Webbook
ie	10.50	eV	NIST Webbook
ie	10.43	eV	NIST Webbook
ie	10.46 ± 0.00	eV	NIST Webbook
ie	10.47	eV	NIST Webbook
ie	10.43	eV	NIST Webbook
ie	10.45 ± 0.01	eV	NIST Webbook
ie	14.91	eV	NIST Webbook
ie	20.80	eV	NIST Webbook
ie	18.00	eV	NIST Webbook
ie	12.81	eV	NIST Webbook
ie	14.79	eV	NIST Webbook
ie	10.43 ± 0.01	eV	NIST Webbook
ie	10.42	eV	NIST Webbook
ie	10.46 ± 0.01	eV	NIST Webbook
ie	14.82	eV	NIST Webbook
ie	18.00	eV	NIST Webbook
ie	20.12	eV	NIST Webbook
ie	10.45 ± 0.03	eV	NIST Webbook
ie	10.46 ± 0.01	eV	NIST Webbook
ie	10.47 ± 0.01	eV	NIST Webbook
ie	10.50	eV	NIST Webbook
ie	12.62	eV	NIST Webbook
ie	10.47	eV	NIST Webbook
ie	10.48	eV	NIST Webbook
ie	10.43	eV	NIST Webbook
ie	10.45	eV	NIST Webbook
log10ws	-0.08		Crippen Method
logp	0.113		Crippen Method
mcvol	27.210	ml/mol	McGowan Method
nfpaf	%!d(float64=4)		KDB
nfpah	%!d(float64=3)		KDB
рс	8940.00	kPa	KDB
рс	8970.00 ± 18.00	kPa	NIST Webbook
рс	8962.91 ± 30.00	kPa	NIST Webbook
pt	23.18	kPa	KDB

pt	23.20 ± 0.50	kPa	NIST Webbook
rhoc	347.63 ± 3.41	kg/m3	NIST Webbook
rinpol	340.00		NIST Webbook
rinpol	338.00		NIST Webbook
rinpol	338.00		NIST Webbook
ripol	480.00		NIST Webbook
ripol	480.00		NIST Webbook
ripol	480.00		NIST Webbook
sgb	205.81 ± 0.05	J/mol×K	NIST Webbook
tb	213.60	K	KDB
tb	212.87 ± 0.07	K	NIST Webbook
tc	373.30 ± 0.37	K	NIST Webbook
tc	373.20	K	KDB
tc	373.40 ± 0.15	K	NIST Webbook
tf	187.60	K	KDB
tf	190.85 ± 1.50	K	NIST Webbook
tt	187.67	K	KDB
tt	187.66 ± 0.06	K	NIST Webbook
tt	187.61 ± 0.03	K	NIST Webbook
VC	0.099	m3/kmol	KDB
ZC	0.2852290		KDB
zra	0.28		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
dvisc	0.0000188	Pa×s	461.92	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K
dvisc	0.0000119	Paxs	291.61	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K

dvisc	0.0000119	Paxs	292.30	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000119	Paxs	292.46	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000119	Paxs	292.77	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000121	Paxs	296.89	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000121	Paxs	297.01	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000132	Paxs	323.94	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000132	Paxs	323.96	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	

dvisc	0.0000143	Paxs	350.47	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000143	Paxs	350.59	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000154	Paxs	378.01	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000154	Paxs	378.19	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000166	Paxs	405.76	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000166	Paxs	405.86	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000177	Paxs	433.66	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	

dvisc	0.0000177	Paxs	433.81	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000188	Paxs	461.72	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000268	Paxs	682.03	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000199	Paxs	490.09	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000199	Paxs	490.20	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000210	Paxs	518.68	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000210	Paxs	518.75	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	

dvisc	0.0000219	Paxs	542.48	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000219	Paxs	542.61	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000227	Paxs	565.19	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000228	Paxs	565.29	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000238	Paxs	593.95	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000238	Paxs	594.02	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000248	Paxs	623.07	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	

dvisc	0.0000248	Paxs	623.19	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000258	Pa×s	652.30	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000258	Paxs	652.32	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
dvisc	0.0000268	Paxs	681.36	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K	
hsubt	22.50	kJ/mol	135.00	NIST Webbook	
hsubt	25.40	kJ/mol	175.50	NIST Webbook	
hvapt	21.90	kJ/mol	200.00	NIST Webbook	_
hvapt	19.50	kJ/mol	206.50	NIST Webbook	
hvapt	18.60	kJ/mol	295.50	NIST Webbook	
pvap	1793.70	kPa	293.43	Phase Equilibria	
				of H2S-Hydrocarbons (Propane, n-Butane, and n-Pentane) Binary Systems at Low Temperatures	
pvap	167.40	kPa	223.19	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	

pvap	209.10	kPa	228.20	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	257.40	kPa	233.11	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	313.90	kPa	238.04	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	380.10	kPa	243.04	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	456.70	kPa	248.01	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	

pvap	544.20	kPa	252.97	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	644.50	kPa	258.01	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	757.70	kPa	263.00	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	885.70	kPa	268.02	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	1032.30	kPa	273.17	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	

pvap	1194.10	kPa	278.24	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	1371.10	kPa	283.26	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	1566.60	kPa	288.31	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	1767.90	kPa	293.10	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	1779.50	kPa	293.30	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	

pvap	2022.20	kPa	298.41	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
рvар	2259.60	kPa	303.08	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	2847.20	kPa	313.11	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	3540.40	kPa	323.18	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	4339.50	kPa	333.17	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	

pvap	5261.20	kPa	343.16	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	6319.20	kPa	353.17	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	7533.00	kPa	363.16	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	8932.10	kPa	373.15	Vapour liquid equilibrium data for the hydrogen sulphide + n-heptane system at temperatures from 293.25 to 373.22K and pressures up to about 6.9MPa	
pvap	1033.00	kPa	273.08	Measurement of VLE (TPx or TPxy data) for hydrogen sulfide + (dimethylsulfide or carbon disulfide) and methane solubilities in (dimethylsulfide or ethylmethylsulfide or methylmercaptan or ethylmercaptan)	

pvap	2024.00	kPa	298.40	Measurement of VLE (TPx or TPxy data) for hydrogen sulfide + (dimethylsulfide or ethylmethylsulfide or carbon disulfide) and methane solubilities in (dimethylsulfide or ethylmethylsulfide or ethylmethylsulfide or methylmercaptan or ethylmercaptan)	
pvap	3564.00	kPa	323.50	Measurement of VLE (TPx or TPxy data) for hydrogen sulfide + (dimethylsulfide or ethylmethylsulfide or carbon disulfide) and methane solubilities in (dimethylsulfide or ethylmethylsulfide or ethylmethylsulfide or methylmercaptan or ethylmercaptan)	
pvap	5812.00	kPa	348.45	Measurement of VLE (TPx or TPxy data) for hydrogen sulfide + (dimethylsulfide or ethylmethylsulfide or carbon disulfide) and methane solubilities in (dimethylsulfide or ethylmethylsulfide or methylmercaptan or ethylmercaptan)	
pvap	380.20	kPa	243.18	Phase Equilibria of H2S-Hydrocarbons (Propane, n-Butane, and n-Pentane) Binary Systems at Low Temperatures	

pvap	379.40	kPa	243.20	Phase Equilibria of H2S-Hydrocarbons (Propane, n-Butane, and n-Pentane) Binary Systems at Low Temperatures
pvap	1030.20	kPa	273.12	Phase Equilibria of Of H2S-Hydrocarbons (Propane, n-Butane, and n-Pentane) Binary Systems at Low Temperatures
pvap	1029.30	kPa	273.13	Phase Equilibria of H2S-Hydrocarbons (Propane, n-Butane, and n-Pentane) Binary Systems at Low Temperatures
pvap	167.30	kPa	222.83	Phase Equilibria of H2S-Hydrocarbons (Propane, n-Butane, and n-Pentane) Binary Systems at Low Temperatures
pvap	384.00	kPa	243.02	Phase Equilibria of H2S-Hydrocarbons (Propane, n-Butane, and n-Pentane) Binary Systems at Low Temperatures
rhol	906.00	kg/m3	222.00	KDB

Correlations

Information Value

Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.43785e+01
Coeff. B	-1.84720e+03
Coeff. C	-2.35400e+01

Sources

Isothermal Vapor-Liquid Equilibrium (VLE) and Vapor- Liquid-Liquid	https://www.doi.org/10.1021/acs.jced.5b00318
MGGARING MARIOTAL OF BASE OF WHOTH WAS BINARY	https://www.doi.org/10.1016/j.fluid.2012.11.009
สรุ่นสุดหลุดบัลิกอเกที่สูงคือที่แหล่งคโมนีกยร์ พุทิทิยสิทยิเที โทยีล้อมเลือfor Hydrogen	http://pubs.acs.org/doi/abs/10.1021/ci990307I
Vapour pressure and excess Gibbs free	https://www.doi.org/10.1016/j.jct.2006.03.013
energy of binary mixtures of hydrogen รู๊ด[ยูทิฟย์ พศเห ียม เลขอ _เ ท _ิ วิลษ์ลัศ อ ,เลิกd	https://www.doi.org/10.1021/je500478t
N-Mathelangtamideatore of 182,33 K:	https://www.doi.org/10.1016/j.jct.2009.04.014
Meaisul ศิกิย์ h land wilde สมอักป รักษ์เล่าใช้ราชบุ Hydrogen Sulfide in	https://www.doi.org/10.1007/s10765-007-0185-z
[bmim][PF6]: Article Solubility and Diffusion of H2S	https://www.doi.org/10.1021/je900716q
and CO2 in the lonic Liquid	https://www.doi.org/10.1021/je8009495
item in [BF6] [Jarem][BF4], and Evaluation [BF6] [Break [BF6]] [Break [Break [BF6]] [Break [Break [BF6]]] [Break [Break [Break [BF6]]] [Break [Break [Break [BF6]]] [B	https://www.doi.org/10.1021/acs.jced.7b01004
Deep Eutectic Solvent for Ammonia Separation of CO2 and H2S using	https://www.doi.org/10.1016/j.fluid.2010.01.013
room-temperature ionic liquid Nearwhile density and viscosity of	https://www.doi.org/10.1016/j.jct.2016.06.007
H2S-loaded aqueous Redifficition and a solution:	https://www.doi.org/10.1016/j.fluid.2010.08.027
1-(2-hydroxyethyl)-3-methylimidazolium ഉപൂട്ടിച്ച് പുട്ടിച്ചു പുട്ടിച്ചു പുട്ടിച്ചു പുട്ടിച്ചു പുട്ടിച്ചു പുട്ടിച്ചു പുട്ടിച്ചു പുട്ടിച്ചു പുട്ടിച്ചു	https://www.doi.org/10.1016/j.jct.2013.05.038
their mixture in the ionic liquid Plasse ទី១៧ម៉ែញថា សំ៧2១៧៤៨rocarbons	https://www.doi.org/10.1021/je300111m
(চিপ্রের্মান ক্রমিওর্মির বিশ্বতিক বিশ্বরাধি আর্ক্তি এই বিশ্বতিক বিশ্বতিক বিশ্বরাধিক। data) for hydrogen sulfide +	https://www.doi.org/10.1016/j.fluid.2007.07.013
EXPRESENTATION OF THE PROPERTY IS UITING	https://www.doi.org/10.1016/j.fluid.2011.12.025
egualings as Material Single by drogen	https://www.doi.org/10.1016/j.jct.2016.11.025
Solution of Captain of the Name Captain	https://www.doi.org/10.1016/j.jct.2016.11.025 https://www.doi.org/10.1021/je900721q https://www.scioncodirect.com/book/0780138030002/tho.yows.bandbook.of.yapar.pressure.
FOM CASS-FIGSIGIALIA KIEĞION ÜP DOL	https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
Pressure: P.rho.T Data for Hydrogen Sulfide + Pressure from (262 to 262) K at	https://www.doi.org/10.1021/je100851w
Propane from (263 to 363) K at Experimental solution had backen sulfide in	https://www.doi.org/10.1016/j.jct.2019.02.024
dioxide and hydrogen sulfide in Exportioenia siludy and thermodynamical modelling of	https://www.doi.org/10.1016/j.fluid.2014.06.026
MABALLIA SILLA OF SO2 H2S and CO2in	https://www.cheric.org/files/research/kdb/mol/mol1917.mol
N-dodecylimidazole and 1.1 - IBASB (PLIPIE HANGEWARD) - 2.9-ethanedi	https://www.doi.org/10.1021/je1004005
The Partiagnity of the Partiagn Acidne	https://www.doi.org/10.1021/acs.jced.5b00680
Panistanian (Panistanian)	https://www.doi.org/10.1021/je1004005
Rooming meas lonio highland with the light of the light o	https://www.doi.org/10.1021/je500496y
Meany by the solubility of Oxfand	https://www.doi.org/10.1016/j.jct.2015.01.001
Health in sylvelermand Hyerlepsitsamde) sissesing na สถิปประชาการ intronomon gulficles of (sylvensity) and (Hintelligisty) see and	https://www.doi.org/10.1016/j.fluid.2014.01.020
(timethyleufevier	http://webbook.nist.gov/cgi/cbook.cgi?ID=C7783064&Units=SI
dimethylsulfoxide: High pressure measurement and CPA equation of state for solubility of	https://www.doi.org/10.1016/j.jct.2015.04.032
Experimental and an experience in	https://www.doi.org/10.1016/j.fluid.2016.08.002
the densities by the discourage habite Solle with the second seco	https://www.doi.org/10.1021/je2005243
Rijaopopagojagijneto Rippiparine Sorusovej Wavo Experingentalubida and Oakhojn Rippidaria Propudano Cubic	https://www.doi.org/10.1021/acs.jced.5b00669
Nadesin Bioxiderie Propyderie Cubic មិត្តិនិងមើរជាក្នុងក្រុមក្រុមក្រុមក្រុមក្រុមក្រុមក្រុមក្រុម	
hydrogen sulfide in aqueous solution	https://www.doi.org/10.1016/j.jct.2017.11.014
hydrogen sulfide in aqueous solution of 2-((2 aminoethyl)amino)ethanol:	https://www.doi.org/10.1016/j.jct.2017.11.014

Solubility of H2S and CO2 in ignina Littirolactone: Solubility of CO2 and H2S in the ionic and pressures up to about 6.9MPa: Experimental diffusion coefficients of CO2 and H2S in some ionic liquids

Manguselinuiding tellusium clater for the
hydrogen sulphide (H2S) + carbon

Environ 2014 yellen at least peratures
and 2015 solvitions of
P-annound 1016 yellen at least peratures
and 2015 solvition and volumetric properties
Solvicien frame (2.54 nb seast 6.23 h) (at
was sulficent frame (2.54 nb seast 6.23 h) (at
was sulficent frame (2.54 nb seast 6.23 h) (at
was sulficent frame (2.54 nb seast 6.23 h) (at
was sulficent frame (2.54 nb seast 6.23 h) (at
was sulficent frame (2.54 nb seast 6.23 h) (at
was sulficent frame (2.54 nb seast 6.23 h) (at
was sulficent frame (2.54 nb seast 6.23 h) (at
was sulficent frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame (2.54 nb seast 6.23 h) (at
was sulfine frame CO2 and H2S in some ionic liquids aminoethyl)amino)ethanol and `` Beregating USCRE Des migraemusier Methane and Hydrogen Sulfide at Low Density iWelle Pemperature Range from https://www.chemeo.com/doc/models/crippen_log10ws (292 to 682) K: Densities and derived thermophysical

https://www.doi.org/10.1016/j.jct.2018.10.013 https://www.doi.org/10.1016/j.fluid.2011.04.010 https://www.doi.org/10.1016/j.jct.2013.07.022 liquid 1-ethyl-3-methylimidazolium វ្រឹងវេទូមកឡែកថ្មាន អ្វាស់ អ្វាស្វាស់ អ្វាស់ អ្វាស្វាស់ អ្វាស់ អ្វាស់ អ្វាស់ អ្វាស់ អ្វាស់ អ្វាស់ អ្វាស់ អ្វាស្សា https://www.doi.org/10.1016/j.jct.2019.02.022 https://www.doi.org/10.1016/j.fluid.2013.07.050 https://www.doi.org/10.1016/j.jct.2012.02.009

https://www.doi.org/10.1016/j.jct.2018.12.005

https://www.doi.org/10.1016/j.fluid.2017.09.003

https://www.doi.org/10.1016/j.jct.2016.04.012

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1021/je200371n

https://www.doi.org/10.1016/j.fluid.2016.04.024

Legend

pressures up to 41 MPa:

af: Acentric Factor affp: Proton affinity Gas basicity basg: dm: **Dipole Moment** dvisc: Dynamic viscosity

properties of the 0.9505 CO2 + 0.0495 H2S mixture from 273 K to 353 K and

Standard Gibbs free energy of formation gf:

Radius of Gyration gyrad:

hf: Enthalpy of formation at standard conditions hsubt: Enthalpy of sublimation at a given temperature hvapt: Enthalpy of vaporization at a given temperature

Ionization energy ie:

log10ws: Log10 of Water solubility in mol/l logp: Octanol/Water partition coefficient mcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating nfpah: NFPA Health Rating Critical Pressure pc:

Triple Point Pressure pt:

Vapor pressure pvap: Critical density rhoc:

rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sgb: Molar entropy at standard conditions (1 bar)

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

tt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility

zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/51-105-8/Hydrogen-sulfide.pdf

Generated by Cheméo on 2025-12-24 22:13:20.104679302 +0000 UTC m=+6362597.634719957.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.