Acetic acid

Other names: Acetasol

Acetic acid, glacial

Aci-jel

Acide acetique Acido acetico Azijnzuur CH3COOH Essigsaeure Ethanoic acid

Ethanoic acid monomer

Ethylic acid

Glacial acetic acid Kyselina octova

Methanecarboxylic acid

NSC 132953 Octowy kwas Shotgun UN 2789 Vinegar acid

Inchi: InChl=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4)
InchiKey: QTBSBXVTEAMEQO-UHFFFAOYSA-N

 Formula:
 C2H4O2

 SMILES:
 CC(=O)O

 Mol. weight [g/mol]:
 60.05

 CAS:
 64-19-7

Physical Properties

Property code	Value	Unit	Source
af	0.4470		KDB
affp	783.70	kJ/mol	NIST Webbook
aigt	699.82	K	KDB
basg	752.80	kJ/mol	NIST Webbook
chl	-874.50 ± 0.40	kJ/mol	NIST Webbook
chl	-875.16 ± 0.34	kJ/mol	NIST Webbook
chl	-872.40	kJ/mol	NIST Webbook
chl	-874.20 ± 0.20	kJ/mol	NIST Webbook
dm	1.30	debye	KDB

fII	5.40	% in Air	KDB
flu	16.00	% in Air	KDB
fpc	317.59	K	KDB
fpo	313.15	K	KDB
gf	-376.90	kJ/mol	KDB
gyrad	2.5950		KDB
hf	-435.40	kJ/mol	NIST Webbook
hf	-432.50 ± 1.60	kJ/mol	NIST Webbook
hf	-432.50 ± 1.60	kJ/mol	NIST Webbook
hf	-432.90 ± 1.50	kJ/mol	NIST Webbook
hf	-435.40 ± 4.30	kJ/mol	NIST Webbook
hf	-431.90 ± 1.50	kJ/mol	NIST Webbook
hf	-431.90 ± 1.50	kJ/mol	NIST Webbook
hf	-435.10	kJ/mol	KDB
hf	-432.90 ± 1.50	kJ/mol	NIST Webbook
hfl	-487.00	kJ/mol	NIST Webbook
hfl	-484.10 ± 0.40	kJ/mol	NIST Webbook
hfl	-484.50 ± 0.20	kJ/mol	NIST Webbook
hfl	-483.52 ± 0.36	kJ/mol	NIST Webbook
hfus	6.62	kJ/mol	Joback Method
hvap	51.60 ± 1.60	kJ/mol	NIST Webbook
hvap	50.30	kJ/mol	NIST Webbook
hvap	51.60	kJ/mol	NIST Webbook
hvap	51.60 ± 1.50	kJ/mol	NIST Webbook
ie	10.38 ± 0.03	eV	NIST Webbook
ie	10.87	eV	NIST Webbook
ie	10.80	eV	NIST Webbook
ie	11.50	eV	NIST Webbook
ie	10.63	eV	NIST Webbook
ie	10.65 ± 0.02	eV	NIST Webbook
ie	10.37 ± 0.03	eV	NIST Webbook
ie	10.84	eV	NIST Webbook
ie	10.70	eV	NIST Webbook
ie	10.69 ± 0.03	eV	NIST Webbook
ie	10.90	eV	NIST Webbook
ie	10.35 ± 0.03	eV	NIST Webbook
ie	10.63	eV	NIST Webbook
ie	10.66 ± 0.05	eV	NIST Webbook
ie	10.66	eV	NIST Webbook
ie	10.66 ± 0.05	eV	NIST Webbook
ie	10.66 ± 0.00	eV	NIST Webbook
ie	10.64 ± 0.00	eV	NIST Webbook
ie	10.66	eV	NIST Webbook
ie	10.65	eV	NIST Webbook
	. 5.55		

log10ws	1.22		Aqueous Solubility Prediction Method
logp	0.091		Crippen Method
mcvol	46.480	ml/mol	McGowan Method
nfpaf	%!d(float64=2)		KDB
nfpah	%!d(float64=3)		KDB
nfpas	%!d(float64=1)		KDB
рс	5787.00 ± 101.32	kPa	NIST Webbook
рс	5786.70 ± 26.66	kPa	NIST Webbook
рс	5829.01 ± 90.00	kPa	NIST Webbook
рс	5786.00	kPa	KDB
рс	5781.00 ± 20.00	kPa	NIST Webbook
рс	5786.00 ± 8.00	kPa	NIST Webbook
pt	1.28	kPa	KDB
rhoc	350.70 ± 1.20	kg/m3	NIST Webbook
rhoc	350.58 ± 1.20	kg/m3	NIST Webbook
rinpol	648.00		NIST Webbook
rinpol	617.00		NIST Webbook
rinpol	617.00		NIST Webbook
rinpol	600.00		NIST Webbook
rinpol	641.00		NIST Webbook
rinpol	660.00		NIST Webbook
rinpol	603.00		NIST Webbook
rinpol	638.00		NIST Webbook
rinpol	649.00		NIST Webbook
rinpol	660.00		NIST Webbook
rinpol	600.00		NIST Webbook
rinpol	658.00		NIST Webbook
rinpol	662.00		NIST Webbook
rinpol	615.00		NIST Webbook
rinpol	615.00		NIST Webbook
rinpol	600.00		NIST Webbook
rinpol	610.00		NIST Webbook
rinpol	622.00		NIST Webbook
rinpol	641.00		NIST Webbook
rinpol	602.00		NIST Webbook
rinpol	603.00		NIST Webbook
rinpol	588.00		NIST Webbook
rinpol	587.00		NIST Webbook
rinpol	640.00		NIST Webbook
rinpol	609.00		NIST Webbook
rinpol	642.00		NIST Webbook
rinpol	642.00		NIST Webbook
rinpol	645.00		NIST Webbook
rinpol	610.00		NIST Webbook

rinnal	610.00	NIST Webbook
rinpol		
rinpol	606.00 665.00	NIST Webbook NIST Webbook
rinpol		
rinpol	610.00	NIST Webbook
rinpol	605.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	594.00	NIST Webbook
rinpol	599.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	625.00	NIST Webbook
rinpol	625.00	NIST Webbook
rinpol	660.40	NIST Webbook
rinpol	606.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	649.00	NIST Webbook
rinpol	625.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	661.00	NIST Webbook
rinpol	602.00	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	646.00	NIST Webbook
rinpol	602.00	NIST Webbook
rinpol	590.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	584.00	NIST Webbook
rinpol	660.00	NIST Webbook
rinpol	660.00	NIST Webbook
rinpol	630.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	618.00	NIST Webbook
rinpol	610.00	NIST Webbook
rinpol	622.00	NIST Webbook
rinpol	634.00	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	590.00	NIST Webbook
rinpol	602.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	609.00	NIST Webbook
rinpol	615.00	NIST Webbook
rinpol	660.00	NIST Webbook
rinpol	606.00	NIST Webbook
rinpol	580.00	NIST Webbook
ППРОГ	300.00	14IO I WEDDOOK

rinnal	608.00	NIST Webbook
rinpol rinpol	646.00	NIST Webbook
	637.00	NIST Webbook
rinpol		NIST Webbook
rinpol	628.00	
rinpol	628.00	NIST Webbook
rinpol	580.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	620.77	NIST Webbook
rinpol	616.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	608.00	NIST Webbook
rinpol	602.00	NIST Webbook
rinpol	611.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	622.00	NIST Webbook
rinpol	646.00	NIST Webbook
rinpol	621.00	NIST Webbook
rinpol	630.00	NIST Webbook
rinpol	623.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	648.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	606.00	NIST Webbook
rinpol	595.00	NIST Webbook
rinpol	638.00	NIST Webbook
rinpol	610.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	594.00	NIST Webbook
rinpol	601.00	NIST Webbook
rinpol	616.00	NIST Webbook
rinpol	618.00	NIST Webbook
rinpol	622.00	NIST Webbook
rinpol	606.00	NIST Webbook
rinpol	610.00	NIST Webbook
rinpol	591.00	NIST Webbook
rinpol	591.00	NIST Webbook
	23.100	1.101 110000011

	040.00	NIOTINALA
rinpol	612.00	NIST Webbook
rinpol	644.00	NIST Webbook
rinpol	612.00	NIST Webbook
rinpol	614.00	NIST Webbook
rinpol	622.00	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	634.00	NIST Webbook
rinpol	630.00	NIST Webbook
ripol	1492.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1466.00	NIST Webbook
ripol	1463.00	NIST Webbook
ripol	1471.00	NIST Webbook
ripol	1455.00	NIST Webbook
ripol	1474.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1454.00	NIST Webbook
ripol	1434.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1467.00	NIST Webbook
ripol	1459.00	NIST Webbook
ripol	1475.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1442.00	NIST Webbook
ripol	1465.00	NIST Webbook
ripol	1476.00	NIST Webbook
ripol	1443.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1461.00	NIST Webbook
ripol	1433.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1410.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1415.00	NIST Webbook
ripol	1432.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1480.00	NIST Webbook
Прог	1 100.00	THE I WODDOOK

ripol	1424.00	NIST Webbook
ripol	1437.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1455.00	NIST Webbook
ripol	1422.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1480.00	NIST Webbook
ripol	1441.00	NIST Webbook
ripol	1480.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1435.00	NIST Webbook
•	1440.00	NIST Webbook
ripol		
ripol	1465.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1424.00	NIST Webbook
ripol	1430.00	NIST Webbook
ripol	1457.00	NIST Webbook
ripol	1432.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1454.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1440.00	NIST Webbook
ripol	1470.00	NIST Webbook
ripol	1430.00	NIST Webbook
ripol	1424.00	NIST Webbook
ripol	1446.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1430.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1459.00	NIST Webbook
ripol	1415.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1488.00	NIST Webbook
ripol	1418.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1405.00	NIST Webbook
ripol	1410.00	NIST Webbook
ripol	1410.00	NIST Webbook
ripol	1405.00	NIST Webbook
ripol	1417.00	NIST Webbook
· · ·		

ripol	1451.00	NIST Webbook
ripol	1471.00	NIST Webbook
ripol	1403.00	NIST Webbook
ripol	1413.00	NIST Webbook
ripol	1403.00	NIST Webbook
ripol	1413.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1403.00	NIST Webbook
ripol	1413.00	NIST Webbook
	1403.00	NIST Webbook
ripol		NIST Webbook
ripol	1413.00	
ripol	1430.00	NIST Webbook
ripol	1430.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1458.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1457.00	NIST Webbook
ripol	1446.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1462.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1473.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1457.00	NIST Webbook
ripol	1456.00	NIST Webbook
ripol	1454.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1462.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1443.00	NIST Webbook
ripol	1498.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1480.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1410.00	NIST Webbook
ripol	1440.00	NIST Webbook
11001		THE PRODUCT

ripol	1450.00	NIST Webbook
ripol	1443.00	NIST Webbook
ripol	1455.00	NIST Webbook
ripol	1457.00	NIST Webbook
ripol	1457.00	NIST Webbook
ripol	1409.00	NIST Webbook
ripol	1441.00	NIST Webbook
	1454.00	NIST Webbook
ripol	1459.00	NIST Webbook
ripol		NIST Webbook
ripol	1476.00	
ripol	1450.00	NIST Webbook
ripol	1432.00	NIST Webbook
ripol 	1452.00	NIST Webbook
ripol 	1418.00	NIST Webbook
ripol	1401.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1436.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1461.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1435.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1434.00	NIST Webbook
ripol	1446.00	NIST Webbook
ripol	1476.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1468.00	NIST Webbook
ripol	1430.00	NIST Webbook
ripol	1439.00	NIST Webbook
ripol	1475.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1408.00	NIST Webbook
ripol	1457.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1463.00	NIST Webbook
ripol	1431.00	NIST Webbook
ripol	1435.00	NIST Webbook
11001	00.00	THE PRODUCT

ripol	1439.00	NIST Webbook
ripol	1428.00	NIST Webbook
ripol	1435.00	NIST Webbook
ripol	1446.00	NIST Webbook
ripol	1455.00	NIST Webbook
ripol	1435.00	NIST Webbook
ripol	1409.00	NIST Webbook
ripol	1454.00	NIST Webbook
ripol	1454.00	NIST Webbook
ripol	1430.00	NIST Webbook
•	1430.00	NIST Webbook
ripol		NIST Webbook
ripol	1450.00	
ripol	1480.00	NIST Webbook
ripol	1446.00	NIST Webbook
ripol	1478.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1467.00	NIST Webbook
ripol	1461.00	NIST Webbook
ripol	1428.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1462.00	NIST Webbook
ripol	1465.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1479.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1444.00	NIST Webbook
ripol	1431.00	NIST Webbook
ripol	1472.00	NIST Webbook
ripol	1442.00	NIST Webbook
ripol	1435.00	NIST Webbook
ripol	1471.00	NIST Webbook
ripol	1415.00	NIST Webbook
ripol	1403.00	NIST Webbook
ripol	1492.00	NIST Webbook
ripol	1457.00	NIST Webbook
ripol	1409.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1476.00	NIST Webbook
ripol	1439.00	NIST Webbook
ripol	1469.00	NIST Webbook
ripol	1485.00	NIST Webbook
	1.13100	

ripol	1470.00	NIST Webbook
ripol	1466.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1443.00	NIST Webbook
ripol	1410.00	NIST Webbook
ripol	1422.00	NIST Webbook
ripol	1432.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1405.00	NIST Webbook
ripol	1413.00	NIST Webbook
ripol	1477.00	NIST Webbook
ripol	1457.00	NIST Webbook
ripol	1466.00	NIST Webbook
ripol	1466.00	NIST Webbook
ripol	1454.00	NIST Webbook
ripol	1471.00	NIST Webbook
ripol	1470.00	NIST Webbook
ripol	1409.00	NIST Webbook
ripol	1458.00	NIST Webbook
ripol	1473.00	NIST Webbook
ripol	1477.00	NIST Webbook
ripol	1485.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1433.00	NIST Webbook
ripol	1473.00	NIST Webbook
ripol	1424.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1424.00	NIST Webbook
ripol	1436.00	NIST Webbook
ripol	1462.00	NIST Webbook
ripol	1478.00	NIST Webbook
ripol	1469.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1436.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1471.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1464.00	NIST Webbook
ripol	1441.00	NIST Webbook
ripol	1468.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1450.00	NIST Webbook

ripol	1465.00	NIST Webbook
ripol	1455.00	NIST Webbook
ripol	1429.00	NIST Webbook
ripol	1465.00	NIST Webbook
ripol	1431.00	NIST Webbook
ripol	1476.00	NIST Webbook
ripol	1465.00	NIST Webbook
ripol	1462.00	NIST Webbook
ripol	1436.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1486.60	NIST Webbook
ripol	1486.60	NIST Webbook
ripol	1450.00	NIST Webbook
·	1420.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1439.00	NIST Webbook
ripol		
ripol	1428.00	NIST Webbook
ripol	1431.00	NIST Webbook
ripol	1413.00	NIST Webbook
ripol	1444.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1461.00	NIST Webbook
ripol	1444.00	NIST Webbook
ripol	1443.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1430.00	NIST Webbook
ripol	1467.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1461.00	NIST Webbook
ripol	1461.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1476.00	NIST Webbook
ripol	1486.00	NIST Webbook
ripol	1430.00	NIST Webbook
ripol	1478.00	NIST Webbook
ripol	1478.00	NIST Webbook
ripol	1478.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1461.00	NIST Webbook
ripol	1463.00	NIST Webbook
ripol	1446.00	NIST Webbook
ripol	1448.00	NIST Webbook
-		

ripol	1463.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1480.00	NIST Webbook
ripol	1455.00	NIST Webbook
ripol	1403.00	NIST Webbook
ripol	1419.00	NIST Webbook
ripol	1415.00	NIST Webbook
ripol	1415.00	NIST Webbook
ripol	1419.00	NIST Webbook
ripol	1415.00	NIST Webbook
ripol	1418.00	NIST Webbook
ripol	1415.00	NIST Webbook
·	1425.00	NIST Webbook
ripol	1415.00	NIST Webbook
ripol	1431.00	NIST Webbook
ripol		NIST Webbook
ripol	1415.00	
ripol	1424.00	NIST Webbook
ripol	1484.00	NIST Webbook
ripol	1442.00	NIST Webbook
ripol	1471.00	NIST Webbook
ripol	1404.00	NIST Webbook
ripol	1459.00	NIST Webbook
ripol	1459.00	NIST Webbook
ripol	1435.00	NIST Webbook
ripol	1435.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1435.00	NIST Webbook
ripol	1462.00	NIST Webbook
ripol	1462.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1442.00	NIST Webbook
ripol	1498.00	NIST Webbook
ripol	1442.00	NIST Webbook
ripol	1442.00	NIST Webbook
ripol	1440.00	NIST Webbook
ripol	1434.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1468.00	NIST Webbook
ripol	1472.00	NIST Webbook
ripol	1484.00	NIST Webbook
ripol	1442.00	NIST Webbook
ripol	1440.00	NIST Webbook
-		

ripol	1472.00	NIST Webbook
ripol	1426.00	NIST Webbook
ripol	1436.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1443.00	NIST Webbook
ripol	1431.00	NIST Webbook
ripol	1443.00	NIST Webbook
ripol	1434.00	NIST Webbook
ripol	1419.00	NIST Webbook
ripol	1488.00	NIST Webbook
•	1449.00	NIST Webbook
ripol		NIST Webbook
ripol	1442.00	
ripol	1433.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1418.00	NIST Webbook
ripol	1444.00	NIST Webbook
ripol	1429.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1434.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1464.00	NIST Webbook
ripol	1436.00	NIST Webbook
ripol	1443.00	NIST Webbook
ripol	1465.00	NIST Webbook
ripol	1480.00	NIST Webbook
ripol	1463.00	NIST Webbook
ripol	1486.00	NIST Webbook
ripol	1433.00	NIST Webbook
ripol	1467.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1424.00	NIST Webbook
ripol	1441.00	NIST Webbook
ripol	1434.00	NIST Webbook
ripol	1463.00	NIST Webbook
ripol	1479.00	NIST Webbook
ripol	1464.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1429.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1461.00	NIST Webbook
ripol	1436.00	NIST Webbook
ripol	1460.00	NIST Webbook

ripol ripol	1445.00 1452.00		NIST Webbook NIST Webbook
ripol	1449.00		NIST Webbook
ripol	1447.00		NIST Webbook
ripol	1400.00		NIST Webbook
ripol	1400.00		NIST Webbook
ripol	1408.00		NIST Webbook
ripol	1465.00		NIST Webbook
ripol	1465.00		NIST Webbook
ripol	1450.00		NIST Webbook
ripol	1428.00		NIST Webbook
ripol	1439.00		NIST Webbook
sg	282.84	J/mol×K	NIST Webbook
sl	158.00	J/mol×K	NIST Webbook
sl	193.70	J/mol×K	NIST Webbook
tb	391.00	К	Vapor liquid equilibria for water + acetic acid + (N,N-dimethylformamide or dimethyl sulfoxide) at 13.33 kPa
tb	391.20	К	Liquid-Liquid Equilibria of Water + Acetic Acid + Dimethyl Glutarate Ternary System
tb	390.93	К	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems
tb	391.20	К	(Liquid + liquid) equilibria of the (water + acetic acid + dibutyl phthalate) system
tb	391.03	К	Isobaric vapor-liquid equilibrium for water + acetic acid + 1-butyl-3-methylimidazolium dibutylphosphate at 101.32 kPa
tb	390.95	К	Ternary liquid-liquid phase equilibria of (water-carboxylic acid-1-undecanol) systems at 298.15 K
tb	391.05	К	Quaternary phase equilibrium of water-carboxylic acid mixture (formic-propionic acid or acetic-propionic acid)-solvent liquid systems at 298.15 K

tb	390.85	K	Measurements of Quaternary Liquid-Liquid Equilibrium for Water + Acetic Acid + Propionic Acid + Solvent (Butyronitrile, Benzyl Acetate, or Methyl Isobutyl Ketone) at 298.15 K
tb	391.05	К	Determination and correlation of liquid liquid equilibria for the (water + carboxylic acid + dimethyl maleate) ternary systems at T = 298.2K
tb	390.85	К	Isobaric vapor liquid equilibria for water + acetic acid + (N-methyl pyrrolidone or N-methyl acetamide)
tb	391.20	К	Liquid liquid equilibria of the ternary system water + acetic acid + dimethyl succinate
tb	390.95	К	Vapor liquid equilibria for the quaternary reactive system ethyl acetate + ethanol +water + acetic acid and some of the constituent binary systems at 101.3 kPa
tb	391.20	К	Liquid liquid equilibria of the ternary system water + acetic acid + dimethyl adipate
tb	391.00	K	KDB
tb	391.03	К	Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + 1- Ethyl-3-methylimidazolium Diethylphosphate at 101.32 kPa
tb	390.96	К	Investigation on Isobaric Vapor Liquid Equilibrium for Water + Acetic Acid + sec-Butyl Acetate
tb	391.15	К	Liquid-Liquid Equilibria of (Water + Acetic Acid + Diethyl Succinate or Diethyl Glutarate or Diethyl Adipate) Ternary Systems
tb	391.44	К	Isobaric Vapor-Liquid Equilibria for (Acetic Acid + Cyclohexane) and (Cyclohexane + Acetylacetone) at a Pressure of 101.3 kPa and for (Acetic Acid + Acetylacetone) at a Pressure of 60.0 kPa
tc	592.71	K	KDB
tf	289.70 ± 0.03	K	NIST Webbook

tf	289.93	K	Aqueous Solubility Prediction Method
tf	289.70	289.70 K	
tf	289.69 ± 0.20	K	NIST Webbook
tf	289.95	K	Differential scanning calorimetry determination of phase diagrams and water activities of aqueous carboxylic acid solutions
tf	289.67 ± 0.05	K	NIST Webbook
tf	289.80 ± 0.30	K	NIST Webbook
tf	289.75 ± 0.05	K	NIST Webbook
tf	289.49 ± 0.05	K	NIST Webbook
tf	289.84	К	Solid liquid equilibrium in the ternary system acetic acid propanoic acid formamide
tf	289.62 ± 0.10	K	NIST Webbook
tf	289.85	K	NIST Webbook
tf	289.00 ± 1.50	K	NIST Webbook
tt	289.80 ± 0.15	K	NIST Webbook
tt	289.69	K	KDB
tt	289.80 ± 0.05	K	NIST Webbook
tt	289.69 ± 0.04	K	NIST Webbook
VC	0.171	m3/kmol	KDB
ZC	0.2007690		KDB
zra	0.22		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
срд	98.37	J/mol×K	567.09	Joback Method
cpg	95.29	J/mol×K	537.78	Joback Method
cpg	92.08	J/mol×K	508.46	Joback Method
cpg	88.73	J/mol×K	479.15	Joback Method
cpg	85.25	J/mol×K	449.84	Joback Method
cpg	81.64	J/mol×K	420.52	Joback Method
cpg	77.89	J/mol×K	391.21	Joback Method
cpl	139.70	J/mol×K	332.00	NIST Webbook

cpl	135.50	J/mol×K	313.15	Heat Capacities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures
cpl	123.10	J/mol×K	298.15	NIST Webbook
cpl	120.50	J/mol×K	298.00	NIST Webbook
cpl	121.30	J/mol×K	297.10	NIST Webbook
cpl	137.21	J/mol×K	333.15	Heat Capacities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures
cpl	123.50	J/mol×K	298.00	NIST Webbook
cpl	159.80	J/mol×K	298.10	NIST Webbook
cpl	123.40	J/mol×K	294.70	NIST Webbook
cpl	137.00	J/mol×K	311.00	NIST Webbook
dvisc	0.0011140	Paxs	298.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures
dvisc	0.0005700	Pa×s	353.15	Densities and Viscosities of N,N-Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to 353.15) K
dvisc	0.0006320	Paxs	343.15	Densities and Viscosities of N,N-Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to 353.15) K

dvi	SC	0.0008040	Paxs	323.15	Densities and Viscosities of N,N-Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to 353.15) K
dvi	sc	0.0009200	Paxs	313.15	Densities and Viscosities of N,N-Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to 353.15) K
dvi	SC	0.0007870	Paxs	323.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures
dvi	SC	0.0010590	Paxs	303.15	Densities and Viscosities of N,N-Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to 353.15) K
dvi	SC	0.0012110	Paxs	293.15	Dynamic Viscosities, Densities, and Speed of Sound and Derived Properties of the Binary Systems Acetic Acid with Water, Methanol, Ethanol, Ethyl Acetate and Methyl Acetate at T = (293.15, 298.15, and 303.15) K at Atmospheric Pressure

dvisc	0.0010340	Paxs	303.15	Dynamic Viscosities, Densities, and Speed of Sound and Derived Properties of the Binary Systems Acetic Acid with Water, Methanol, Ethanol, Ethyl Acetate and Methyl Acetate at T = (293.15, 298.15, and 303.15) K at Atmospheric Pressure	
dvisc	0.0012040	Paxs	293.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0012040	Paxs	293.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0006570	Paxs	338.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0006970	Paxs	333.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0006970	Paxs	333.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	

dvisc	0.0007410	Paxs	328.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0007410	Paxs	328.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0011140	Paxs	298.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0007870	Pa×s	323.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0008410	Paxs	318.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0008410	Paxs	318.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0009020	Paxs	313.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	

dvisc	0.0011150	Paxs	298.15	Dynamic Viscosities, Densities, and Speed of Sound and Derived Properties of the Binary Systems Acetic Acid with Water, Methanol, Ethanol, Ethyl Acetate and Methyl Acetate at T = (293.15, 298.15, and 303.15) K at Atmospheric Pressure	
dvisc	0.0009640	Paxs	308.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0009640	Paxs	308.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0010370	Paxs	303.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0010370	Paxs	303.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0009020	Paxs	313.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	

dvisc	0.0007090	Paxs	333.15	Densities and Viscosities of N,N-Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to 353.15) K
hfust	11.72	kJ/mol	298.70	NIST Webbook
hfust	11.72	kJ/mol	298.70	NIST Webbook
hfust	11.13	kJ/mol	290.06	NIST Webbook
hfust	11.52	kJ/mol	283.70	NIST Webbook
hfust	10.83	kJ/mol	289.80	NIST Webbook
hfust	11.73	kJ/mol	289.90	NIST Webbook
hsubt	67.00 ± 1.00	kJ/mol	221.50	NIST Webbook
hsubt	70.00 ± 1.00	kJ/mol	221.50	NIST Webbook
hvapt	38.80	kJ/mol	559.00	NIST Webbook
hvapt	38.10	kJ/mol	486.00	NIST Webbook
hvapt	38.70	kJ/mol	419.00	NIST Webbook
hvapt	41.60	kJ/mol	340.50	NIST Webbook
hvapt	43.00	kJ/mol	308.00	NIST Webbook
hvapt	40.30	kJ/mol	358.00	NIST Webbook
hvapt	41.60	kJ/mol	351.00	NIST Webbook
hvapt	42.00	kJ/mol	343.00	NIST Webbook
hvapt	40.90	kJ/mol	357.50	NIST Webbook
hvapt	37.90	kJ/mol	470.50	NIST Webbook
hvapt	23.70	kJ/mol	391.10	NIST Webbook
hvapt	23.68	kJ/mol	391.30	KDB
hvapt	39.10	kJ/mol	364.00	NIST Webbook
pvap	101.32	kPa	391.03	Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + 1- Ethyl-3-methylimidazolium Diethylphosphate at 101.32 kPa
pvap	49.34	kPa	368.10	Separation of Furfural from Ternary Mixtures
pvap	88.98	kPa	386.07	Separation of Furfural from Ternary Mixtures

pvap	96.15	kPa	388.91	Vapor Liquid Equilibrium Data for Binary Mixtures of Acetic Acid + Anisole, Acetone + Anisole, and Isopropanol + Anisole at Pressure 96.15 kPa	
pvap	7.57	kPa	323.15	Vapor-Liquid Equilibria in the Propyl Acetate + Ethanoic Acid Binary System from (323.15 to 353.15) K: Measurement with a Static Method and Modeling with the NRTL, Wilson, UNIQUAC, and COSMO-SAC Approaches	
pvap	18.66	kPa	343.15	Vapor-Liquid Equilibria in the Propyl Acetate + Ethanoic Acid Binary System from (323.15 to 353.15) K: Measurement with a Static Method and Modeling with the NRTL, Wilson, UNIQUAC, and COSMO-SAC Approaches	
pvap	12.04	kPa	333.15	Vapor-Liquid Equilibria in the Propyl Acetate + Ethanoic Acid Binary System from (323.15 to 353.15) K: Measurement with a Static Method and Modeling with the NRTL, Wilson, UNIQUAC, and COSMO-SAC Approaches	

pvap	28.20	kPa	353.15	Vapor-Liquid Equilibria in the Propyl Acetate + Ethanoic Acid Binary System from (323.15 to 353.15) K: Measurement with a Static Method and Modeling with the NRTL, Wilson, UNIQUAC, and COSMO-SAC Approaches
pvap	20.00	kPa	345.27	Isobaric Vapor Liquid Equilibrium for Binary Systems of Toluene + Acrylic Acid, Toluene + Acetic Acid, and Cyclohexane + Acrylic Acid at 20 kPa
pvap	7.72	kPa	323.15	Isothermal vapour liquid equilibrium with chemical reaction in the quaternary water + methanol + acetic acid + methyl acetate system, and in five binary subsystems
rfi	1.36870		293.15	Volumetric Properties of Highly Nonideal Binary Mixtures Containing Ethanoic Acid and Propanoic Acid with Butan-2-ol, Methyl-2-propanol, and 2-Methyl-2-butanol at Different Temperatures
rfi	1.36980		298.15	Densities, Excess Molar Volumes, Viscosity, and Refractive Indices of Binary Mixtures of Ethanoic Acid and Trichloroethylene with Dimethylbenzenes at Different Temperatures

rfi	1.37160	298.15	Geometric Structures of Associating Component Optimized toward Correlation and Prediction of Isobaric Vapor Liquid Equilibria for Binary and Ternary Mixtures of Ethanal, Ethanol, and Ethanoic Acid
rfi	1.37000	298.15	Solubilities of Benzoic Acid and Phthalic Acid in Acetic Acid + Water Solvent Mixtures
rfi	1.36960	298.15	Phase Equilibrium for the Esterification Reaction of Acetic Acid + Butan-1-ol at 101.3 kPa
rfi	1.37200	293.15	Isobaric Vapor-Liquid Equilibria for the Binary Systems of Acetic Acid + Isopropenyl Acetate, Acetic Acid + Acetylacetone, and Water + Acetylacetone
rfi	1.36960	298.15	Liquid-Liquid Equilibria for the System 1-Methyl Propyl Ethanoate (1) + Acetic Acid (2) + Water (3) at (283.15 and 323.15) K
rfi	1.37160	293.15	Solubilities of Phosphorus-Containing Compounds in Selected Solvents
rfi	1.37160	298.15	Isobaric Vapor-Liquid Equilibria for Binary and Ternary Mixtures of Methanol, Ethanoic Acid, and Propanoic Acid

rfi	1.37180	293.15 Solubilities of Some Phosphaspirocyclic Compounds in Selected Solvents
rfi	1.36969	298.15 Refractive Index, Surface Tension, and Density of Aqueous Mixtures of Carboxylic Acids at 298.15 K
rfi	1.37190	293.15 Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + (n-Pentyl Acetate or Isopropyl Acetate)
rfi	1.36809	303.15 Solubility, Thermodynamic Properties, and Derived Excess Properties of Benzoic Acid in (Acetic Acid + Water) and (Acetic Acid + Toluene) Binary Mixtures
rfi	1.37012	298.15 Solubility, Thermodynamic Properties, and Derived Excess Properties of Benzoic Acid in (Acetic Acid + Water) and (Acetic Acid + Toluene) Binary Mixtures
rfi	1.37224	293.15 Solubility, Thermodynamic Properties, and Derived Excess Properties of Benzoic Acid in (Acetic Acid + Water) and (Acetic Acid + Toluene) Binary Mixtures

rfi	1.37203	298.00	Quaternary and ternary LLE measurements for solvent (2-methyltetrahydrofuran and cyclopentyl methyl ether) + furfural + acetic acid + water between 298 and 343 K
rfi	1.37130	293.15	Isobaric (vapour + liquid) equilibria data for the binary systems {1,2-dichloroethane (1) + toluene (2)} and {1,2-dichloroethane (1) + acetic acid (2)} at atmospheric pressure
rfi	1.37160	303.15	Phase equilibria measurements of ternary mixtures (sulfolane + a carboxylic acid + pentane) at 303.15 K
rfi	1.37160	303.15	Liquid liquid equilibria measurements of ternary systems (acetonitrile + a carboxylic acid + dodecane) at 303.15 K
rfi	1.36960	298.15	Study of liquid liquid equilibrium of the systems isobutyl acetate + acetic acid +water and isobutyl alcohol + acetic acid +water at different temperatures
rfi	1.37210	293.15	Liquid liquid equilibria of ternary systems (water + carboxylic acid + cumene) at 298.15K

rfi	1.37200		293.00	Quaternary Liquid-Liquid Equilibrium of Water + Acetic Acid + Propionic Acid + Solvent (Amyl Alcohol, Cyclohexyl Acetate, or Toluene) Systems	
rfi	1.37170		293.15	Measurement and Modeling of Liquid Liquid Equilibrium for the Systems Vinyl Acetate + Acetic Acid/Ethanol + Water at 298.15 and 308.15 K	
rhol	1049.80	kg/m3	293.20	Liquid-liquid equilibrium data and thermophysical properties for ternary systems composed of water, acetic acid and different solvents	
rhol	1049.00	kg/m3	293.00	KDB	
rhol	1044.30	kg/m3	293.15	Phase equilibrium of (water + formic or acetic acid + ethyl heptanoate) ternary liquid systems at different temperatures	
rhol	1049.42	kg/m3	298.20	(Liquid + liquid) equilibria of the (water + carboxylic acid + dibasic esters mixture (DBE-2)) ternary systems	
rhol	1049.42	kg/m3	298.15	Liquid-liquid equilibria of water + acetic acid + 2-ethyl hexyl acetate ternary system	

rhol	1043.50	kg/m3	298.15	Isobaric vapor-liquid equilibrium of the binary system sec-butyl acetate + para-xylene and the quaternary system methyl acetate + para-xylene + sec-butyl acetate + acetic acid at 101.3 kPa
rhol	1044.60	kg/m3	298.15	Liquid - liquid equilibrium for the quaternary reaction system water p sec-butyl alcohol p sec-butyl acetate p acetic acid
rhol	1049.80	kg/m3	293.20	Liquid-liquid equilibrium data for ternary systems of water + acetic acid + acetate esters at 293.2 K and 303.2 K and ~ 95 kPa
rhol	1049.42	kg/m3	298.20	Liquid Phase Equilibria of the Water + Acetic Acid + Dimethyl Carbonate Ternary System at Several Temperatures
rhol	1030.00	kg/m3	313.15 2',3'-N-Epoxy	Probe of Interactions of Acetic and Propionic Acids with propyl-N-methyl-2-oxopyrrolidinium Salicylate Ionic Liquid
rhol	1035.80	kg/m3	308.15 2',3'-N-Epoxy	Probe of Interactions of Acetic and Propionic Acids with propyl-N-methyl-2-oxopyrrolidinium Salicylate Ionic
rhol	1041.40	kg/m3	303.15 2',3'-N-Epoxy	Liquid Probe of Interactions of Acetic and Propionic Acids with propyl-N-methyl-2-oxopyrrolidinium Salicylate Ionic Liquid

rhol	1046.90	kg/m3	298.15 2',3'-N-Epoxy	Probe of Interactions of Acetic and Propionic Acids with propyl-N-methyl-2-oxopyrrolidinium
rhol	1052.50	kg/m3	293.15	Salicylate Ionic Liquid Probe of
				Interactions of Acetic and Propionic Acids with
			∠ ,3 -N-Epoxy	propyl-N-methyl-2-oxopyrrolidinium Salicylate Ionic Liquid
rhol	1048.93	kg/m3	293.15	Liquid-Liquid Phase Equilibria for Quinary, Quaternary, and Ternary Systems {Water + Furfural + Acetic Acid + Cyclopentyl Methyl Ether + CaCl2}: Measurement, Effect of Salt ,and Comparative Study
rhol	1044.12	kg/m3	298.15	Liquid Phase Equilibria of Aqueous Mixtures of Carboxylic Acids (C1-C4) with Ethylbenzene: Thermodynamic and Mathematical Modeling
rhol	993.00	kg/m3	343.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume
rhol	1004.00	kg/m3	333.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume

rhol	1015.00	kg/m3	323.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
rhol	1025.00	kg/m3	313.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
rhol	1028.13	kg/m3	313.20	Liquid-liquid equilibrium data for ternary systems of water + acetic acid + acetate esters at 293.2 K and 303.2 K and ~ 95 kPa	
rhol	1042.00	kg/m3	298.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
rhol	1052.00	kg/m3	293.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
rhol	1053.00	kg/m3	288.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
rhol	1026.72	kg/m3	313.20	The impact of uni-univalent electrolytes on (water + acetic acid + toluene) equilibria: Representation with electrolyte-NRTL model	

rhol	1043.67	kg/m3	298.20	The impact of	
		ŭ		uni-univalent electrolytes on (water + acetic acid + toluene) equilibria: Representation with electrolyte-NRTL	
rhol	1055.01	ka/m2	288.20	model The impact of	
Moi	1055.01	kg/m3	200.20	The impact of uni-univalent electrolytes on (water + acetic acid + toluene) equilibria: Representation with electrolyte-NRTL model	
rhol	1028.13	kg/m3	313.20	Liquid-liquid equilibrium data and thermophysical properties for ternary systems composed of water, acetic acid and different solvents	
rhol	1037.00	kg/m3	303.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
sfust	38.36	J/mol×K	290.06	NIST Webbook	
sfust	40.47	J/mol×K	289.90	NIST Webbook	
srf	0.03	N/m	303.20	KDB	
srf	0.03	N/m	308.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	
srf	0.03	N/m	313.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	

srf	0.02	N/m	318.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	
srf	0.02	N/m	323.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	
srf	0.02	N/m	333.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	
srf	0.03	N/m	303.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	
srf	0.02	N/m	343.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	

Pressure Dependent Properties

Prop	perty code	Value	Unit	Pressure [kPa]	Source
	tbp	341.30	К	17.00	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems

tbp	342.87	K	18.47	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	345.03	К	20.01	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	346.41	К	21.29	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	348.49	К	23.18	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	350.35	К	24.92	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	352.88	К	27.44	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	355.01	К	29.78	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	357.54	К	32.78	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	359.26	К	34.97	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	

tbp	363.04	K	39.99	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	368.56	К	48.99	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	372.27	К	55.76	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	374.54	К	60.04	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	376.66	К	64.44	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	379.05	K	69.39	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	381.60	K	75.23	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	383.32	К	79.98	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	

tbp	384.82	К	83.66	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	386.07	К	87.18	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	389.58	K	97.08	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	

Correlations

Information Value

Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.47385e+01
Coeff. B	-3.05591e+03
Coeff. C	-8.92370e+01
Temperature range (K), min.	289.81
Temperature range (K), max.	591.95

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	6.82294e+01
Coeff. B	-7.02972e+03
Coeff. C	-7.79853e+00
Coeff. D	5.93100e-06
Temperature range (K), min.	289.81
Temperature range (K), max.	592.71

Datasets

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
313.15	100.00	0.0009030
313.15	800.00	0.0009100
313.15	1600.00	0.0009170
313.15	2400.00	0.0009240
313.15	3200.00	0.0009320
333.15	100.00	0.0007130
333.15	800.00	0.0007200
333.15	1600.00	0.0007270
333.15	2400.00	0.0007350
333.15	3200.00	0.0007430
353.15	100.00	0.0005740
353.15	800.00	0.0005820
353.15	1600.00	0.0005900
353.15	2400.00	0.0005980
353.15	3200.00	0.0006050
373.15	100.00	0.0004710
373.15	800.00	0.0004780
373.15	1600.00	0.0004860
373.15	2400.00	0.0004940
373.15	3200.00	0.0005020
393.15	800.00	0.0003940
393.15	1600.00	0.0004020
393.15	2400.00	0.0004100
393.15	3200.00	0.0004180
413.15	800.00	0.0003330
413.15	1600.00	0.0003400
413.15	2400.00	0.0003470
413.15	3200.00	0.0003540
433.15	800.00	0.0002810
433.15	1600.00	0.0002870
433.15	2400.00	0.0002940
433.15	3200.00	0.0003020
453.15	800.00	0.0002440
453.15	1600.00	0.0002510
453.15	2400.00	0.0002580

453.15	3200.00	0.0002640
473.15	1600.00	0.0002130
473.15	2400.00	0.0002200
473.15	3200.00	0.0002260

Reference

https://www.doi.org/10.1021/je800635g

Sources

+ carboxylic acid + dibasic esters system water + acetic acid + dimethyl system water + acetic acid + dimethyl solubilities, liquid-liquid equilibrium and critical states for the quaternary solubilities of acid-ethanol-ethyl acetale material and kill acetale acid + solubility of maleic anhydride in solubility of D-camphor-10-sulfonic auathropide solubility of D-camphor-10-sulfonic auathropide solvents and Binary LLE Measurements for solubility of D-camphor-10-sulfonic auathropide solvents and Binary LLE Measurements for solubility of D-camphor-10-sulfonic auathropide solvents and Binary LLE Measurements for solubility of D-camphor-10-sulfonic auathropide solvents and Binary LLE Measurements for solvents and solvents acetic acid solvents is sobutyl acetale + acetic acid solvents in a solvent acetic acid solvents and solvents acetic acid solvents and solvents acetic acid solvents acetic สองสะอาจากอาจากสาราชาวารา System of Acetic Acid and n-Octanol System of Acetic Acid and n-Octanol Sylvish in Mixed Phase Equilibria for the Ternary Water + Acetic Acid + \$30 in Mixed Pauli light Mass stem at Solid liquid equilibrium in the ternary system acetic acid propanoic acid solubility of dodecanedioic acid in Striction of douceaned one actum and the strict of the striction of the strict of the System s Material (1988: เคียง 473.2) K: System s Material (1988: เคียง 473.2) K: System s Material (1988: เคียง 473.2) K: Hydrochloride in Different Solvents: Densities, Excess Molar Volumes, Viscosity, and Refractive Indices of Binary Mixtures of Ethanoic Acid and Trichloroethylene with **Dimethylbenzenes at Different**

Temperatures:

(Liquid + liquid) equilibria of the (water https://www.doi.org/10.1016/j.fluid.2014.03.002 https://www.doi.org/10.1016/j.fluid.2005.09.013 https://www.doi.org/10.1016/j.fluid.2014.04.013 https://www.doi.org/10.1021/je800353s https://www.doi.org/10.1021/je500160t https://www.doi.org/10.1016/j.fluid.2014.01.008 https://www.doi.org/10.1016/j.fluid.2015.04.014 https://www.doi.org/10.1021/acs.jced.6b00149 https://www.doi.org/10.1021/je900462z https://www.doi.org/10.1016/j.fluid.2008.07.001 https://www.doi.org/10.1021/je900669t https://www.doi.org/10.1021/acs.jced.9b00620 https://www.doi.org/10.1021/acs.jced.7b00184 https://www.doi.org/10.1016/j.fluid.2018.02.003 https://www.doi.org/10.1016/j.jct.2004.07.016 https://www.doi.org/10.1016/j.fluid.2018.06.011 http://www.ddbst.com/en/EED/VLE/VLE%20Acetonitrile%3BAcetic acid.php https://www.doi.org/10.1021/je8002578 https://www.doi.org/10.1021/acs.jced.5b00370 https://www.doi.org/10.1016/j.fluid.2014.05.003 \$ดูเมื่อเทียงการและเกลาะ the analystem at the analystem Managgenkents for 24 Managed Forteletion https://www.doi.org/10.1016/j.fluid.2018.07.024 acertopagaed forteletion https://www.doi.org/10.1016/j.fluid.2018.07.024 acertopagaed forteletion https://www.doi.org/10.1021/je060134d https://www.doi.org/10.1021/je060134d salicylic Acid: https://www.doi.org/10.1016/j.fluid.2007.07.065 https://www.doi.org/10.1016/j.jct.2013.09.012 https://www.doi.org/10.1016/j.fluid.2014.08.034 https://www.doi.org/10.1021/je101230a https://www.doi.org/10.1021/je201211f

Determination and Thermodynamic https://www.doi.org/10.1021/acs.jced.8b01127 Modeling of Solid-Liquid Phase (Splidbridge) Shasaraquilibringhe https://www.doi.org/10.1016/j.jct.2014.06.021 Temenherwiid + Adipic Acid + Ethyl https://www.doi.org/10.1016/j.fluid.2011.06.020 https://www.doi.org/10.1021/acs.jced.7b00665 https://www.doi.org/10.1021/ie200595b Evolution of transasi Midgry Fratical person https://www.doi.org/10.1021/je200595b Froperties of transsimmany widopots in https://www.doi.org/10.1021/je200595b

Totra and beinary blocking Systam 250.15

Wescure in the systam 250.10

In acid + 2-ethyl hexyl acetate ternary https://www.doi.org/10.1021/je800547k ## https://www.doi.org/10.1021/je800547k

| https://www.doi.org/10.1021/je800547k
| https://www.doi.org/10.1016/j.fluid.2013.07.015
| https://www.doi.org/10.1016/j.fluid.2013.07.015
| https://www.doi.org/10.1016/j.fluid.2013.07.015
| https://www.doi.org/10.1016/j.fluid.2013.07.015
| https://www.doi.org/10.1016/j.fluid.2013.07.015
| https://www.doi.org/10.1016/j.fluid.2013.10.003
| https://www.doi.org/10.1016/j.fluid.2013.10.003
| https://www.doi.org/10.1016/j.fluid.2013.10.003
| https://www.doi.org/10.1016/j.fluid.2013.10.003
| https://www.doi.org/10.1016/j.fluid.2013.10.003
| https://www.doi.org/10.1016/j.fluid.2018.12.008
| https://www.doi.org/10.1016/j.fluid.2018.12.008 hexamethylenediammonium glutarate เราหนาย เรียงใช้กระบบเกรายเกราย System Water + Acetic Acid + Methyl เอาเมื่อได้ อยู่ใหญ่ปองphos in different https://www.doi.org/10.1021/je060409p Systems. Water + Acetic Acid + Methyl tert Builty Effect Options in different solvents:
Thermochemistry on KZ[M(DPA)2]*TH2O(s) (M= Cu and Ni, Lizori Aliqui amulitys latinal blooding the amulity state of the amu https://www.doi.org/10.1016/j.fluid.2012.06.010 ternary (water + acetic acid + toluene)

bystein Liguid fersili beimpelatures ary

Exstern Water da Gystenes for the

Solubility of 3-Nitroben and interes in 12 https://www.doi.org/10.1021/je400704a https://www.doi.org/10.1021/acs.jced.7b00615 https://www.doi.org/10.1016/j.fluid.2012.11.035 อื่อยู่มูลที่ยังองโลกษาสิวัต ทั้งหน้อสุวอัต ครั้งเจ ลงลับคุณ of methanol and acetic acid รูปเนล (โดมรูป ละยุม) librium of the ternary https://www.doi.org/10.1016/j.fluid.2010.01.005 system water + acetic acid + sec-butyl https://www.doi.org/10.1021/acs.jced.6b00324 o-Toluic Acid in Binary Acetic Acid + Wละทอสมาจะอเร Madels boxylene Betesmingion es the Solubility of เร็ตโลกัน ลื่อนี้ โค ซุมุ่ยโรกะเรื่องเลยโลก at https://www.doi.org/10.1021/je500867u https://www.doi.org/10.1021/je100144t Bunaning Apid in white fair is of very a state of the property https://www.doi.org/10.1016/j.jct.2004.07.021 https://www.doi.org/10.1016/j.fluid.2010.06.021 https://www.doi.org/10.1021/acs.jced.5b00197 augiologie voetic verilie using de la linguation de la li https://www.doi.org/10.1021/je049848j Mickeline Solvent (Amyl Alcohol, Cyclohexyl Acetate, or Toluene)

Systems:

```
16.alpha.,17.alpha.-Epoxyprogesterone โดยสาย (https://www.doi.org/10.1016/j.jct.2019.06.033
Spain in the feet with the self of the sel
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/acs.jced.9b00243
                                                                                                                                                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1016/j.jct.2019.07.002
                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je300810p
                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2012.05.002
                                                                                                                                                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1021/je1000473
                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2008.09.010
                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je800574v
 Acetic Acid on Dibenzofuran Solubility Iriguid-intities on the Ternary System Water + Acetic Acid + Propyl Relability of 2,5-Furandicarboxylic Acid in Eight Pure Solvents and Two Binary Interpretation of the reactive system Whatever the reactive sy
                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2012.07.014
   The server restriction of the property of the property of the server restriction of the server r
                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2013.02.001
                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.6b00112
 MIRMORESSASE EQUIIDITIA OF AQUEOUS
Mixtures of Carboxylic Acids (C1-C4)
Mixtures of Carboxylic Acids (C1)
Mixtures of Carboxylic Acids (C1-C4)
Mixtures of C1-C4)
Mixtures of C1-C4
Mixtures of C1-C4)
Mixtures of C1-C4
Mixtures of C1-C
                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2013.11.036
                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2006.12.003
                                                                                                                                                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1021/je0255123
                                                                                                                                                                                                                                                                                                                                                                                                                                  http://webbook.nist.gov/cgi/cbook.cgi?ID=C64197&Units=SI
Liquid-Liquid Equilibria of (Water +
Acetic Acid + Diethyl Succinate or
Bolithyl Gliot Equilibria of (Water +
Acetic Acid + Diethyl Succinate or
Bolithyl Gliot Equilibria of (Water +
Acetic Acid + Diethyl Succinate or
Bolithyl Gliot Equilibria of (Water +
Acetic Acid in Binary
Acetic Acid water Bookien of Mixtures at
Equilibria of Water Bookien of Water Bookien of Water Bookien of Phase diagrams and
Water Contrator of Phase diagrams and
Water Con
     Liquid-Liquid Equilibria of (Water +
                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je7000733
      amenysicophemical properties for
ទីល្អដីធ្លាប់ទីលីប៉ុនែទ and water in the ionic
                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je8002332
   STREET OF THE POINT OF THE POIN
                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je0498199
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je6005746
                                                                                                                                                                                                                                                                                                                                                                                                                                    https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=930
     Properties and Acetic Acid Properties
Properties Continued at 304.15 K, signification of the System
1-Methyl Propyl Ethanoate (1) + Acetic science of the 
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je900332x
                                                                                                                                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.fluid.2011.10.025
                                                                                                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2014.12.013
https://www.doi.org/10.1016/j.fluid.2014.12.013
of ternary systems (acetonitrile + a beinsickymudiid hase dequilibria for 3.15
Quinary, Quaternary, and Ternary
Systems (acetonitrile + a beinsickymudiid hase dequilibria for 3.15
Quinary, Quaternary, and Ternary
Systems (acetonitrile + a beinsickymudiid for 503.15
Quinary, Quaternary, and Ternary
Systems (acetonitrile + a beinsickymudiid for 503.15
Quinary, Quaternary, and Ternary
Systems (acetonitrile + a beinsickymudiid for 503.15
Quinary, Quaternary, and Ternary
Systems (acetonitrile + a beinsickymudiid for 503.15
Acid + Water + 2-Methyl Ethyl Acetate
Ternary Systems:

https://www.doi.org/10.1021/je060084c
https://www.doi.org/10.1021/je500231c
https://www.doi.org/10.1021/je700231c
https://www.doi.org/10.1021/je700181d
```

https://www.doi.org/10.1021/je050195w

Solubility of

Ternary Systems:

Liquid-liquid equilibrium and critical https://www.doi.org/10.1016/j.fluid.2014.11.004 States for the system acetic acid +
Fuhnanement with the bitser water at
shemicals in aqueous phase using
leakaris was exigent for the bitser was eximp
leakaris was exigent for the bitser was eximp
leakaris was exigent for the bitser was eximpled for the https://www.doi.org/10.1016/j.fluid.2015.04.029 https://www.doi.org/10.1021/je034169e https://www.doi.org/10.1021/je060138i https://www.doi.org/10.1021/je700755t N,N-Dimethylformamide + Formic Acid, Antiperature Aerendant Feluperacuse https://www.doi.org/10.1016/j.fluid.2015.01.012 ESINGER STEPHEN THE PROPERTY OF THE PROPERTY O https://www.doi.org/10.1016/j.fluid.2015.07.053 FARMENTS HATCHING THE MAINTING TWATERY MIXELY SOLVEN PROPERTY IN THE MAINTING TO THE PUTTURE OF MAINTING TO THE MAINTING THE MAINTING TO THE MAINTING TH https://www.doi.org/10.1021/je8004535 https://www.doi.org/10.1016/j.tca.2012.12.024 https://www.doi.org/10.1016/j.fluid.2016.10.027 guaternary reaction system water p sease guilding measurements of the p ternary mixtures (sulfolane + a Whatsix and the period of the conditions of Succinic Acid and beneate wasperlieude conditions of the condi https://www.doi.org/10.1016/j.fluid.2015.06.029 https://www.doi.org/10.1021/acs.jced.7b00660 https://www.doi.org/10.1016/j.fluid.2006.02.002 Subarie xebothience authoried or weter-Aggetinianies (Namethyl Messilianie Brevickethikolomide): Seluhility of para-tert-Butylbenzoic Kolomi Metanti Mixed Organic https://www.doi.org/10.1021/acs.jced.6b00965 http://pubs.acs.org/doi/abs/10.1021/ci990307l Solvents at Different Temperatures: Separation of Furfural from Ternary https://www.doi.org/10.1021/je020117y Mixtures: Determination and correlation of liquid https://www.doi.org/10.1016/j.fluid.2008.04.014 liquid equilibria for the (water + Salvation carametamendel name ate)
thermodysamic parameters in a seekelogia for the Bianto disconsideration of Acetic Acid + Salvation of Acetic Acid at (313.15 to 17915) Kilara of tions of Acetic Acid at (313.15 to 17915) Kilara of Acetic Acid at (313.15 to 1 liquid equilibria for the (water Mononitro-Substituted Products of Numbresis of Numbresis of Products of Numbresis of Products of Numbresis of Products of Numbresis of Nu https://www.doi.org/10.1016/j.tca.2013.03.007 https://www.doi.org/10.1016/j.fluid.2011.01.020 Mixture in the Esterification of Acetic Abie share the Figure 1 and 1 an https://www.doi.org/10.1016/j.jct.2014.05.009 dicarboxylic acids in organic solvents: Solubility Determination and https://www.doi.org/10.1021/acs.jced.8b00496 Thermodynamic Modeling of Glutaric Kapottliffering Free State Stat https://www.doi.org/10.1016/j.jct.2015.06.003 Measurement and regree lation of the solubility of Sideling of Bidwis (Signific Equilibria- of) Medsen Anetifi Asidiff Dineton (significate ទីស្វាម្នាក់ប្រទេទ្ធនេះគ្រង Bromo-1,8-naphthalic Anhydride in Different Pure Solvents https://www.doi.org/10.1021/je049571n https://www.doi.org/10.1021/je400259a Annyande in Diliterent Fute Solvents
Marsinenyesbareh Ontreterisowath the
Espaished Action (238115 to
1988 of the Marky Print Butyl
Plater # Magric Acid + 1Ethyl-3-methylimidazolium https://www.doi.org/10.1021/je800724g https://www.doi.org/10.1021/je400282h Diethylphosphate at 101.32 kPa:

Solid liquid equilibrium of https://www.doi.org/10.1016/j.fluid.2012.11.001 1-hydroxyethane-1.1-diphosphonic acid รอไม่ที่เป็นสารปน่อนเฮ-Liquid Equilibria https://www.doi.org/10.1021/acs.jced.9b00595 for the Isopropyl Acetate + Isopropanol Phase ileany qual acqual of makytures https://www.doi.org/10.1016/j.jct.2013.08.001 stracetic acid with isometry of kplene: Solubility of Hexamethylenetetramine https://www.doi.org/10.1021/je800662m in a Pure Water, Methanol, Acetic Acid, https://www.doi.org/10.1016/j.fluid.2019.04.020 And termany lin widten wick egnei likvin m, Thermodynamic Study of Ammonium By stigate Study of Ammonium By stignor Study of Ammonium By stigate Study of Ammonium By stigate St https://www.doi.org/10.1016/j.fluid.2011.03.006 http://link.springer.com/article/10.1007/BF02311772 Solubility of https://www.doi.org/10.1021/je1011423 2-Chloro-4,6-dinitroresorcinol in Ethunolicumelle din the second in Ethunolicumelle din the second in a second second in a second secon https://www.doi.org/10.1016/j.fluid.2004.11.025 https://www.doi.org/10.1021/je700453v https://www.doi.org/10.1016/j.fluid.2005.04.015 aqueous acetic acid from 423.15 to Measurement and Correlation for the Solubility of Adipic Acid and Succinic Measurement and Correlation for the Solubilities of Adipic Acid. Adutaric Measurement and Correlation for the Solubilities of Adipic Acid. Adutaric Measurement and Correlation for the https://www.doi.org/10.1021/acs.jced.7b https://www.doi.org/10.1021/je800049b two files and succinic Acid. Adutaric Measurement and Correlation for the https://www.doi.org/10.1021/je800049b two files and files an https://www.doi.org/10.1021/acs.jced.7b00468 https://www.doi.org/10.1021/acs.jced.6b00800 Systems Containing Acetic Acid: Solubility, liquid-liquid equilibrium and https://www.doi.org/10.1016/j.fluid.2014.04.034 Systems Containing Acetic Acid:
Solubility, liquid-liquid equilibrium and critical states for the system acetic acid solubility, liquid-liquid equilibrium and critical states for the system acetic acid solubility, liquid-liquid equilibrium and space of the system acetic acid solubility and space of the system acetic acid solubility and space of the system and space of the system and space of the space of the space of the system and space of the space of the system and space of the system an the rincy paper is modeling of 5-nitro-8-Nyunoval properties for organic solutes and water in the ionic liquid. https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=930 organic solutes and water in the ionic liquid

4-(2-methoxyethyl)-4-methylmorpholinium bis(trifluoromethylsulfonyl)-amide:

Quaternary phase equilibrium of water-carboxylic acid mixture
(rar Nata on 6 Acetic Acid + Water) at T =

the light of the light ystems acetic acid + n-butylacetate + systems acetic acid + n-butylacetate + Ryanscensidity in Egg-qactive distillation of diethyl succinate. Part II: Systems solvely is the first of the thyl succinate. Part II: Systems solvely is the first of the thyl is the first of the first of the thyl is the first of the thyl is the first of the thyl is the first of the firs Pressure: Pressure:
Measurement and Modeling of Phase
Equilibria in Systems Containing
Welter, Ikinser, Farberre and Modeling of Phase
Equilibria in Systems Containing
Welter, Ikinser, Farberre and Modeling of Phase
Welter, Ikinser, Farberre and Modeling of Modeling
Dynamic Viscosities, Densities, and
Speed of Sound and Derived Properties
Dynamic Viscosities, Densities, and
Speed of Sound and Derived Properties
Dynamic Viscosities, Densities, and
Speed of Sound and Derived Properties
Dynamic Viscosities, Densities, and
Speed of Sound and Derived Properties
Dynamic Viscosities, Densities, Authority
Dynamic Viscosities, Densities, Densities
Dynamic Viscosities, Densities, Measurement and Modeling of Phase

Isothermal vapour liquid equilibrium with chemical reaction in the LOW definition of the County of the Solublity of Biotin in Solublity of Solublity of Biotin in Solublity of Solublity of Biotin in with chemical reaction in the remwatesturesclohexane + acetic acid at Logust Piguid Equilibrium for Ternary Systems Water + Acetic Acid + m-Xylene and Water + Acetic Acid + o-Xylene at (303.2 to 343.2) K:

https://www.doi.org/10.1016/j.fluid.2011.09.014

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.doi.org/10.1021/acs.jced.9b00095

https://www.doi.org/10.1021/je049784c

https://www.doi.org/10.1021/je0342825

https://www.doi.org/10.1016/j.fluid.2006.04.011

https://www.doi.org/10.1021/je050527x

https://www.doi.org/10.1016/j.tca.2008.02.024

https://www.doi.org/10.1021/je201102x

https://www.doi.org/10.1016/j.fluid.2005.07.010

https://www.doi.org/10.1021/je200655s

https://www.doi.org/10.1016/j.fluid.2015.11.007

https://www.doi.org/10.1016/j.fluid.2015.06.012

https://www.doi.org/10.1016/j.fluid.2006.06.005

https://www.doi.org/10.1021/acs.jced.5b00043

Legend

af: Acentric Factor affp: Proton affinity

aigt: **Autoignition Temperature**

Gas basicity basg:

chl: Standard liquid enthalpy of combustion

Ideal gas heat capacity cpg: Liquid phase heat capacity cpl:

dm: Dipole Momentdvisc: Dynamic viscosity

fli: Lower Flammability Limit flu: Upper Flammability Limit

fpc: Flash Point (Closed Cup Method)fpo: Flash Point (Open Cup Method)

gf: Standard Gibbs free energy of formation

gyrad: Radius of Gyration

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsubt: Enthalpy of sublimation at a given temperaturehvap: Enthalpy of vaporization at standard conditionshvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating
nfpah: NFPA Health Rating
nfpas: NFPA Safety Rating
pc: Critical Pressure
pt: Triple Point Pressure

pvap: Vapor pressurerfi: Refractive Indexrhoc: Critical densityrhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature **sg:** Molar entropy at standard conditions

sl: Liquid phase molar entropy at standard conditions

srf: Surface Tension

tb: Normal Boiling Point Temperaturetbp: Boiling point at given pressure

tc: Critical Temperature

tf: Normal melting (fusion) point

tt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility
zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/51-574-8/Acetic-acid.pdf

Generated by Cheméo on 2025-12-24 08:59:56.993891966 +0000 UTC m=+6314994.523932620.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.