Ethylbenzene

Other names: .alpha.-methyltoluene

Aethylbenzol Benzene, ethyl-

ΕB

Ethylbenzeen
Ethylbenzol
Etilbenzene
Etylobenzen
NCI-C56393
NSC 406903
Phenylethane
UN 1175

«alpha»-Methyltoluene «alpha»-Methyltoluene

InChl=1S/C8H10/c1-2-8-6-4-3-5-7-8/h3-7H,2H2,1H3

InchiKey: YNQLUTRBYVCPMQ-UHFFFAOYSA-N

Formula: C8H10

SMILES: CCc1ccccc1

Mol. weight [g/mol]: 106.17 CAS: 100-41-4

Physical Properties

Property code	Value	Unit	Source
af	0.3020		KDB
affp	788.00	kJ/mol	NIST Webbook
affp	789.90	kJ/mol	NIST Webbook
aigt	733.15	K	KDB
basg	760.20	kJ/mol	NIST Webbook
basg	760.30	kJ/mol	NIST Webbook
cpl	185.44	J/mol×K	Thermodynamics of mixtures involving some (benzene derivatives + benzonitrile)
dm	0.40	debye	KDB
fII	1.00	% in Air	KDB
flu	6.70	% in Air	KDB
fpc	299.82	K	KDB
fpo	288.15	K	KDB

gf	130.70	kJ/mol	KDB
gyrad	3.8210		KDB
hcg	4564.87	kJ/mol	KDB
hcn	4344.792	kJ/mol	KDB
hf	29.81	kJ/mol	KDB
hf	69.30	kJ/mol	NIST Webbook
hf	29.80 ± 0.84	kJ/mol	NIST Webbook
hf	49.00 ± 4.00	kJ/mol	NIST Webbook
hfl	6.80 ± 4.00	kJ/mol	NIST Webbook
hfl	27.00	kJ/mol	NIST Webbook
hfl	-12.50 ± 0.84	kJ/mol	NIST Webbook
hfus	10.52	kJ/mol	Joback Method
hvap	35.68	kJ/mol	Joback Method
ie	8.77	eV	NIST Webbook
ie	8.61	eV	NIST Webbook
ie	8.77 ± 0.01	eV	NIST Webbook
ie	8.65 ± 0.10	eV	NIST Webbook
ie	8.77 ± 0.01	eV	NIST Webbook
ie	8.76 ± 0.01	eV	NIST Webbook
ie	8.76	eV	NIST Webbook
ie	9.38	eV	NIST Webbook
ie	8.73	eV	NIST Webbook
ie	8.77 ± 0.01	eV	NIST Webbook
ie	8.75 ± 0.05	eV	NIST Webbook
ie	8.77	eV	NIST Webbook
log10ws	-2.77		Estimated Solubility Method
log10ws	-2.77		Aqueous Solubility Prediction Method
logp	2.249		Crippen Method
mcvol	99.820	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=2)		KDB
рс	3609.00	kPa	KDB
rhoc	283.46 ± 4.25	kg/m3	NIST Webbook
rhoc	284.52 ± 1.06	kg/m3	NIST Webbook
rinpol	848.10		NIST Webbook
rinpol	848.34		NIST Webbook
rinpol	859.20		NIST Webbook
rinpol	861.00		NIST Webbook
rinpol	847.00		NIST Webbook
rinpol	850.00		NIST Webbook
rinpol	848.00		NIST Webbook
rinpol	854.80		NIST Webbook
rinpol	871.10		NIST Webbook

rinnal	880.00	NIST Webbook
rinpol	847.80	NIST Webbook
rinpol		
rinpol	848.34 848.10	NIST Webbook NIST Webbook
rinpol		
rinpol	848.20	NIST Webbook
rinpol	847.60	NIST Webbook
rinpol	849.00	NIST Webbook
rinpol	874.00	NIST Webbook
rinpol	848.00	NIST Webbook
rinpol	848.00	NIST Webbook
rinpol	859.00	NIST Webbook
rinpol	859.00	NIST Webbook
rinpol	848.00	NIST Webbook
rinpol	875.00	NIST Webbook
rinpol	858.40	NIST Webbook
rinpol	863.30	NIST Webbook
rinpol	857.30	NIST Webbook
rinpol	857.00	NIST Webbook
rinpol	844.60	NIST Webbook
rinpol	849.70	NIST Webbook
rinpol	834.60	NIST Webbook
rinpol	875.40	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	840.00	NIST Webbook
rinpol	859.00	NIST Webbook
rinpol	860.00	NIST Webbook
rinpol	832.80	NIST Webbook
rinpol	838.50	NIST Webbook
rinpol	857.00	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	859.00	NIST Webbook
rinpol	849.00	NIST Webbook
rinpol	833.30	NIST Webbook
rinpol	870.00	NIST Webbook
rinpol	857.00	NIST Webbook
rinpol	859.00	NIST Webbook
rinpol	857.00	NIST Webbook
rinpol	860.00	NIST Webbook
rinpol	854.00	NIST Webbook
rinpol	848.00	NIST Webbook
rinpol	845.00	NIST Webbook
rinpol	847.80	NIST Webbook
rinpol	848.20	NIST Webbook
rinpol	851.40	NIST Webbook
		1 1 1 1 2 2 3 1 1

rinnol	859.00	NIST Webbook
rinpol rinpol	867.00	NIST Webbook
·	854.00	NIST Webbook
rinpol		NIST Webbook
rinpol	859.00	
rinpol	864.00	NIST Webbook
rinpol	870.00	NIST Webbook
rinpol	821.00	NIST Webbook
rinpol	845.30	NIST Webbook
rinpol	847.70	NIST Webbook
rinpol	858.90	NIST Webbook
rinpol	864.20	NIST Webbook
rinpol	870.10	NIST Webbook
rinpol	846.00	NIST Webbook
rinpol	834.10	NIST Webbook
rinpol	839.50	NIST Webbook
rinpol	844.60	NIST Webbook
rinpol	844.60	NIST Webbook
rinpol	844.80	NIST Webbook
rinpol	845.30	NIST Webbook
rinpol	839.40	NIST Webbook
rinpol	840.60	NIST Webbook
rinpol	839.00	NIST Webbook
rinpol	839.20	NIST Webbook
rinpol	845.30	NIST Webbook
rinpol	847.70	NIST Webbook
rinpol	850.00	NIST Webbook
rinpol	844.00	NIST Webbook
rinpol	844.00	NIST Webbook
rinpol	855.20	NIST Webbook
rinpol	837.00	NIST Webbook
rinpol	839.00	NIST Webbook
rinpol	841.56	NIST Webbook
rinpol	864.00	NIST Webbook
rinpol	866.00	NIST Webbook
rinpol	870.00	NIST Webbook
rinpol	873.00	NIST Webbook
rinpol	868.00	NIST Webbook
rinpol	872.00	NIST Webbook
rinpol	875.00	NIST Webbook
rinpol	877.00	NIST Webbook
rinpol	880.00	NIST Webbook
rinpol	850.00	NIST Webbook
rinpol	835.00	NIST Webbook
rinpol	840.00	NIST Webbook
ППРОГ	040.00	14101 4460000

rinpol	849.10	NIST Webbook
rinpol	849.10	NIST Webbook
rinpol	849.10	NIST Webbook
·	849.10	NIST Webbook
rinpol		
rinpol	849.10	NIST Webbook
rinpol	849.10	NIST Webbook
rinpol	847.70	NIST Webbook
rinpol	848.00	NIST Webbook
rinpol	843.00	NIST Webbook
rinpol	846.00	NIST Webbook
rinpol	850.00	NIST Webbook
rinpol	852.00	NIST Webbook
rinpol	855.00	NIST Webbook
rinpol	859.00	NIST Webbook
rinpol	834.00	NIST Webbook
rinpol	848.00	NIST Webbook
rinpol	844.20	NIST Webbook
rinpol	851.30	NIST Webbook
rinpol	844.30	NIST Webbook
rinpol	879.00	NIST Webbook
rinpol	830.00	NIST Webbook
rinpol	836.00	NIST Webbook
rinpol	841.00	NIST Webbook
rinpol	846.00	NIST Webbook
rinpol	876.00	NIST Webbook
rinpol	884.00	NIST Webbook
rinpol	892.00	NIST Webbook
rinpol	868.00	NIST Webbook
rinpol	847.00	NIST Webbook
rinpol	853.00	NIST Webbook
rinpol	859.00	NIST Webbook
rinpol	843.00	NIST Webbook
rinpol	840.00	NIST Webbook
rinpol	844.00	NIST Webbook
rinpol	848.00	NIST Webbook
rinpol	864.10	NIST Webbook
rinpol	844.00	NIST Webbook
rinpol	853.00	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	843.00	NIST Webbook
rinpol	850.00	NIST Webbook
rinpol	851.00	NIST Webbook
rinpol	855.00	NIST Webbook
rinpol	857.00	NIST Webbook
•		

rianal	969.00	NICT Wohlank
rinpol	868.00	NIST Webbook
rinpol	855.60	NIST Webbook
rinpol	850.00	NIST Webbook
rinpol · .	850.00	NIST Webbook
rinpol	866.00	NIST Webbook
rinpol	862.00	NIST Webbook
rinpol	879.00	NIST Webbook
rinpol	871.00	NIST Webbook
rinpol	868.00	NIST Webbook
rinpol	869.00	NIST Webbook
rinpol	854.00	NIST Webbook
rinpol	864.00	NIST Webbook
rinpol	864.00	NIST Webbook
rinpol	893.00	NIST Webbook
rinpol	850.80	NIST Webbook
rinpol	876.00	NIST Webbook
rinpol	856.30	NIST Webbook
rinpol	855.50	NIST Webbook
rinpol	853.20	NIST Webbook
rinpol	856.30	NIST Webbook
rinpol	857.20	NIST Webbook
rinpol	839.80	NIST Webbook
rinpol	868.30	NIST Webbook
rinpol	872.00	NIST Webbook
rinpol	860.00	NIST Webbook
rinpol	857.00	NIST Webbook
rinpol	865.00	NIST Webbook
rinpol	866.00	NIST Webbook
rinpol	865.00	NIST Webbook
rinpol	866.00	NIST Webbook
rinpol	856.00	NIST Webbook
rinpol	847.00	NIST Webbook
rinpol	855.00	NIST Webbook
rinpol	849.00	NIST Webbook
rinpol	834.00	NIST Webbook
rinpol	860.90	NIST Webbook
rinpol	836.10	NIST Webbook
rinpol	841.70	NIST Webbook
rinpol	846.10	NIST Webbook
rinpol	846.40	NIST Webbook
rinpol	861.50	NIST Webbook
rinpol	853.20	NIST Webbook
rinpol	856.30	NIST Webbook
rinpol	857.20	NIST Webbook
	551.20	

rinnal	856.30	NIST Webbook
rinpol	855.50	NIST Webbook NIST Webbook
	844.19	NIST Webbook NIST Webbook
rinpol		
rinpol	844.47	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	845.00	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	844.50	NIST Webbook
rinpol	844.74	NIST Webbook
rinpol	845.00	NIST Webbook
rinpol	864.00	NIST Webbook
rinpol	855.00	NIST Webbook
rinpol	848.30	NIST Webbook
rinpol	856.20	NIST Webbook
rinpol	848.30	NIST Webbook
rinpol	848.30	NIST Webbook
rinpol	856.20	NIST Webbook
rinpol	845.17	NIST Webbook
rinpol	845.49	NIST Webbook
rinpol	848.70	NIST Webbook
rinpol	844.80	NIST Webbook
rinpol	844.60	NIST Webbook
rinpol	841.26	NIST Webbook
rinpol	844.05	NIST Webbook
rinpol	845.90	NIST Webbook
rinpol	857.33	NIST Webbook
rinpol	860.40	NIST Webbook
rinpol	862.45	NIST Webbook
rinpol	843.00	NIST Webbook
rinpol	877.00	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	863.00	NIST Webbook
rinpol	865.00	NIST Webbook
rinpol	846.00	NIST Webbook
rinpol	870.79	NIST Webbook
rinpol	845.00	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	859.00	NIST Webbook
rinpol	852.00	NIST Webbook
rinpol	855.00	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	864.00	NIST Webbook
rinpol	869.00	NIST Webbook
rinpol	853.00	NIST Webbook
1111401	230.00	er wooden

rinnal	950.00	NIST Webbook
rinpol rinpol	859.00 847.00	NIST Webbook
•	857.00	NIST Webbook
rinpol		
rinpol	858.00	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	859.00	NIST Webbook
rinpol	859.00	NIST Webbook
rinpol	847.00	NIST Webbook
rinpol	850.00	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	859.00	NIST Webbook
rinpol	863.00	NIST Webbook
rinpol	864.00	NIST Webbook
rinpol	843.00	NIST Webbook
rinpol	843.00	NIST Webbook
rinpol	844.00	NIST Webbook
rinpol	844.00	NIST Webbook
rinpol	842.00	NIST Webbook
rinpol	842.00	NIST Webbook
rinpol	842.00	NIST Webbook
rinpol	852.00	NIST Webbook
rinpol	853.00	NIST Webbook
rinpol	835.00	NIST Webbook
rinpol	847.00	NIST Webbook
rinpol	831.00	NIST Webbook
rinpol	847.30	NIST Webbook
rinpol	845.00	NIST Webbook
rinpol	849.00	NIST Webbook
rinpol	842.00	NIST Webbook
rinpol	856.00	NIST Webbook
rinpol	836.00	NIST Webbook
rinpol	850.00	NIST Webbook
rinpol	859.00	NIST Webbook
rinpol	852.00	NIST Webbook
rinpol	857.00	NIST Webbook
rinpol	849.00	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	864.00	NIST Webbook
rinpol	845.00	NIST Webbook
IIIpoi	0.000	THE PRODUCT

rinnal	863.00	NIST Webbook
rinpol rinpol	851.00	NIST Webbook
•		NIST Webbook NIST Webbook
rinpol	851.00	
rinpol	866.00	NIST Webbook
rinpol	845.00	NIST Webbook
rinpol ·	861.00	NIST Webbook
rinpol	846.00	NIST Webbook
rinpol	863.30	NIST Webbook
rinpol	868.00	NIST Webbook
rinpol	829.00	NIST Webbook
rinpol	846.00	NIST Webbook
rinpol	886.00	NIST Webbook
rinpol	859.00	NIST Webbook
rinpol	866.00	NIST Webbook
rinpol	860.00	NIST Webbook
rinpol	865.00	NIST Webbook
rinpol	878.00	NIST Webbook
rinpol	855.00	NIST Webbook
rinpol	849.00	NIST Webbook
rinpol	847.66	NIST Webbook
rinpol	851.00	NIST Webbook
rinpol	847.00	NIST Webbook
rinpol	868.10	NIST Webbook
rinpol	843.00	NIST Webbook
rinpol	846.00	NIST Webbook
rinpol	850.00	NIST Webbook
rinpol	852.00	NIST Webbook
rinpol	838.00	NIST Webbook
rinpol	841.00	NIST Webbook
rinpol	842.00	NIST Webbook
rinpol	856.00	NIST Webbook
rinpol	869.00	NIST Webbook
rinpol	843.00	NIST Webbook
rinpol	850.00	NIST Webbook
rinpol	848.00	NIST Webbook
rinpol	844.00	NIST Webbook
rinpol	844.00	NIST Webbook
rinpol	844.00	NIST Webbook
rinpol	868.00	NIST Webbook
rinpol	846.00	NIST Webbook
rinpol	850.00	NIST Webbook
rinpol	835.30	NIST Webbook
rinpol	837.60	NIST Webbook
rinpol	840.80	NIST Webbook
Impol	0.10.00	THE PRODUCTION

	0.40.00	NIOTIVII
rinpol	843.30	NIST Webbook
rinpol	845.30	NIST Webbook
rinpol	847.00	NIST Webbook
rinpol	835.00	NIST Webbook
rinpol	837.00	NIST Webbook
rinpol	840.00	NIST Webbook
rinpol	843.00	NIST Webbook
rinpol	845.00	NIST Webbook
rinpol	846.00	NIST Webbook
rinpol	842.00	NIST Webbook
rinpol	841.00	NIST Webbook
rinpol	845.00	NIST Webbook
rinpol	842.00	NIST Webbook
rinpol	860.00	NIST Webbook
rinpol	850.00	NIST Webbook
rinpol	864.00	NIST Webbook
rinpol	866.00	NIST Webbook
rinpol	852.00	NIST Webbook
rinpol	840.00	NIST Webbook
rinpol	867.00	NIST Webbook
rinpol	857.00	NIST Webbook
rinpol	868.00	NIST Webbook
rinpol	851.00	NIST Webbook
rinpol	870.00	NIST Webbook
rinpol	869.00	NIST Webbook
rinpol	850.00	NIST Webbook
rinpol	871.00	NIST Webbook
rinpol	855.00	NIST Webbook
rinpol	893.00	NIST Webbook
rinpol	855.00	NIST Webbook
rinpol	868.00	NIST Webbook
rinpol	868.00	NIST Webbook
rinpol	851.00	NIST Webbook
rinpol	859.00	NIST Webbook
rinpol	866.00	NIST Webbook
rinpol	851.00	NIST Webbook
rinpol	879.95	NIST Webbook
rinpol	869.00	NIST Webbook
rinpol	879.00	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	848.00	NIST Webbook
rinpol	868.00	NIST Webbook
rinpol	853.00	NIST Webbook
rinpol	846.00	NIST Webbook
· · · ipoi	0.0.00	11101 11000001

	242.22	
rinpol	848.00	NIST Webbook
rinpol	854.00	NIST Webbook
rinpol	861.00	NIST Webbook
rinpol	854.00	NIST Webbook
rinpol	872.00	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	851.00	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	854.00	NIST Webbook
rinpol	854.00	NIST Webbook
rinpol	863.00	NIST Webbook
rinpol	846.00	NIST Webbook
rinpol	854.00	NIST Webbook
rinpol	846.00	NIST Webbook
rinpol	847.00	NIST Webbook
rinpol	861.00	NIST Webbook
rinpol	860.00	NIST Webbook
rinpol	859.10	NIST Webbook
rinpol	863.30	NIST Webbook
rinpol	862.80	NIST Webbook
rinpol	862.60	NIST Webbook
rinpol	847.50	NIST Webbook
rinpol	867.00	NIST Webbook
rinpol	844.00	NIST Webbook
rinpol	870.00	NIST Webbook
rinpol	846.00	NIST Webbook
rinpol	830.00	NIST Webbook
rinpol	840.00	NIST Webbook
rinpol	846.00	NIST Webbook
rinpol	846.00	NIST Webbook
rinpol	848.00	NIST Webbook
rinpol	849.00	NIST Webbook
rinpol	864.00	NIST Webbook
rinpol	843.00	NIST Webbook
rinpol	118.80	NIST Webbook
rinpol	118.30	NIST Webbook
rinpol	134.54	NIST Webbook
rinpol	118.90	NIST Webbook
rinpol	129.41	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	845.00	NIST Webbook
rinpol	866.85	NIST Webbook
rinpol	848.10	NIST Webbook
rinpol	843.50	NIST Webbook
	5.0.00	

rinpol	841.80	NIST Webbook
rinpol	843.40	NIST Webbook
rinpol	846.80	NIST Webbook
rinpol	844.50	NIST Webbook
rinpol	850.60	NIST Webbook
rinpol	839.30	NIST Webbook
rinpol	838.00	NIST Webbook
rinpol	839.80	NIST Webbook
ripol	1135.00	NIST Webbook
ripol	1117.00	NIST Webbook
ripol	1110.00	NIST Webbook
·	1100.00	NIST Webbook
ripol		NIST Webbook
ripol	1105.00	
ripol	1138.00	NIST Webbook
ripol	1131.90	NIST Webbook
ripol	1158.90	NIST Webbook
ripol · ·	1164.30	NIST Webbook
ripol	1169.80	NIST Webbook
ripol	1175.20	NIST Webbook
ripol	1136.00	NIST Webbook
ripol	1160.90	NIST Webbook
ripol	1158.40	NIST Webbook
ripol	1159.40	NIST Webbook
ripol	1127.10	NIST Webbook
ripol	1111.10	NIST Webbook
ripol	1178.00	NIST Webbook
ripol	1154.00	NIST Webbook
ripol	1162.00	NIST Webbook
ripol	1169.00	NIST Webbook
ripol	1147.00	NIST Webbook
ripol	1126.00	NIST Webbook
ripol	1128.00	NIST Webbook
ripol	1098.00	NIST Webbook
ripol	1122.00	NIST Webbook
ripol	1116.00	NIST Webbook
ripol	1120.00	NIST Webbook
ripol	1134.00	NIST Webbook
ripol	1146.10	NIST Webbook
ripol	1123.00	NIST Webbook
ripol	1129.00	NIST Webbook
ripol	1129.00	NIST Webbook
ripol	1131.00	NIST Webbook
ripol	1127.00	NIST Webbook
ripol	1138.00	NIST Webbook

ripol	1115.00	NIST Webbook
ripol	1115.00	NIST Webbook
ripol	1130.00	NIST Webbook
ripol	1118.00	NIST Webbook
ripol	1133.00	NIST Webbook
ripol	1168.00	NIST Webbook
ripol	1138.00	NIST Webbook
ripol	1125.00	NIST Webbook
•	1125.00	NIST Webbook
ripol	1124.00	NIST Webbook
ripol		
ripol	1138.00	NIST Webbook
ripol	1125.00	NIST Webbook
ripol 	1123.00	NIST Webbook
ripol 	1125.00	NIST Webbook
ripol	1129.00	NIST Webbook
ripol	1122.00	NIST Webbook
ripol	1130.00	NIST Webbook
ripol	1116.00	NIST Webbook
ripol	1128.00	NIST Webbook
ripol	1122.00	NIST Webbook
ripol	1123.00	NIST Webbook
ripol	1130.00	NIST Webbook
ripol	1132.00	NIST Webbook
ripol	1107.00	NIST Webbook
ripol	1133.00	NIST Webbook
ripol	1135.00	NIST Webbook
ripol	1125.00	NIST Webbook
ripol	1125.00	NIST Webbook
ripol	1121.00	NIST Webbook
ripol	1125.00	NIST Webbook
ripol	1125.00	NIST Webbook
ripol	1122.00	NIST Webbook
ripol	1129.00	NIST Webbook
ripol	1132.00	NIST Webbook
ripol	1132.00	NIST Webbook
ripol	1157.00	NIST Webbook
ripol	1168.00	NIST Webbook
ripol	1180.00	NIST Webbook
ripol	1110.00	NIST Webbook
ripol	1120.00	NIST Webbook
ripol	1145.00	NIST Webbook
ripol	1144.00	NIST Webbook
ripol	1146.00	NIST Webbook
ripol	1157.00	NIST Webbook
11001		THO PY VODO OT

ripol	1166.00	NIST Webbook
ripol	1125.00	NIST Webbook
ripol	1135.00	NIST Webbook
ripol	1111.00	NIST Webbook
ripol	1146.00	NIST Webbook
ripol	1130.00	NIST Webbook
	1130.00	NIST Webbook
ripol	1142.00	NIST Webbook
ripol		
ripol	1139.00	NIST Webbook
ripol	1130.00	NIST Webbook
ripol	1116.00	NIST Webbook
ripol	1161.00	NIST Webbook
ripol	1104.00	NIST Webbook
ripol	1122.00	NIST Webbook
ripol	1122.00	NIST Webbook
ripol	1119.00	NIST Webbook
ripol	1114.00	NIST Webbook
ripol	1118.00	NIST Webbook
ripol	1141.00	NIST Webbook
ripol	1108.00	NIST Webbook
ripol	1147.00	NIST Webbook
ripol	1116.00	NIST Webbook
ripol	1126.00	NIST Webbook
ripol	1135.00	NIST Webbook
ripol	1125.00	NIST Webbook
ripol	1109.00	NIST Webbook
ripol	1126.00	NIST Webbook
ripol	1124.00	NIST Webbook
ripol	1124.00	NIST Webbook
ripol	1134.00	NIST Webbook
ripol	1139.00	NIST Webbook
ripol	1127.00	NIST Webbook
ripol	1122.00	NIST Webbook
ripol	1119.00	NIST Webbook
ripol	1161.00	NIST Webbook
ripol	1130.00	NIST Webbook
ripol	1161.00	NIST Webbook
ripol	1121.00	NIST Webbook
ripol	1125.00	NIST Webbook
ripol	1127.00	NIST Webbook
ripol	1125.00	NIST Webbook
ripol	1138.00	NIST Webbook
ripol	1161.00	NIST Webbook
ripol	1109.00	NIST Webbook
Προι	1.00.00	THE PRODUCT

ele al	4400.00		NIOT Webbeel
ripol	1132.00		NIST Webbook
ripol	1129.00		NIST Webbook
ripol	1111.00		NIST Webbook
ripol	1131.00		NIST Webbook
ripol	1129.00		NIST Webbook
ripol	1132.00		NIST Webbook
ripol	1129.00		NIST Webbook
ripol	1146.00		NIST Webbook
ripol	1117.00		NIST Webbook
sg	360.60 ± 0.50	J/mol×K	NIST Webbook
sl	255.01	J/mol×K	NIST Webbook
sl	256.10	J/mol×K	NIST Webbook
tb	409.35	K	Isobaric (vapour + liquid) equilibria for N-formylmorpholine with ethylbenzene, n-butylbenzene, iso-propylbenzene and 1,2,4-trimethylbenzene at 101.33 kPa
tb	409.32	K	Isobaric Vapor-Liquid Equilibium for the Binary Systems of Methyl Formate with o-Xylene, m-Xylene, p-Xylene, and Ethylbenzene at 101.33 kPa
tb	409.25	K	Isobaric Vapor Liquid Equilibrium of Binary and Ternary Systems with 2-Ethoxyethanol + Ethylbenzene + Dimethyl Sulfoxide
tb	409.34	K	KDB
tb	409.35	K	Isobaric (vapour + liquid) equilibria for sulfolane with toluene, ethylbenzene, and isopropylbenzene at 101.33 kPa
tc	617.15	K	KDB
tf	178.20	K	KDB
tf	178.20	К	Aqueous Solubility Prediction Method
tf	278.29	К	Phase Equilibria Study of the Binary Systems (N-Butyl-4-methylpyridinium Tosylate Ionic Liquid + Organic Solvent, or Water)
tt	178.00 ± 0.30	K	NIST Webbook
tt	178.15 ± 0.02	K	NIST Webbook
VC	0.374	m3/kmol	NIST Webbook
VC	0.374	m3/kmol	KDB
ZC	0.2630460		KDB

zra 0.26 KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	205.94 ± 0.41	J/mol×K	498.15	NIST Webbook
cpg	178.96 ± 0.36	J/mol×K	423.15	NIST Webbook
cpg	169.25 ± 0.34	J/mol×K	398.15	NIST Webbook
cpg	188.28 ± 0.38	J/mol×K	448.15	NIST Webbook
cpg	164.25 ± 0.33	J/mol×K	385.65	NIST Webbook
cpg	197.35 ± 0.39	J/mol×K	473.15	NIST Webbook
cpg	159.24 ± 0.80	J/mol×K	373.15	NIST Webbook
cpg	214.02 ± 0.43	J/mol×K	523.15	NIST Webbook
cpl	186.60	J/mol×K	298.15	NIST Webbook
cpl	178.70	J/mol×K	302.70	NIST Webbook
cpl	178.70	J/mol×K	302.80	NIST Webbook
cpl	183.70	J/mol×K	298.50	NIST Webbook
cpl	186.04	J/mol×K	298.15	NIST Webbook
cpl	184.80	J/mol×K	293.31	NIST Webbook
cpl	161.00	J/mol×K	295.00	NIST Webbook
cpl	185.78	J/mol×K	298.15	NIST Webbook
cpl	185.56	J/mol×K	298.15	NIST Webbook
cpl	185.57	J/mol×K	298.15	NIST Webbook
cpl	181.60	J/mol×K	303.00	NIST Webbook
cpl	185.80	J/mol×K	298.00	NIST Webbook
cpl	181.60	J/mol×K	297.40	NIST Webbook
cpl	184.50	J/mol×K	298.00	NIST Webbook
cpl	185.81	J/mol×K	298.15	NIST Webbook
dvisc	0.0005986	Paxs	303.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K

dvisc	0.0005372	Paxs	313.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	
dvisc	0.0005691	Paxs	308.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	
dvisc	0.0005530	Paxs	308.15	Viscosities, Densities, and Ultrasonic Velocities of Binary Mixtures of Ethylbenzene with Ethanol, 1-Propanol, and 1-Butanol at (298.15 and 308.15)K	
dvisc	0.0006280	Paxs	298.15	Viscosities, Densities, and Ultrasonic Velocities of Binary Mixtures of Ethylbenzene with Ethanol, 1-Propanol, and 1-Butanol at (298.15 and 308.15)K	
dvisc	0.0003660	Paxs	353.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure	

dvisc	0.0003970	Paxs	343.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0004370	Paxs	333.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0005652	Paxs	308.15	Viscometric and Volumetric Properties of 10 Regular Binary Systems at 308.15 K and 313.15 K
dvisc	0.0005370	Paxs	313.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0005980	Paxs	303.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure

dvisc	0.0005380	Pa×s	313.15	Viscosity, Density, and Refractive Index of Some (Ester + Hydrocarbon) Binary Mixtures at 303.15 K and 313.15 K	
dvisc	0.0005970	Paxs	303.15	Viscosity, Density, and Refractive Index of Some (Ester + Hydrocarbon) Binary Mixtures at 303.15 K and 313.15 K	
dvisc	0.0004829	Paxs	323.15	Excess Molar Volumes and Viscosities of Binary Mixtures of Sulfolane with Benzene, Toluene, Ethylbenzene, p-Xylene, o-Xylene, and m-Xylene at 303.15 and 323.15 K and Atmospheric Pressure	
dvisc	0.0005981	Paxs	303.15	Excess Molar Volumes and Viscosities of Binary Mixtures of Sulfolane with Benzene, Toluene, Ethylbenzene, p-Xylene, o-Xylene, and m-Xylene at 303.15 and 323.15 K and Atmospheric Pressure	
dvisc	0.0004371	Paxs	333.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	

dvisc	0.0006299	Paxs	298.15 Excess Molar Volumes and Viscosities of Binary Mixtures of Sulfolane with Benzene, Toluene, Ethylbenzene, p-Xylene, o-Xylene, and m-Xylene at 303.15 and 323.15 K and Atmospheric Pressure
dvisc	0.0005340	Paxs	308.15 Densities, Excess Molar Volumes, Viscosities, Speeds of Sound, Excess Isentropic Compressibilities, and Relative Permittivities for CmH2m+1(OCH2CH2)nOH (m) 1 or 2 or 4 andn) 1) + Benzene, + Toluene, + (o-, m-, and p-) Xylenes, + Ethylbenzene, and + Cyclohexane
dvisc	0.0006380	Paxs	Densities, Excess Molar Volumes, Viscosities, Speeds of Sound, Excess Isentropic Compressibilities, and Relative Permittivities for CmH2m+1(OCH2CH2)nOH (m) 1 or 2 or 4 andn) 1) + Benzene, + Toluene, + (o-, m-, and p-) Xylenes, + Ethylbenzene, and + Cyclohexane

dvisc	0.0004805	Paxs	323.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	
dvisc	0.0004566	Paxs	328.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	
dvisc	0.0005355	Paxs	313.15	Viscosities, Densities, and Ultrasonic Velocities of 3-Pentanone + Ethylbenzene and 3-Pentanone + o-Xylene at (293.15, 303.15, and 313.15) K	
dvisc	0.0005294	Paxs	313.15	Viscometric and Volumetric Properties of 10 Regular Binary Systems at 308.15 K and 313.15 K	
dvisc	0.0005970	Paxs	303.15	Thermophysical Properties of Isoamyl Acetate or Methyl Benzoate + Hydrocarbon Binary Mixtures, at (303.15 and 313.15) K	
dvisc	0.0005380	Paxs	313.15	Thermophysical Properties of Isoamyl Acetate or Methyl Benzoate + Hydrocarbon Binary Mixtures, at (303.15 and 313.15) K	

dvisc	0.0006006	Paxs	303.15	Viscosities, Densities, and Ultrasonic Velocities of 3-Pentanone + Ethylbenzene and 3-Pentanone + o-Xylene at (293.15, 303.15, and 313.15) K	
dvisc	0.0006793	Paxs	293.15	Viscosities, Densities, and Ultrasonic Velocities of 3-Pentanone + Ethylbenzene and 3-Pentanone + o-Xylene at (293.15, 303.15, and 313.15) K	
dvisc	0.0004830	Paxs	323.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidon Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure	e,
dvisc	0.0005060	Paxs	318.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	
hfust	9.16	kJ/mol	178.00	NIST Webbook	
hfust	9.16	kJ/mol	178.20	NIST Webbook	
hfust	9.16	kJ/mol	178.20	NIST Webbook	
hfust	9.16	kJ/mol	178.17	NIST Webbook	
hfust	9.18	kJ/mol	178.15	NIST Webbook	
hvapt	37.00	kJ/mol	434.00	NIST Webbook	
hvapt	42.49	kJ/mol	294.01	NIST Webbook	
hvapt	41.80	kJ/mol	359.00	NIST Webbook	
hvapt	35.57	kJ/mol	409.30	NIST Webbook	
hvapt	35.80	kJ/mol	505.50	NIST Webbook	
hvapt	35.50	kJ/mol	583.00	NIST Webbook	
hvapt	40.50 ± 0.10	kJ/mol	328.00	NIST Webbook	
hvapt	39.50 ± 0.10	kJ/mol	343.00	NIST Webbook	
			<u> </u>		

hvapt	38.60 ± 0.10	kJ/mol	358.00	NIST Webbook
hvapt	40.00	kJ/mol	370.00	NIST Webbook
hvapt	35.56	kJ/mol	409.20	KDB
hvapt	40.60	kJ/mol	360.00	NIST Webbook
pvap	5.00	kPa	324.40	Isobaric Low-Pressure Vapor Liquid Equilibrium Data for Ethylbenzene + Styrene + Sulfolane and the Three Constituent Binary Systems
pvap	1027.00	kPa	523.15	High-Temperature VLE for the Ethylbenzene + Quinoline System
pvap	1601.00	kPa	553.15	High-Temperature VLE for the Ethylbenzene + Quinoline System
pvap	2387.00	kPa	583.15	High-Temperature VLE for the Ethylbenzene + Quinoline System
pvap	3451.00	kPa	613.15	High-Temperature VLE for the Ethylbenzene + Quinoline System
pvap	681.00	kPa	498.15	High-Temperature VLE for the Ethylbenzene + Quinoline System
pvap	7.50	kPa	333.40	Isobaric Low-Pressure Vapor Liquid Equilibrium Data for Ethylbenzene + Styrene + Sulfolane and the Three Constituent Binary Systems
pvap	10.00	kPa	340.00	Isobaric Low-Pressure Vapor Liquid Equilibrium Data for Ethylbenzene + Styrene + Sulfolane and the Three Constituent Binary Systems

pvap	12.50	kPa	345.50	Isobaric Low-Pressure Vapor Liquid Equilibrium Data for Ethylbenzene + Styrene + Sulfolane and the Three Constituent Binary Systems	
pvap	79.99	kPa	400.70	Isobaric Vapor-Liquid Equilibria of the Ternary System Toluene + Ethylbenzene + Amyl Acetate	
pvap	17.50	kPa	354.10	Isobaric Low-Pressure Vapor Liquid Equilibrium Data for Ethylbenzene + Styrene + Sulfolane and the Three Constituent Binary Systems	
pvap	20.00	kPa	357.70	Isobaric Low-Pressure Vapor Liquid Equilibrium Data for Ethylbenzene + Styrene + Sulfolane and the Three Constituent Binary Systems	
pvap	53.33	kPa	386.94	Isobaric Vapor-Liquid Equilibria of the Ternary System Toluene + Ethylbenzene + Amyl Acetate	
pvap	25.00	kPa	363.80	Isobaric Low-Pressure Vapor Liquid Equilibrium Data for Ethylbenzene + Styrene + Sulfolane and the Three Constituent Binary Systems	

pvap	250.00	kPa	447.20	Isobaric Vapor Liquid Equilibrium for Binary Systems of 2,2,4-Trimethylpentane with o-Xylene, m-Xylene, p-Xylene, and Ethylbenzene at 250 kPa	e
pvap	26.66	kPa	365.86	Isobaric Vapor-Liquid Equilibria of the Ternary System Toluene + Ethylbenzene + Amyl Acetate	
pvap	93.13	kPa	406.23	Refractive Index and Vapor-Liquid Equilibrium Data for the Binary Systems of Anisole with Xylene Isomers at 93.13 kPa	
pvap	3.75	kPa	318.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	9.19	kPa	338.15	Vapour-liquid equilibrium for tripropylene glycol + aromatic hydrocarbons binary systems: Experimental data and regression	
pvap	22.50	kPa	360.90	Isobaric Low-Pressure Vapor Liquid Equilibrium Data for Ethylbenzene + Styrene + Sulfolane and the Three Constituent Binary Systems	
pvap	7.09	kPa	332.15	Vapour-liquid equilibrium for tripropylene glycol + aromatic hydrocarbons binary systems: Experimental data and regression	

pvap	5.41	kPa	326.15	Vapour-liquid equilibrium for tripropylene glycol + aromatic hydrocarbons binary systems: Experimental data and regression	
pvap	4.08	kPa	320.15	Vapour-liquid equilibrium for tripropylene glycol + aromatic hydrocarbons binary systems: Experimental data and regression	
pvap	85.64	kPa	403.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	47.75	kPa	383.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	29.11	kPa	368.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	13.79	kPa	348.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	

pvap	2.10	kPa	313.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	2.22	kPa	308.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	95.30	kPa	406.95	Vapor-liquid equilibrium for the binary mixtures of dimethylsulfoxide with substituted benzenes	
pvap	20.42	kPa	358.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	5.97	kPa	328.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
рvар	11.41	kPa	343.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	

pvap	9.25	kPa	338.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons:	
				Experimental and regression	
pvap	93.32	kPa	406.12	Determination and correlation of vapor liquid equilibrium for binary systems consisting of close-boiling components	
pvap	79.99	kPa	400.51	Determination and correlation of vapor liquid equilibrium for binary systems consisting of close-boiling components	
pvap	66.66	kPa	394.14	Determination and correlation of vapor liquid equilibrium for binary systems consisting of close-boiling components	
pvap	53.33	kPa	386.69	Determination and correlation of vapor liquid equilibrium for binary systems consisting of close-boiling components	
pvap	40.00	kPa	377.54	Determination and correlation of vapor liquid equilibrium for binary systems consisting of close-boiling components	
pvap	11.79	kPa	344.15	Vapour-liquid equilibrium for tripropylene glycol + aromatic hydrocarbons binary systems: Experimental data and regression	

pvap	7.45	kPa	333.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	15.00	kPa	350.10	Isobaric Low-Pressure Vapor Liquid Equilibrium Data for Ethylbenzene + Styrene + Sulfolane and the Three Constituent Binary Systems	
pvap	4.71	kPa	323.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
rfi	1.49620		293.10	A study on densities and excess volumes in the (c-butyrolactone + aromatic hydrocarbon) system at various temperatures	
rfi	1.49620		293.15	Effect of temperature on the volumetric properties of (cyclohexanone + an aromatic hydrocarbon)	
rfi	1.49620		293.15	Experimental densities and excess volumes for binary mixtures of (dimethyl sulfoxide + an aromatic hydrocarbon) at temperatures from (293.15 to 353.15) K at atmospheric pressure	

rfi	1.49320	298.15	Bubble temperature measurements on seven binary mixtures formed by ethylbenzene at 94.7 kPa	
rfi	1.49620	293.15	A study of densities and volumetric properties of binary mixtures containing nitrobenzene at T = (293.15 to 353.15) K	
rfi	1.49310	298.15	Excess Molar Volumes of (propiophenone + benzene, or toluene, or ethylbenzene, or butylbenzene) at temperatures 298.15 K and 328.15 K	
rfi	1.49620	298.15	The volumetric properties of (1,2-propanediol carbonate + benzene, or toluene, or styrene) binary mixtures at temperatures from T = 293.15 K to T = 353.15 K	
rfi	1.54395	293.15	Bubble points of the binary mixtures formed by ethylbenzene with some chloroaliphatics and substituted benzenes at p = 94.7 kPa	
rfi	1.49620	293.10	Densities and volumetric properties of N-methyl-2-pyrrolidor with aromatic hydrocarbon at different temperature	e
rfi	1.49620	298.15	Densities and excess volumes of binary mixtures of N,N-dimethylformamic with aromatic hydrocarbon at different temperature	de

rfi	1.49316	298.15 Effect of Temperature on the Change of Refractive Index on Mixing for Butyl Acetate + Aromatic Hydrocarbons
rfi	1.49304	298.15 (Liquid + liquid) equilibrium data for the ternary systems (cycloalkane + ethylbenzene + 1-ethyl-3-methylimidazolium ethylsulfate) at T = 298.15 K and atmospheric pressure
rfi	1.49220	293.15 Volumetric properties of binary mixtures of tributylamine with benzene derivatives and comparison with ERAS model results at temperatures from (293.15 to 333.15) K
rfi	1.49300	298.15 Experimental and correlational study of phase equilibria in aqueous mixtures of phosphoric acid with aromatic hydrocarbons at various temperatures
rfi	1.49550	293.15 Infinite Dilution Activity Coefficients of Hydrocarbons in Triethylene Glycol and Tetraethylene Glycol
rfi	1.49570	293.15 Densities, Viscosities, and Refractive Indices of Binary Mixtures of Anisole with Benzene, Methylbenzene, Ethylbenzene, Propylbenzene, and Butylbenzene at (293.15 and 303.15) K

rfi	1.49020	303.15 Densities, Viscosities, and Refractive Indices of Binary Mixtures of Anisole with Benzene, Methylbenzene, Ethylbenzene, Propylbenzene, and Butylbenzene at (293.15 and 303.15) K
rfi	1.49600	293.15 Activity Coefficients at Infinite Dilution of Cylcohexylamine + Octane, Toluene, Ethylbenzene, or Aniline and Excess Molar Volumes in Binary Mixtures of Cyclohexylamine + Heptane, Octane, Nonane, Decane, Undecane, Aniline, or Water
rfi	1.49320	298.15 Vapor-Liquid Equilibria for the Binary Mixtures of Styrene with Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene
rfi	1.49304	298.15 Liquid Liquid Extraction of Aromatic Compounds from Cycloalkanes Using 1-Butyl-3-methylimidazolium Methylsulfate Ionic Liquid
rfi	1.50090	293.15 Solubilities of Methyldiphenylphosphine Oxide in Selected Solvents

rfi	1.50129		283.15	Density, Speed of Sound, and Refractive Index of the Binary Systems Cyclohexane (1) or Methylcyclohexane (1) or Cyclo-octane (1) with Benzene (2), Toluene (2), and Ethylbenzene (2) at Two Temperatures
rfi	1.49304		298.15	Density, Speed of Sound, and Refractive Index of the Binary Systems Cyclohexane (1) or Methylcyclohexane (1) or Cyclo-octane (1) with Benzene (2), Toluene (2), and Ethylbenzene (2) at Two Temperatures
rfi	1.49304		298.15	Liquid-Liquid Equilibrium for Ternary Mixtures of Hexane + Aromatic Compounds + [EMpy][ESO4] at T = 298.15 K
rfi	1.49304		298.15	Effect of the Chain Length on the Aromatic Ring in the Separation of Aromatic Compounds from Methylcyclohexane Using the Ionic Liquid 1-Ethyl-3-methylpyridinium Ethylsulfate
rfi	1.49320	1 / 2	298.15	KDB
rhol	862.50	kg/m3	298.15	Excess Molar Entalpies of Dimethyl Carbonate with o-Xylene, m-Xylene, p-Xylene, Ethylbenzene, or Ethyl Benzoate at 298.15 K

rhol	858.16	kg/m3	303.15 The density, refractive index, and thermodynamic behaviour of binary mixtures of 1,3-Diethenyl-1,1,3,3-tetramethyldisiloxane with aromatic hydrocarbons
rhol	862.51	kg/m3	298.15 (Liquid + liquid) equilibrium at T = 298.15 K for ternary mixtures of alkane + aromatic compounds + imidazolium-based ionic liquids
rhol	871.33	kg/m3	288.15 Thermophysical properties of binary mixtures of triethoxysilane, methyltriethoxysilane, vinyltriethoxysilane and 3-mercaptopropyltriethoxysilane with ethylbenzene at various temperatures
rhol	862.59	kg/m3	298.15 Thermophysical properties of binary mixtures of triethoxysilane, methyltriethoxysilane, vinyltriethoxysilane and 3-mercaptopropyltriethoxysilane with ethylbenzene at various temperatures
rhol	853.77	kg/m3	308.15 Thermophysical properties of binary mixtures of triethoxysilane, methyltriethoxysilane, vinyltriethoxysilane and 3-mercaptopropyltriethoxysilane with ethylbenzene at various temperatures

rhol	844.89	kg/m3	318.15 Thermophysical properties of binary mixtures of triethoxysilane, methyltriethoxysilane, vinyltriethoxysilane and 3-mercaptopropyltriethoxysilane with ethylbenzene at various temperatures
rhol	835.94	kg/m3	328.15 Thermophysical properties of binary mixtures of triethoxysilane, methyltriethoxysilane, vinyltriethoxysilane and 3-mercaptopropyltriethoxysilane with ethylbenzene at various temperatures
rhol	853.71	kg/m3	308.15 The physicochemical properties of 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)cyclotrisiloxane with various aromatic hydrocarbons at T = (308.15 to 323.15) K
rhol	849.29	kg/m3	313.15 The physicochemical properties of 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)cyclotrisiloxane with various aromatic hydrocarbons at T = (308.15 to 323.15) K
rhol	844.70	kg/m3	318.15 The physicochemical properties of 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)cyclotrisiloxane with various aromatic hydrocarbons at T = (308.15 to 323.15) K
rhol	840.28	kg/m3	323.15 The physicochemical properties of 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)cyclotrisiloxane with various aromatic hydrocarbons at T = (308.15 to 323.15) K

rhol	862.58	kg/m3	298.15 The physicochemical properties of 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)cyclotrisiloxane with various aromatic hydrocarbons at $T=(308.15 \text{ to } 323.15) \text{ K}$
rhol	863.54	kg/m3	298.15 Separation of ethylbenzene/styrene systems using ionic liquids in ternary LLE
rhol	862.70	kg/m3	298.15 The density, the refractive index and the adjustment of the excess thermodynamic properties by means of the multiple linear regression method for the ternary system ethylbenzene-octane-propylbenzene
rhol	853.80	kg/m3	308.15 The density, the refractive index and the adjustment of the excess thermodynamic properties by means of the multiple linear regression method for the ternary system ethylbenzene-octane-propylbenzene
rhol	844.80	kg/m3	318.15 The density, the refractive index and the adjustment of the excess thermodynamic properties by means of the multiple linear regression method for the ternary system ethylbenzene-octane-propylbenzene
rhol	862.57	kg/m3	298.15 Isobaric Vapor Liquid Equilibrium for the Binary Systems of Diethyl Carbonate with Xylene Isomers and Ethylbenzene at 101.33 kPa

Page					
Thol 862.50 kg/m3 298.15 The density, refractive index, and thermodynamic behaviour of binary mixtures of 1,3-Diethenyl-1,1,3-3-tetramethyldisiloxane with aromatic hydrocarbons Thol 862.50 kg/m3 298.15 Excess Molar Enthalpies for Dimethyl Carbonate with o-Xylene, m-Xylene, p-Xylene, Ethylbenzene or Ethyl Benzoate at 298.15 K and 10.2 MPa Thol 867.10 kg/m3 293.15 Densities and the model of t	rhol	862.51	kg/m3	298.15	Equilibria of Aqueous Mixtures of Carboxylic Acids (C1-C4) with Ethylbenzene: Thermodynamic and Mathematical
refractive index, and thermodynamic behaviour of binary mixtures of 1,3-Diethenyl-1,1,3-Jettramethyldisiloxane with aromatic hydrocarbons rhol 862.50 kg/m3 298.15 Excess Molar Enthalpies for Dimethyl Carbonate with o-Xylene, m-Xylene, p-Xylene, p-Xylene, p-Xylene, Ethylbenzene or Ethyl Benzoate at 298.15 K and 10.2 MPa rhol 867.10 kg/m3 293.15 Densities and Kinematic Viscosities of One Quinary Regular Liquid System and Its Five Quaternary Sub-Systems at Temperatures (293.15 and 298.15) K rhol 867.10 kg/m3 293.10 Vapor-Liquid Equilibria Data for Binary Systems of Ethylbenzene + Xylene Isomers	rhol	862.70	kg/m3	298.15	Vapor-Liquid Equilibrium for Binary and Ternary Systems of 2-Methoxyethanol, Ethylbenzene, and Dimethyl Sulfoxide at
rhol 862.50 kg/m3 298.15 Excess Molar Enthalpies for Dimethyl Carbonate with o-Xylene, m-Xylene, p-Xylene, Ethylbenzene or Ethyl Benzoate at 298.15 K and 10.2 MPa rhol 867.10 kg/m3 293.15 Densities and Kinematic Viscosities of One Quinary Regular Liquid System and Its Five Quaternary Sub-Systems at Temperatures (293.15 and 298.15) K rhol 867.10 kg/m3 293.10 Vapor-Liquid Equilibria Data for Binary Systems of Ethylbenzene + Xylene Isomers	rhol	862.58	kg/m3		refractive index, and thermodynamic behaviour of binary mixtures of
Enthalpies for Dimethyl Carbonate with o-Xylene, m-Xylene, p-Xylene, p-Xylene, Ethylbenzene or Ethyl Benzoate at 298.15 K and 10.2 MPa rhol 867.10 kg/m3 293.15 Densities and Kinematic Viscosities of One Quinary Regular Liquid System and Its Five Quaternary Sub-Systems at Temperatures (293.15 and 298.15) K rhol 867.10 kg/m3 293.10 Vapor-Liquid Equilibria Data for Binary Systems of Ethylbenzene + Xylene Isomers				1,0 Dictrict	with aromatic
Kinematic Viscosities of One Quinary Regular Liquid System and Its Five Quaternary Sub-Systems at Temperatures (293.15 and 298.15) K rhol 867.10 kg/m3 293.10 Vapor-Liquid Equilibria Data for Binary Systems of Ethylbenzene + Xylene Isomers	rhol	862.50	kg/m3	298.15	Enthalpies for Dimethyl Carbonate with o-Xylene, m-Xylene, p-Xylene, Ethylbenzene or Ethyl Benzoate at 298.15 K and
Equilibria Data for Binary Systems of Ethylbenzene + Xylene Isomers	rhol	867.10	kg/m3	293.15	Kinematic Viscosities of One Quinary Regular Liquid System and Its Five Quaternary Sub-Systems at Temperatures (293.15 and
	rhol	867.10	kg/m3	293.10	Equilibria Data for Binary Systems of Ethylbenzene + Xylene Isomers

rhol	862.59	kg/m3	298.15	Liquid-Liquid Equilibria in Ternary Systems of Aromatic Hydrocarbons (Toluene or Ethylbenzene) + Phenols + Water	
rhol	866.54	kg/m3	293.15	Isobaric vapor liquid equilibium for the binary systerms of 1-butanol with o-xylene, m-xylene, p-xylene, and ethylbenzene at 101.33 kPa	
rhol	862.57	kg/m3	298.15	Vapor Liquid Equilibrium for 2-Methyl-1-butanol + Ethylbenzene + Xylene Isomers at 101.33 kPa	
rhol	866.95	kg/m3	293.15	Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexadecane + Ethylbenzene or + Toluene at (293.15 to 373.15) K and 0.1 MPa	
rhol	858.15	kg/m3	303.15	Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexadecane + Ethylbenzene or + Toluene at (293.15 to 373.15) K and 0.1 MPa	
rhol	849.29	kg/m3	313.15	Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexadecane + Ethylbenzene or + Toluene at (293.15 to 373.15) K and 0.1 MPa	

rhol	840.38	kg/m3	323.15	Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexadecane + Ethylbenzene or + Toluene at (293.15 to 373.15) K and 0.1 MPa	
rhol	831.40	kg/m3	333.15	Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexadecane + Ethylbenzene or + Toluene at (293.15 to 373.15) K and 0.1 MPa	
rhol	822.30	kg/m3	343.15	Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexadecane + Ethylbenzene or + Toluene at (293.15 to 373.15) K and 0.1 MPa	
rhol	813.10	kg/m3	353.15	Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexadecane + Ethylbenzene or + Toluene at (293.15 to 373.15) K and 0.1 MPa	
rhol	803.70	kg/m3	363.15	Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexadecane + Ethylbenzene or + Toluene at (293.15 to 373.15) K and 0.1 MPa	

rhol	794.20	kg/m3	373.15	Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexadecane + Ethylbenzene or + Toluene at (293.15 to 373.15) K and 0.1 MPa	
rhol	862.55	kg/m3	298.15	Excess Enthalpies of Chloroalkylbenzene + Alkylbenzene Mixtures	
rhol	862.50	kg/m3	298.15	Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes and Aromatic Compounds at T = 313.15 K	
rhol	862.37	kg/m3	298.15	Experimental Study of the Dynamic Viscosity Deviations in the Binary Systems: Hexane + Ethylbenzene, + o-Xylene, + m-Xylene, + p-Xylene at 298.15 K	
rhol	867.00	kg/m3	293.00	KDB	
rhol	862.43	kg/m3	298.15	Acoustic and thermodynamic properties of binary mixtures of 1-nonanol with o-xylene, m-xylene, p-xylene, ethylbenzene and mesitylene at T = (298.15 and 308.15) K	
rhol	866.90	kg/m3	293.15 1,3-Diethe	The density, refractive index, and thermodynamic behaviour of binary mixtures of enyl-1,1,3,3-tetramethyldisiloxane with aromatic hydrocarbons	

rhol	871.30	kg/m3	288.15 The density, refractive index, and thermodynamic behaviour of binary mixtures of
			1,3-Diethenyl-1,1,3,3-tetramethyldisiloxane with aromatic hydrocarbons
rhol	875.69	kg/m3	283.15 The density, refractive index, and thermodynamic behaviour of binary mixtures of
			1,3-Diethenyl-1,1,3,3-tetramethyldisiloxane with aromatic hydrocarbons
rhol	862.51	kg/m3	298.15 Phase behavior of ternary mixtures {aliphatic hydrocarbon + aromatic hydrocarbon + ionic liquid}: Experimental LLE data and their modeling by COSMO-RS
rhol	849.26	kg/m3	313.15 Experimental density, viscosity, interfacial tension and water solubility of ethyl benzene - a-methyl benzyl alcohol - water system
rhol	853.68	kg/m3	308.15 Experimental density, viscosity, interfacial tension and water solubility of ethyl benzene - a-methyl benzyl alcohol - water system
rhol	858.10	kg/m3	303.15 Experimental density, viscosity, interfacial tension and water solubility of ethyl benzene - a-methyl benzyl alcohol - water system

rhol	862.51	kg/m3	298.15	Experimental density, viscosity, interfacial tension and water solubility of ethyl benzene - a-methyl benzyl alcohol - water system	
rhol	853.61	kg/m3	308.15	Acoustic and thermodynamic properties of binary mixtures of 1-nonanol with o-xylene, m-xylene, p-xylene, ethylbenzene and mesitylene at T = (298.15 and 308.15) K	
rhol	862.70	kg/m3	298.15	Densities and Kinematic Viscosities of One Quinary Regular Liquid System and Its Five Quaternary Sub-Systems at Temperatures (293.15 and 298.15) K	
rhol	862.55	kg/m3		Effect of temperature and composition on the density, refractive index, and excess quantities of binary mixtures of c,6,8-tetramethyl-2,4,6 with aromatic hydrocarbons	
rhol	835.93	kg/m3		Effect of temperature and composition on the density, refractive index, and excess quantities of binary mixtures of .,6,8-tetramethyl-2,4,6 ethenylcyclotetrasilox with aromatic hydrocarbons	

rhol	844.87	kg/m3	318.15 Effect of temperature and composition on the density, refractive index, and excess quantities of binary mixtures of 2,4,6,8-tetramethyl-2,4,6,8-
			tetraethenylcyclotetrasiloxane with aromatic hydrocarbons
rhol	853.75	kg/m3	308.15 Effect of temperature and composition on the density, refractive index, and excess quantities of binary mixtures of 2,4,6,8-tetramethyl-2,4,6,8-tetraethenylcyclotetrasiloxane with aromatic hydrocarbons
rhol	871.31	kg/m3	288.15 Effect of temperature and composition on the density, refractive index, and excess quantities of binary mixtures of 2,4,6,8-tetramethyl-2,4,6,8-tetraethenylcyclotetrasiloxane with aromatic hydrocarbons
rhol	822.10	kg/m3	343.15 Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K
rhol	831.20	kg/m3	333.15 Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K

rhol	840.30	kg/m3	323.15	Densities and volumetric properties of (N-acetylmorpholine
				+ aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K
rhol	849.30	kg/m3	313.15	Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K
rhol	858.30	kg/m3	303.15	Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K
rhol	867.20	kg/m3	293.15	Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from T = (293.15 to 343.15) K
rhol	862.50	kg/m3	298.15	Bubble point measurements of binary mixtures formed by ethyl benzene with selected compounds at 95.35 kPa
rhol	862.97	kg/m3	298.15 t	Phase behaviour of ricyanomethanide-based ionic liquids with alcohols and hydrocarbons
rhol	862.97	kg/m3	298.15 1-t tris(pen	Phase behaviour of ionic liquid butyl-1-methylpyrrolidinium tafluoroethyl)trifluorophosphate with alcohols, water and aromatic hydrocarbons

rhol	862.55	kg/m3	298.15	Thermodynamic study of 1,1,2,2-tetrachloroethane + hydrocarbon mixtures I. Excess and solvation enthalpies	
rhol	862.70	kg/m3	298.15	Densities and Kinematic Viscosities of a Quinary Regular Liquid System and Its Five Quaternary Subsystems at 293.15A K and 298.15A K	
rhol	867.10	kg/m3	293.15	Densities and Kinematic Viscosities of a Quinary Regular Liquid System and Its Five Quaternary Subsystems at 293.15A K and 298.15A K	
rhol	862.50	kg/m3	298.15	Thermodynamics of Ternary Liquid Mixtures Containing Toluene, Ethylbenzene, and Chlorobenzene	
sfust	51.43	J/mol×K	178.17	NIST Webbook	
sfust	51.54	J/mol×K	178.15	NIST Webbook	
sfust	51.48	J/mol×K	178.00	NIST Webbook	
speedsl	1256.29	m/s	313.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	

speedsl	1319.00	m/s	298.15	Densities, Speeds of Sound, Excess Molar Volumes, and Excess Isentropic Compressibilities at T = (298.15 and 308.15) K for Methyl Methacrylate + 1-Alkanols (1-Butanol, 1-Pentanol, and 1-Heptanol) + Cyclohexane, + Benzene, + Toluene, + p-Xylene, and + Ethylbenzene	
speedsl	1213.59	m/s	323.15	Temperature influence on mixing properties of {ethyl tert-butyl ether (ETBE) + gasoline additives}	
speedsl	1316.23	m/s	298.15	Temperature influence on mixing properties of {ethyl tert-butyl ether (ETBE) + gasoline additives}	
speedsl	1359.11	m/s	288.15	Temperature influence on mixing properties of {ethyl tert-butyl ether (ETBE) + gasoline additives}	
speedsl	1216.34	m/s	323.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1226.09	m/s	320.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	

speedsl	1236.06	m/s	318.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1246.12	m/s	315.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1276.00	m/s	308.15	Densities, Speeds of Sound, Excess Molar Volumes, and Excess Isentropic Compressibilities at T = (298.15 and 308.15) K for Methyl Methacrylate + 1-Alkanols (1-Butanol, 1-Pentanol, and 1-Heptanol) + Cyclohexane, + Benzene, + Toluene, + p-Xylene, and + Ethylbenzene	
speedsl	1266.54	m/s	310.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1276.75	m/s	308.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1287.09	m/s	305.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	

speedsl	1297.48	m/s	303.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1307.90	m/s	300.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1340.00	m/s	293.15	Densities, Speeds of Sound, and Isentropic Compressibilities of Binary Mixtures of {Alkan-1-ols + 1,2-Dimethylbenzene, or 1,3-Dimethylbenzene, or 1,4-Dimethylbenzene, or Ethylbenzene) at (293.15, 303.15, and 313.15) K	
speedsl	1328.86	m/s	295.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1339.40	m/s	293.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	
speedsl	1349.91	m/s	290.65	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives	

speedsl	1360.73	m/s	288.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives
speedsl	1298.00	m/s	303.15	Densities, Speeds of Sound, and Isentropic Compressibilities of Binary Mixtures of {Alkan-1-ols + 1,2-Dimethylbenzene, or 1,3-Dimethylbenzene, or 1,4-Dimethylbenzene, or thylbenzene, or Ethylbenzene) at (293.15, 303.15, and 313.15) K
speedsl	1318.36	m/s	298.15	Influence of Temperature on Thermodynamic Properties of Methyl t-Butyl Ether (MTBE)+Gasoline Additives
speedsl	1257.00	m/s	313.15	Densities, Speeds of Sound, and Isentropic Compressibilities of Binary Mixtures of {Alkan-1-ols + 1,2-Dimethylbenzene, or 1,3-Dimethylbenzene, or 1,4-Dimethylbenzene, or thylbenzene, or Ethylbenzene) at (293.15, 303.15, and 313.15) K
srf	0.03	N/m	298.15	Densities and Surface Tensions of Propyl Acetate + Xylenes or + Ethylbenzene from (298.15 to 308.15) K

srf	0.03	N/m	323.15	Thermo Physical Properties of 4-Hydroxy 4-Methyl Pentanone with Nitrobenzene or Ethyl Benzene at Temperatures of (303.15, 313.15, and 323.15) K and a Pressure of 0.1 MPa	
srf	0.03	N/m	313.15	Thermo Physical Properties of 4-Hydroxy 4-Methyl Pentanone with Nitrobenzene or Ethyl Benzene at Temperatures of (303.15, 313.15, and 323.15) K and a Pressure of 0.1 MPa	
srf	0.03	N/m	303.15	Thermo Physical Properties of 4-Hydroxy 4-Methyl Pentanone with Nitrobenzene or Ethyl Benzene at Temperatures of (303.15, 313.15, and 323.15) K and a Pressure of 0.1 MPa	
srf	0.03	N/m	308.15	Densities and Surface Tensions of Propyl Acetate + Xylenes or + Ethylbenzene from (298.15 to 308.15) K	
srf	0.03	N/m	303.15	Densities and Surface Tensions of Propyl Acetate + Xylenes or + Ethylbenzene from (298.15 to 308.15) K	
srf	0.03	N/m	293.20	KDB	
svapt	144.50	J/mol×K	294.01	NIST Webbook	

tcondl	0.13	W/m×K	277.34	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.13	W/m×K	277.88	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.13	W/m×K	277.65	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.13	W/m×K	295.86	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.14	W/m×K	258.50	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

tcondl	0.14	W/m×K	258.29	Thermal
toonal	0.14	VV/IIIAIX	250.25	Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.14	W/m×K	258.00	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.13	W/m×K	296.19	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.13	W/m×K	296.42	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.12	W/m×K	312.38	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons

tcondl	0.12	W/m×K	312.72	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	312.96	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	329.41	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	329.66	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	329.05	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

Pressure Dependent Properties

Information

Correlations

Information	Value
Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.44625e+01
Coeff. B	-3.59099e+03
Coeff. C	-4.45680e+01
Temperature range (K), min.	297.90
Temperature range (K), max.	436.98

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	7.97937e+01
Coeff. B	-7.63808e+03
Coeff. C	-9.55398e+00
Coeff. D	5.65318e-06
Temperature range (K), min.	178.15
Temperature range (K), max.	617.17

Value

Datasets

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
253.23	100.00	0.0012005
253.22	1000.00	0.0012109
253.21	5000.00	0.0012585
253.22	10000.00	0.0013112
253.24	15000.00	0.0013678
253.23	20000.00	0.0014227
253.23	25000.00	0.0014793
253.24	30000.00	0.0015353
253.22	35000.00	0.0015933
263.22	100.00	0.0010207
263.22	1000.00	0.0010280
263.21	5000.00	0.0010633
263.20	10000.00	0.0011101
263.20	15000.00	0.0011601
263.21	20000.00	0.0012071
263.21	25000.00	0.0012568
263.22	30000.00	0.0013044
263.21	35000.00	0.0013502
273.21	100.00	0.0008832
273.17	1000.00	0.0008919
273.15	5000.00	0.0009249
273.18	10000.00	0.0009635
273.19	15000.00	0.0010026
273.15	20000.00	0.0010421
273.16	25000.00	0.0010818
273.15	30000.00	0.0011232
273.15	35000.00	0.0011632
283.16	100.00	0.0007737
283.13	1000.00	0.0007784
283.16	5000.00	0.0008028
283.14	10000.00	0.0008372
283.17	15000.00	0.0008678
283.15	20000.00	0.0009017
283.17	25000.00	0.0009314
283.16	30000.00	0.0009641
283.16	35000.00	0.0009964
293.26	100.00	0.0006786
293.20	1000.00	0.0006832
293.18	5000.00	0.0007056

293.24	10000.00	0.0007327
293.23	15000.00	0.0007607
293.24	20000.00	0.0007871
293.22	25000.00	0.0008173
293.24	30000.00	0.0008447
293.26	35000.00	0.0008724
303.15	100.00	0.0006033
303.17	1000.00	0.0006074
303.18	5000.00	0.0006268
303.20	10000.00	0.0006499
303.19	15000.00	0.0006744
303.17	20000.00	0.0006989
303.18	25000.00	0.0007235
303.19	30000.00	0.0007502
303.18	35000.00	0.0007739
313.12	100.00	0.0005386
313.12	1000.00	0.0005427
313.11	5000.00	0.0005596
313.10	10000.00	0.0005812
313.12	15000.00	0.0006039
313.09	20000.00	0.0006261
313.10	25000.00	0.0006490
313.08	30000.00	0.0006722
313.10	35000.00	0.0006940
322.97	100.00	0.0004865
322.98	1000.00	0.0004895
322.98	5000.00	0.0005042
322.98	10000.00	0.0005245
322.98	15000.00	0.0005440
322.97	20000.00	0.0005648
322.98	25000.00	0.0005856
322.98	30000.00	0.0006060
322.98	35000.00	0.0006259
332.91	100.00	0.0004422
332.92	1000.00	0.0004448
332.91	5000.00	0.0004595
332.92	10000.00	0.0004780
332.92	15000.00	0.0004961
332.92	20000.00	0.0005149
332.92	25000.00	0.0005331
332.92	30000.00	0.0005516
332.92	35000.00	0.0005706
342.81	100.00	0.0004022
342.80	1000.00	0.0004049

342.81	5000.00	0.0004186
342.80	10000.00	0.0004356
342.80	15000.00	0.0004524
342.80	20000.00	0.0004691
342.80	25000.00	0.0004869
342.80	30000.00	0.0005045
342.80	35000.00	0.0005223
352.73	100.00	0.0003693
352.73	1000.00	0.0003720
352.72	5000.00	0.0003851
352.73	10000.00	0.0004003
352.73	15000.00	0.0004164
352.72	20000.00	0.0004335
352.73	25000.00	0.0004495
352.73	30000.00	0.0004654
352.72	35000.00	0.0004807
362.66	100.00	0.0003390
362.66	1000.00	0.0003418
362.66	5000.00	0.0003538
362.67	10000.00	0.0003685
362.66	15000.00	0.0003838
362.66	20000.00	0.0003986
362.66	25000.00	0.0004137
362.66	30000.00	0.0004289
362.67	35000.00	0.0004429
372.61	100.00	0.0003127
372.60	1000.00	0.0003155
372.59	5000.00	0.0003272
372.59	10000.00	0.0003410
372.59	15000.00	0.0003541
372.59	20000.00	0.0003688
372.59	25000.00	0.0003822
372.59	30000.00	0.0003967
372.59	35000.00	0.0004108

Reference

https://www.doi.org/10.1016/j.jct.2015.11.027

Refractive index (Na D-line)

Pressure, kPa - Liquid	Temperature, K - Liquid	Refractive index (Na D-line) - Liquid
93.00	298.15	1.493

Mass density, kg/m3

292.25 100.00 867.0 292.25 5000.00 870.8 292.25 9900.00 874.0 292.25 19700.00 881.3 292.25 29500.00 897.1 292.25 39300.00 893.0 292.25 49100.00 898.5 292.25 58900.00 903.8 313.45 100.00 849.1 313.45 5000.00 853.1 313.45 19700.00 864.4 313.45 29500.00 871.4 313.45 39300.00 877.6 313.45 49100.00 883.6 313.45 49100.00 883.6 313.45 58900.00 889.4 336.55 100.00 828.7 336.55 19700.00 845.8 336.55 19700.00 845.8 336.55 19700.00 845.8 336.55 39300.00 860.9 336.55 39300.00 860.9 336.55 </th <th>Temperature, K - Liquid</th> <th>Pressure, kPa - Liquid</th> <th>Mass density, kg/m3 - Liquid</th>	Temperature, K - Liquid	Pressure, kPa - Liquid	Mass density, kg/m3 - Liquid
292.25 9900.00 874.0 292.25 19700.00 881.3 292.25 29500.00 887.1 292.25 39300.00 893.0 292.25 49100.00 898.5 292.25 58900.00 903.8 313.45 100.00 849.1 313.45 5000.00 853.1 313.45 19700.00 864.4 313.45 29500.00 871.4 313.45 39300.00 877.6 313.45 49100.00 883.6 313.45 58900.00 889.4 336.55 100.00 828.7 336.55 5000.00 833.6 336.55 990.00 838.5 336.55 19700.00 845.8 336.55 39300.00 860.9 336.55 39300.00 860.9 336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 19700.00 827.6 358.81 19700.00 827.6 358.81 29500.00 836.8 358.81 3900.00 827.6 <t< td=""><td>292.25</td><td>100.00</td><td>867.0</td></t<>	292.25	100.00	867.0
292.25 19700.00 881.3 292.25 29500.00 887.1 292.25 39300.00 893.0 292.25 49100.00 898.5 292.25 58900.00 903.8 313.45 100.00 849.1 313.45 5000.00 853.1 313.45 19700.00 864.4 313.45 29500.00 871.4 313.45 39300.00 877.6 313.45 49100.00 883.6 313.45 58900.00 889.4 336.55 100.00 828.7 336.55 5000.00 833.6 336.55 19700.00 845.8 336.55 29500.00 854.0 336.55 39300.00 860.9 336.55 39300.00 867.8 336.55 39300.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 5000.00 814.5 358.81 19700.00 827.6 358.81 39300.00 836.8 358.81 39300.00 858.6 358.81 3900.00 858.6 358.81 3900.00 858.6 <	292.25	5000.00	870.8
292.25 29500.00 887.1 292.25 39300.00 893.0 292.25 49100.00 898.5 292.25 58900.00 903.8 313.45 100.00 849.1 313.45 5000.00 853.1 313.45 19700.00 864.4 313.45 29500.00 871.4 313.45 39300.00 877.6 313.45 49100.00 883.6 313.45 58900.00 889.4 336.55 100.00 828.7 336.55 5000.00 838.5 336.55 9900.00 838.5 336.55 19700.00 845.8 336.55 39300.00 860.9 336.55 39300.00 860.9 336.55 4910.00 867.8 336.55 4910.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 1900.00 827.6 358.81 19700.00 827.6 358.81 39300.00 858.6 358.81 39300.00 858.6 358.81 3900.00 858.6 358.81 3900.00 858.6	292.25	9900.00	874.0
292.25 39300.00 898.5 292.25 49100.00 898.5 292.25 58900.00 903.8 313.45 100.00 849.1 313.45 5000.00 853.1 313.45 19700.00 864.4 313.45 29500.00 871.4 313.45 39300.00 877.6 313.45 49100.00 883.6 313.45 58900.00 889.4 336.55 100.00 828.7 336.55 5000.00 833.6 336.55 19700.00 845.8 336.55 29500.00 854.0 336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 336.55 58900.00 873.6 336.55 100.00 867.8 336.55 49100.00 867.8 336.55 58900.00 873.6 336.81 100.00 820.0 358.81 19700.00 827.6 358.81 19700.00 827.6 358.81 19700.00 858.6 358.81 49100.00 858.6 358.81 49100.00 858.6	292.25	19700.00	881.3
292.25 49100.00 898.5 292.25 58900.00 903.8 313.45 100.00 849.1 313.45 5000.00 853.1 313.45 19700.00 864.4 313.45 29500.00 871.4 313.45 39300.00 877.6 313.45 49100.00 883.6 313.45 58900.00 889.4 336.55 100.00 828.7 336.55 5000.00 833.6 336.55 9900.00 838.5 336.55 19700.00 845.8 336.55 29500.00 860.9 336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 100.00 820.0 358.81 19700.00 827.6 358.81 19700.00 836.8 358.81 39300.00 844.8 358.81 39300.00 868.6 358.81 39300.00 868.6 358.81 39300.00 868.6 358.81 39300.00 868.6 358.81 39300.00 868.6 <	292.25	29500.00	887.1
292.25 58900.00 903.8 313.45 100.00 849.1 313.45 5000.00 853.1 313.45 19700.00 864.4 313.45 29500.00 871.4 313.45 39300.00 877.6 313.45 49100.00 883.6 313.45 58900.00 889.4 336.55 100.00 828.7 336.55 5000.00 833.6 336.55 9900.00 838.5 336.55 19700.00 845.8 336.55 29500.00 860.9 336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 1900.00 820.0 358.81 19700.00 827.6 358.81 3900.00 836.8 358.81 3900.00 854.8 358.81 3900.00 852.4 358.81 3900.00 858.6 358.81 49100.00 858.6	292.25	39300.00	893.0
313.45 100.00 849.1 313.45 5000.00 853.1 313.45 19700.00 864.4 313.45 29500.00 871.4 313.45 39300.00 877.6 313.45 49100.00 883.6 313.45 58900.00 889.4 336.55 100.00 828.7 336.55 5000.00 838.5 336.55 9900.00 838.5 336.55 19700.00 845.8 336.55 29500.00 854.0 336.55 39300.00 860.9 336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 1900.00 820.0 358.81 19700.00 827.6 358.81 19700.00 852.4 358.81 39300.00 844.8 358.81 3900.00 852.4 358.81 3900.00 858.6 358.81 3900.00 858.	292.25	49100.00	898.5
313.45 5000.00 853.1 313.45 19700.00 864.4 313.45 29500.00 871.4 313.45 39300.00 877.6 313.45 49100.00 883.6 331.45 58900.00 889.4 336.55 100.00 828.7 336.55 5000.00 833.6 336.55 9900.00 838.5 336.55 19700.00 845.8 336.55 29500.00 854.0 336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 9900.00 820.0 358.81 19700.00 827.6 358.81 29500.00 836.8 358.81 39300.00 844.8 358.81 39300.00 844.8 358.81 39300.00 852.4 358.81 39300.00 856.6 358.81 58900.00 793.0 382.95 9900.00	292.25	58900.00	903.8
313.45 19700.00 864.4 313.45 29500.00 871.4 313.45 39300.00 877.6 313.45 49100.00 883.6 313.45 58900.00 889.4 336.55 100.00 828.7 336.55 5000.00 833.6 336.55 9900.00 838.5 336.55 19700.00 845.8 336.55 29500.00 854.0 336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 5000.00 814.5 358.81 19700.00 827.6 358.81 19700.00 827.6 358.81 39300.00 844.8 358.81 39300.00 856.6 358.81 3900.00 856.6 358.81 5890.00 856.6 358.81 58900.00 793.0 382.95 5000.00 793.0 382.95 19700.00 8	313.45	100.00	849.1
313.45 29500.00 871.4 313.45 39300.00 877.6 313.45 49100.00 883.6 313.45 58900.00 889.4 336.55 100.00 828.7 336.55 5000.00 833.6 336.55 9900.00 838.5 336.55 19700.00 845.8 336.55 29500.00 854.0 336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 5000.00 814.5 358.81 19700.00 827.6 358.81 29500.00 836.8 358.81 29500.00 852.4 358.81 39300.00 844.8 358.81 39300.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 19700.00 808.1	313.45	5000.00	853.1
313.45 39300.00 877.6 313.45 49100.00 883.6 313.45 58900.00 889.4 336.55 100.00 828.7 336.55 5000.00 833.6 336.55 9900.00 838.5 336.55 19700.00 845.8 336.55 29500.00 854.0 336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 5000.00 814.5 358.81 19700.00 827.6 358.81 29500.00 836.8 358.81 39300.00 844.8 358.81 39300.00 852.4 358.81 49100.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 19700.00 808.1	313.45	19700.00	864.4
313.45 49100.00 883.6 313.45 58900.00 889.4 336.55 100.00 828.7 336.55 5000.00 833.6 336.55 9900.00 838.5 336.55 19700.00 845.8 336.55 29500.00 854.0 336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 5000.00 814.5 358.81 19700.00 827.6 358.81 29500.00 836.8 358.81 39300.00 844.8 358.81 39300.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 19700.00 808.1	313.45	29500.00	871.4
313.45 58900.00 889.4 336.55 100.00 828.7 336.55 5000.00 833.6 336.55 9900.00 838.5 336.55 19700.00 845.8 336.55 29500.00 854.0 336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 5000.00 814.5 358.81 19700.00 827.6 358.81 29500.00 836.8 358.81 39300.00 844.8 358.81 39300.00 852.4 358.81 58900.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 19700.00 808.1	313.45	39300.00	877.6
336.55 100.00 828.7 336.55 5000.00 833.6 336.55 9900.00 845.8 336.55 19700.00 845.8 336.55 29500.00 854.0 336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 5000.00 814.5 358.81 19700.00 827.6 358.81 19700.00 836.8 358.81 39300.00 844.8 358.81 39300.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 19700.00 808.1	313.45	49100.00	883.6
336.55 5000.00 833.6 336.55 9900.00 838.5 336.55 19700.00 845.8 336.55 29500.00 854.0 336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 5000.00 814.5 358.81 9900.00 820.0 358.81 19700.00 827.6 358.81 29500.00 836.8 358.81 39300.00 844.8 358.81 39300.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 19700.00 808.1	313.45	58900.00	889.4
336.55 9900.00 838.5 336.55 19700.00 845.8 336.55 29500.00 854.0 336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 5000.00 814.5 358.81 19700.00 820.0 358.81 29500.00 836.8 358.81 29500.00 836.8 358.81 39300.00 844.8 358.81 3900.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 9900.00 799.0 382.95 19700.00 808.1	336.55	100.00	828.7
336.55 19700.00 845.8 336.55 29500.00 854.0 336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 5000.00 814.5 358.81 9900.00 820.0 358.81 19700.00 827.6 358.81 29500.00 836.8 358.81 39300.00 844.8 358.81 49100.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 19700.00 808.1	336.55	5000.00	833.6
336.55 29500.00 854.0 336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 5000.00 814.5 358.81 9900.00 820.0 358.81 19700.00 827.6 358.81 29500.00 836.8 358.81 39300.00 844.8 358.81 49100.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 19700.00 808.1	336.55	9900.00	838.5
336.55 39300.00 860.9 336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 5000.00 814.5 358.81 9900.00 820.0 358.81 19700.00 827.6 358.81 29500.00 836.8 358.81 39300.00 844.8 358.81 49100.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 9900.00 799.0 382.95 19700.00 808.1	336.55	19700.00	845.8
336.55 49100.00 867.8 336.55 58900.00 873.6 358.81 100.00 808.4 358.81 5000.00 814.5 358.81 9900.00 820.0 358.81 19700.00 827.6 358.81 29500.00 836.8 358.81 39300.00 844.8 358.81 49100.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 9900.00 799.0 382.95 19700.00 808.1	336.55	29500.00	854.0
336.55 58900.00 873.6 358.81 100.00 808.4 358.81 5000.00 814.5 358.81 9900.00 820.0 358.81 19700.00 827.6 358.81 29500.00 836.8 358.81 39300.00 844.8 358.81 49100.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 9900.00 799.0 382.95 19700.00 808.1	336.55	39300.00	860.9
358.81 100.00 808.4 358.81 5000.00 814.5 358.81 9900.00 820.0 358.81 19700.00 827.6 358.81 29500.00 836.8 358.81 39300.00 844.8 358.81 49100.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 9900.00 799.0 382.95 19700.00 808.1	336.55	49100.00	867.8
358.81 5000.00 814.5 358.81 9900.00 820.0 358.81 19700.00 827.6 358.81 29500.00 836.8 358.81 39300.00 844.8 358.81 49100.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 9900.00 799.0 382.95 19700.00 808.1	336.55	58900.00	873.6
358.81 9900.00 820.0 358.81 19700.00 827.6 358.81 29500.00 836.8 358.81 39300.00 844.8 358.81 49100.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 9900.00 799.0 382.95 19700.00 808.1	358.81	100.00	808.4
358.81 19700.00 827.6 358.81 29500.00 836.8 358.81 39300.00 844.8 358.81 49100.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 9900.00 799.0 382.95 19700.00 808.1	358.81	5000.00	814.5
358.81 29500.00 836.8 358.81 39300.00 844.8 358.81 49100.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 9900.00 799.0 382.95 19700.00 808.1	358.81	9900.00	820.0
358.81 39300.00 844.8 358.81 49100.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 9900.00 799.0 382.95 19700.00 808.1	358.81	19700.00	827.6
358.81 49100.00 852.4 358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 9900.00 799.0 382.95 19700.00 808.1	358.81	29500.00	836.8
358.81 58900.00 858.6 382.95 5000.00 793.0 382.95 9900.00 799.0 382.95 19700.00 808.1	358.81	39300.00	844.8
382.95 5000.00 793.0 382.95 9900.00 799.0 382.95 19700.00 808.1	358.81	49100.00	852.4
382.95 9900.00 799.0 382.95 19700.00 808.1	358.81	58900.00	858.6
382.95 19700.00 808.1	382.95	5000.00	793.0
	382.95	9900.00	799.0
382.95 29500.00 818.2	382.95	19700.00	808.1
	382.95	29500.00	818.2

382.95	39300.00	827.1
382.95	49100.00	835.1
382.95	58900.00	842.5
408.05	5000.00	770.4
408.05	9900.00	777.3
408.05	19700.00	788.5
408.05	29500.00	799.7
408.05	39300.00	809.5
408.05	49100.00	817.9
408.05	58900.00	826.0
434.45	5000.00	746.0
434.45	9900.00	754.4
434.45	19700.00	768.1
434.45	29500.00	780.5
434.45	39300.00	791.0
434.45	49100.00	800.4
434.45	58900.00	808.6
461.85	5000.00	718.6
461.85	9900.00	728.8
461.85	19700.00	746.2
461.85	29500.00	760.0
461.85	39300.00	771.7
461.85	49100.00	782.3
461.85	58900.00	791.0
490.15	5000.00	687.0
490.15	9900.00	700.0
490.15	19700.00	720.9
490.15	29500.00	737.2
490.15	39300.00	750.7
490.15	49100.00	762.9
490.15	58900.00	773.2
		The state of the s

Reference

https://www.doi.org/10.1016/j.jct.2005.03.006

Sources

https://www.doi.org/10.1016/j.jct.2018.09.023 https://www.doi.org/10.1021/je500050p https://www.doi.org/10.1021/je800325d https://www.doi.org/10.1021/je6005696 https://www.doi.org/10.1021/je030151s

```
https://www.doi.org/10.1021/je800754w
          of Organic Compounds in
      This ontendes to pitale he his lity in a printing the his lity in a printing the his little has been a pitaled to the his little his
                                                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/acs.jced.9b00243
                                                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.7b00699
                                                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2010.01.004
measurements of activity coefficients and print and the print of activity coefficients and print activity coefficients and print activity coefficients attaining the print of activity coefficients attaining the print of activity coefficients attaining the print of activity of the print of the print
      measurements of activity coefficients
โลติทิศเหล สทองเป็ดเปล่งอาเป็นได้เปล่าเหตุ ลัดเล้า
                                                                                                                                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/je201053v
                                                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2013.09.044
      description thermodulations for the strip of the strip of
   Velocities of Binary Mixtures of Entivitie reafficient Entantinite Privitieno, after panica solute souths and a tiguis) K: after panica solute souths and a tiguis) K: after panica solute south a tiguis of the party solution at the party solution and the party solution at the party solution and the
          Velocities of Binary Mixtures of
                                                                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2010.02.006
                                                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2016.11.019
                                                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2012.03.005
                                                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2014.03.003
                                                                                                                                                                                                                                                                                                                                                                                                                        https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=653
                                                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2016.09.003
                                                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2008.07.009
        (N-acetylmorpholine + aromatic
Wyarowandowy sinary mixtures from T =
                                                                                                                                                                                                                                                                                                                                                                                                                      http://webbook.nist.gov/cgi/cbook.cgi?ID=C100414&Units=SI
        (293.15 to 343.15) K:
Activity coefficients at infinite dilution
   Activity coefficients at infinite dilution of organic solutes in lacknyich capardriale discutilibrium pates for the Birary level on a foliage by level on 
                                                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1016/j.jct.2015.02.023
   of Alkanes, Alkenes, and Alkyl Beazeness Alkeness Alkenes, and Alkyl Beazeness Alkeness Alkene
                                                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/acs.jced.6b00655
                                                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2007.08.001
```

Activity Coefficients at Infinite Dilution

of State:

```
Experimental density, viscosity,
                                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2013.03.023
         interfacial tension and water solubility
      स्विक्षणं स्वित्वणं स्वत्वणं स्वत्वणं स्वत्य
                                                                                                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/je200098d
                                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2011.11.021
                                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2018.05.017
    separation based on activity

***Correction Solution in iteration in i
      THOSE ANTERING WATER AND THE LEGISTICS TO THE SEMENT OF TH
      mixed solvent systems:
Densities and Viscosities of Binary
                                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je7006549
    Mixtures of Vitamin K3 with Benzene,
Seneral personal property of the property
                                                                                                                                                                                                                                                                                                                                                                                                            https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=653
   Trigonomic solutes and water in the ionic liquid ALP Inchiper (Inchiper Inchiper Inc
      https://www.doi.org/10.1021/je900890u
                                                                                                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2015.11.027
                                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je8009336
                                                                                                                                                                                                                                                                                                                                                                                                        https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
Tennswinds at T = 313.15 K.
Activity coefficients at infinite dilution of organic solutes in N. Tennswinds of organic solutes in N. Tennswinds of organic solutes in N. Tennswinds of the formulation of organic solutes in N. Tennswinds of the formulation of organic solutes in N. Tennswinds of the formulation of organic solution at infinite dilution of organic solutions at infinite dilution altrophysical plants of the formulation 
         COASUMAS at T = 313.15 K:
Activity coefficients at infinite dilution
                                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2013.02.006
                                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2012.05.010
                                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2015.06.046
                                                                                                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.fluid.2012.09.009
        Toluene, o-Xylene, Ethylbenzene,
```

Methanol, Ethanol, 2-Propanol, and Sodium Hydroxide Solutions:

```
Densities and excess volumes of
                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2006.07.022
       binary mixtures of
          NavsitiestayddiaaasidiswahBiramatic
                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je049572f
       Nighwean por late with the compensation of the
https://www.doi.org/10.1021/je0503554
Constanting light framer sins of Mixtures
Constanting light framer sins of Mixtures
Constanting light framer sins of Mixtures
Lond and the constant of t
       of Organic Solutes in
                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1007/s10765-009-0667-2
     និស្សាត្តអាចក្នុងក្នុងស្រ្តាស្រ្តក្នុងក្នុងស្រ្តាស្ត្រ
សមានក្នុងស្រ្តាស្ត្រី (អ៊ីទី) ក្រុងប្រកាសក្នុងស្រ្តាស្ត្រី (អ៊ីទី) ក្នុងប្រកាសក្នុងស្រ្តាស្ត្រី (អ៊ីទី) ក្រុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្រាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រសាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្តិសិសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុងប្រកាសក្នុង
                                                                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2016.07.017
 https://www.doi.org/10.1021/je0301850
https://www.doi.org/10.1021/je0301850
https://www.doi.org/10.1021/je0301850
https://www.doi.org/10.1016/j.fluid.2010.10.008
https://www.doi.org/10.1016/j.fluid.2010.10.008
https://www.doi.org/10.1016/j.fluid.2010.10.008
https://www.doi.org/10.1016/j.fluid.2010.10.008
https://www.doi.org/10.1016/j.fluid.2010.008.016
https://www.doi.org/10.1016/j.fluid.2010.08.016
https://www.doi.org/10.1016/j.fluid.2010.08.016
https://www.doi.org/10.1016/j.jct.2007.05.005
https://www.doi.org/10.1016/j.jct.2007.05.005
https://www.doi.org/10.1016/j.jct.2012.04.016
https://www.doi.org/10.1016/j.jct.2012.04.016
https://www.doi.org/10.1016/j.jct.2012.04.016
https://www.doi.org/10.1016/j.jct.2012.04.016
https://www.doi.org/10.1021/je9003178
https://www.doi.org/10.1021/je9003178
https://www.doi.org/10.1016/j.jct.2011.06.007
h
                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je0301850
                                                                                                                                                                                                                                                                                                                                                                       https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=653
       ionic liquid
Activity specificients at infinite dilution
measurements for organic solutes and
water of the ion activity coefficients,
                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2009.06.011
                                                                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2006.07.015
    https://www.doi.org/10.1016/j.jct.2012.06.009
                                                                                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/je100998r
                                                                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1021/je0602723
                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2013.01.027
        with alcohols, water and aromatic
```

hydrocarbons:

(Liquid-liquid) equilibria for ternary and quaternary systems of representative conjiponative yestems of representative yestems of representat (Liquid-liquid) equilibria for ternary and https://www.doi.org/10.1016/j.fluid.2013.03.022 The stationary phases at infinite Dilution in the same of or organic Solutes Dissolved in Three is an argument of the same of measurements for organic solutes and Refeartive endex and Vapor-Liquid measurements for organic solutes and Wapor-Liquid
Equivipient letter for the Bipary dazolium
Massive the Bis of the B **Saparatione** of bain a round in tures Hater an inclosing unitaria. The support of the sup at intinite ciliution of aromatic and Angivercopylicientsons infiliated by the control of the cilium Beazenes will be study of molecular interpolations selectly smitting the material will be successful to the selection of the Coefficients at Infinite Dilution:

https://www.doi.org/10.1016/j.fluid.2007.09.021 https://www.doi.org/10.1007/s10765-014-1759-1 https://www.doi.org/10.1016/j.fluid.2018.09.024 https://www.doi.org/10.1016/j.fluid.2016.10.009 https://www.doi.org/10.1016/j.jct.2011.06.015 https://www.doi.org/10.1016/j.fluid.2009.08.017 https://www.doi.org/10.1021/acs.jced.8b00348 https://www.doi.org/10.1016/j.fluid.2015.08.031 https://www.doi.org/10.1016/j.fluid.2012.08.004 https://www.doi.org/10.1016/j.fluid.2017.06.001 https://www.doi.org/10.1016/j.fluid.2009.01.011 https://www.doi.org/10.1016/j.fluid.2007.01.042 https://www.doi.org/10.1016/j.jct.2017.03.004 https://www.doi.org/10.1016/j.jct.2014.06.006 https://www.doi.org/10.1016/j.jct.2008.01.004 https://www.doi.org/10.1016/j.fluid.2016.02.004 https://www.doi.org/10.1016/j.fluid.2016.05.032 https://www.doi.org/10.1021/je9002724 https://www.doi.org/10.1016/j.jct.2018.02.014 https://www.doi.org/10.1016/j.fluid.2014.03.003 https://www.doi.org/10.1021/acs.jced.9b00341 https://en.wikipedia.org/wiki/Joback_method

Binary and ternary LLE data of the https://www.doi.org/10.1016/j.jct.2011.10.021 intervalue of the system (ethylbenzene + styrene + traitiji i janasi hylhakidabboum https://www.doi.org/10.1016/j.jct.2005.02.012 traitiji i janasi hylhakidabboum https://www.doi.org/10.1016/j.jct.2013.04.011 traitiji janasi hylhakidabboum https://www.doi.org/10.1016/j.jct.2 system (ethylbenzene + styrene + https://www.doi.org/10.1016/j.fluid.2019.01.028 https://www.doi.org/10.1016/j.fluid.2011.11.027 https://www.doi.org/10.1021/acs.jced.5b00980 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1021/je6005604
https://www.doi.org/10.1021/je6005604
https://www.doi.org/10.1021/je500498m
https://www.doi.org/10.1021/je500498m
https://www.doi.org/10.1016/j.jct.2008.12.018
https://www.doi.org/10.1021/je100652b
https://www.doi.org/10.1021/je100652b
https://www.doi.org/10.1021/je100652b
https://www.doi.org/10.1021/je004235c
https://www.doi.org/10.1021/je034235c
https://www.doi.org/10.1016/j.jct.2015.12.033
https://www.doi.org/10.1016/j.jct.2005.12.009
https://www.doi.org/10.1016/j.jct.2015.12.005
https://www.doi.org/10.1016/j.jct.2015.12.005
https://www.doi.org/10.1016/j.jct.2015.12.005
https://www.doi.org/10.1016/j.jct.2015.12.005
https://www.doi.org/10.1016/j.jct.2015.12.005
https://www.doi.org/10.1016/j.jct.2015.12.005
https://www.doi.org/10.1016/j.jct.2015.12.005
https://www.doi.org/10.1016/j.jct.2015.01.005
https://www.doi.org/10.1016/j.jct.2015.01.005
https://www.doi.org/10.1016/j.jct.2015.01.005
ht | https://www.doi.org/10.1016/j.indd.2016.02.016
| https://www.doi.org/10.1016/j.jct.2018.04.022
| https://www.doi.org/10.1016/j.jct.2018.04.022
| https://www.doi.org/10.1007/s10765-005-8096
| https://www.doi.org/10.1007/s10765-005-8096
| https://www.doi.org/10.1021/je060142u
| https://www.doi.org/10.1021/je060142u
| https://www.doi.org/10.1021/je060142u
| https://www.doi.org/10.1016/j.jtd.2018.06.01 https://www.doi.org/10.1007/s10765-005-8096-3 Bearandy namics and activity conficients at infinite stitution for the first state of the Bearmood namics and activity https://www.doi.org/10.1016/j.fluid.2018.06.013 https://www.doi.org/10.1016/j.fluid.2014.11.020 https://www.doi.org/10.1021/je700139p https://www.doi.org/10.1016/j.jct.2004.11.015 https://www.doi.org/10.1021/acs.jced.8b00225 https://www.doi.org/10.1016/j.jct.2019.05.011 https://www.doi.org/10.1016/j.jct.2004.07.024 (dimethyl sulfoxide + an aromatic hydrocarbon) at temperatures from

(293.15 to 353.15) K at atmospheric

pressure:

Liquid Liquid Equilibria Data for Ethylbenzene or p-Xylene with Alkane Activity (1996) irremits at initiate kiliction, physic ac begings and thermodynamic bridge file for Equilibria of Activity (1997) irremits a filling of Liquid Liquid Equilibria Data for Densities and Kinematic Viscosities of One Quinary Regular Liquid System anomacyfliquid and in Faulit systems at Miniperator of Pinary mixtures based on Mixtures base and only the care of his year and the second of the control of the https://www.doi.org/10.1016/j.jct.2017.11.017/
hexane/hex-1-ene,
betistiesa fize 9850 Moden Volumes,
Visione ijes poisto esperbore 2686 final interpretation of 2 or provide the within of 2 or provide the within of 2 or provide the within of 2 or provide the control of the con tetracyanoborate and 1-butyl-1-methylpyrrolidinium

bis(oxalato)borate:

https://www.doi.org/10.1021/acs.jced.6b00881 https://www.doi.org/10.1021/acs.jced.6b00112 https://www.doi.org/10.1007/s10765-009-0622-2 https://www.doi.org/10.1007/s10765-012-1159-3 https://www.doi.org/10.1007/s10765-007-0223-x https://www.doi.org/10.1016/j.fluid.2012.05.006

Activity Coefficients at Infinite Dilution Activity Coefficients at Infinite Dilution Measurements for Organic Solutes and Motubilities and High Remains on Toluene, Etauthersenen 124 Teininethylbenzene, 444 MORST GERNAR PERSONNER PORTON MENTER PERSONNER PORTON TOLUEN 124 MORST PERSONNER PORTON MENTER PERSONNER PERSONN coefficients at infinite dilution for The medianelesses and lanese entitlibria, stumper the highest and lanese entitlibria; stumper the highest lanes and la Compounds in Four New
Penaltins arithmenities, speed of sound,
and It is prefixed by the specification of the specific of the + 4-Methyl-N-butyl Pyridinium

- Xylene, in Xylene, in Xylene, bttps://www.doi.org/10.1021/je020181f

- Aylene, in Xylene, in Xylene, bttps://www.doi.org/10.1021/je3010535 Benstantsallsprinternal Standards Antiver month wife value intinite dilution with benormane values; inflice didtion of organic solutes in diethylene glycol har sitemylene are solutes and sitemylene are soluted to the sitemylene are soluted and sitemylene are poly(ethylene glycol) and aromatic hydrocarbons:

https://www.doi.org/10.1021/je1000582 https://www.doi.org/10.1021/je050529h

https://www.doi.org/10.1016/j.jct.2011.10.027

https://www.doi.org/10.1021/je800846j https://www.doi.org/10.1021/je7003885 https://www.doi.org/10.1021/je900838a

https://www.doi.org/10.1016/j.jct.2016.07.021 https://www.doi.org/10.1016/j.jct.2010.12.021 https://www.doi.org/10.1016/j.jct.2018.07.024

https://www.doi.org/10.1021/je200637v

https://www.doi.org/10.1021/je3010535 https://www.doi.org/10.1016/j.jct.2013.05.011

https://www.doi.org/10.1016/j.jct.2011.11.025

https://www.doi.org/10.1021/acs.jced.6b00085 https://www.doi.org/10.1016/j.jct.2008.01.021 https://www.doi.org/10.1016/j.fluid.2015.08.022

Legend

af: Acentric Factor affp: Proton affinity

Autoignition Temperature aigt:

Gas basicity basg:

cpg: Ideal gas heat capacity Liquid phase heat capacity cpl:

dm: **Dipole Moment** dvisc: Dynamic viscosity

fII: Lower Flammability Limit flu: Upper Flammability Limit

fpc: Flash Point (Closed Cup Method) Flash Point (Open Cup Method) fpo:

gf: Standard Gibbs free energy of formation

Radius of Gyration gyrad:

Heat of Combustion, Gross form hcg:

hcn: Heat of Combustion, Net Form

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditionshvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws:Log10 of Water solubility in mol/llogp:Octanol/Water partition coefficientmcvol:McGowan's characteristic volume

nfpaf:
NFPA Fire Rating
NFPA Health Rating
pc:
Critical Pressure
vapor pressure
rfi:
Refractive Index
rhoc:
Critical density
Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature **sg:** Molar entropy at standard conditions

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

svapt: Entropy of vaporization at a given temperature

tb: Normal Boiling Point Temperaturetbp: Boiling point at given pressure

tc: Critical Temperature

tcondl: Liquid thermal conductivitytf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility
zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/51-337-1/Ethylbenzene.pdf

Generated by Cheméo on 2025-12-24 08:02:50.821405734 +0000 UTC m=+6311568.351446396.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.