Acetic acid

Other	names
Other	names

Other names:	Acetasol
	Acetic acid, glacial
	Aci-jel
	Acide acetique
	Acido acetico
	Azijnzuur
	СНЗСООН
	Essigsaeure
	Ethanoic acid
	Ethanoic acid monomer
	Ethylic acid
	Glacial acetic acid
	Kyselina octova
	Methanecarboxylic acid
	NSC 132953
	Octowy kwas
	Shotgun
	UN 2789
	Vinegar acid
Inchi:	InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4)
InchiKey:	QTBSBXVTEAMEQO-UHFFFAOYSA-N
Formula:	C2H4O2
SMILES:	CC(=O)O
Mol. weight [g/mol]:	60.05
CAS:	64-19-7

Physical Properties

Property code	Value	Unit	Source
af	0.4470		KDB
affp	783.70	kJ/mol	NIST Webbook
aigt	699.82	К	KDB
basg	752.80	kJ/mol	NIST Webbook
chl	-875.16 ± 0.34	kJ/mol	NIST Webbook
chl	-872.40	kJ/mol	NIST Webbook
chl	-874.50 ± 0.40	kJ/mol	NIST Webbook
chl	-874.20 ± 0.20	kJ/mol	NIST Webbook
dm	1.30	debye	KDB

fll	5.40	% in Air	KDB
flu	16.00	% in Air	KDB
fpc	317.59	К	KDB
fpo	313.15	К	KDB
gf	-376.90	kJ/mol	KDB
gyrad	2.5950		KDB
hf	-431.90 ± 1.50	kJ/mol	NIST Webbook
hf	-432.90 ± 1.50	kJ/mol	NIST Webbook
hf	-431.90 ± 1.50	kJ/mol	NIST Webbook
hf	-432.90 ± 1.50	kJ/mol	NIST Webbook
hf	-435.10	kJ/mol	KDB
hf	-435.40 ± 4.30	kJ/mol	NIST Webbook
hf	-435.40	kJ/mol	NIST Webbook
hf	-432.50 ± 1.60	kJ/mol	NIST Webbook
hf	-432.50 ± 1.60	kJ/mol	NIST Webbook
hfl	-483.52 ± 0.36	kJ/mol	NIST Webbook
hfl	-484.10 ± 0.40	kJ/mol	NIST Webbook
hfl	-487.00	kJ/mol	NIST Webbook
hfl	-484.50 ± 0.20	kJ/mol	NIST Webbook
hfus	6.62	kJ/mol	Joback Method
hvap	50.30	kJ/mol	NIST Webbook
hvap	51.60 ± 1.60	kJ/mol	NIST Webbook
hvap	51.60 ± 1.50	kJ/mol	NIST Webbook
hvap	51.60	kJ/mol	NIST Webbook
ie	10.80	eV	NIST Webbook
ie	10.37 ± 0.03	eV	NIST Webbook
ie	10.70	eV	NIST Webbook
ie	10.38 ± 0.03	eV	NIST Webbook
ie	10.69 ± 0.03	eV	NIST Webbook
ie	10.65	eV	NIST Webbook
ie	10.35 ± 0.03	eV	NIST Webbook
ie	10.64 ± 0.00	eV	NIST Webbook
ie	10.90	eV	NIST Webbook
ie	10.84	eV	NIST Webbook
ie	10.66 ± 0.05	eV	NIST Webbook
ie	10.66	eV	NIST Webbook
ie	10.66 ± 0.05	eV	NIST Webbook
ie	10.66	eV	NIST Webbook
ie	10.63	eV	NIST Webbook
ie	10.65 ± 0.02	eV	NIST Webbook
ie	11.50	eV	NIST Webbook
ie	10.87	eV	NIST Webbook
ie	10.66 ± 0.00	eV	NIST Webbook
ie	10.63	eV	NIST Webbook

log10ws	1.22		Aqueous Solubility Prediction Method
logp	0.091		Crippen Method
mcvol	46.480	ml/mol	McGowan Method
nfpaf	%!d(float64=2)		KDB
nfpah	%!d(float64=3)		KDB
nfpas	%!d(float64=1)		KDB
pc	5781.00 ± 20.00	kPa	NIST Webbook
pc	5829.01 ± 90.00	kPa	NIST Webbook
 pc	5786.00	kPa	KDB
pc	5787.00 ± 101.32	kPa	NIST Webbook
pc	5786.70 ± 26.66	kPa	NIST Webbook
pc	5786.00 ± 8.00	kPa	NIST Webbook
pt	1.28	kPa	KDB
rhoc	350.58 ± 1.20	kg/m3	NIST Webbook
rhoc	350.70 ± 1.20	kg/m3	NIST Webbook
rinpol	622.00		NIST Webbook
rinpol	660.00		NIST Webbook
rinpol	648.00		NIST Webbook
rinpol	648.00		NIST Webbook
rinpol	634.00		NIST Webbook
rinpol	645.00		NIST Webbook
rinpol	660.00		NIST Webbook
rinpol	630.00		NIST Webbook
rinpol	600.00		NIST Webbook
rinpol	618.00		NIST Webbook
rinpol	610.00		NIST Webbook
rinpol	622.00		NIST Webbook
rinpol	634.00		NIST Webbook
rinpol	645.00		NIST Webbook
rinpol	590.00		NIST Webbook
rinpol	602.00		NIST Webbook
rinpol	663.00		NIST Webbook
rinpol	609.00		NIST Webbook
rinpol	645.00		NIST Webbook
rinpol	600.00		NIST Webbook
rinpol	615.00		NIST Webbook
rinpol	660.00		NIST Webbook
rinpol	606.00		NIST Webbook
rinpol	580.00		NIST Webbook
rinpol	608.00		NIST Webbook
rinpol	646.00		NIST Webbook
rinpol	650.00		NIST Webbook
rinpol	590.00		NIST Webbook
rinpol	602.00		NIST Webbook

rinpol	646.00	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	602.00	NIST Webbook
rinpol	661.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	625.00	NIST Webbook
rinpol	649.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	606.00	NIST Webbook
rinpol	660.40	NIST Webbook
rinpol	625.00	NIST Webbook
rinpol	625.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	599.00	NIST Webbook
rinpol	594.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	605.00	NIST Webbook
rinpol	610.00	NIST Webbook
rinpol	665.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	610.00	NIST Webbook
rinpol	610.00	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	642.00	NIST Webbook
rinpol	642.00	NIST Webbook
rinpol	609.00	NIST Webbook
rinpol	640.00	NIST Webbook
rinpol	587.00	NIST Webbook
rinpol	588.00	NIST Webbook
rinpol	623.00	NIST Webbook
rinpol	602.00	NIST Webbook
rinpol	641.00	NIST Webbook
rinpol	622.00	NIST Webbook
rinpol	610.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	615.00	NIST Webbook
rinpol	615.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	660.00	NIST Webbook
rinpol	649.00	NIST Webbook

rinpol	638.00	NIST Webbook
rinpol	660.00	NIST Webbook
rinpol	641.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	617.00	NIST Webbook
rinpol	617.00	NIST Webbook
rinpol	603.00	NIST Webbook
rinpol	603.00	NIST Webbook
rinpol	606.00	NIST Webbook
rinpol	584.00	NIST Webbook
rinpol	637.00	NIST Webbook
rinpol	628.00	NIST Webbook
rinpol	628.00	NIST Webbook
rinpol	580.00	NIST Webbook
rinpol	620.77	NIST Webbook
rinpol	616.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	608.00	NIST Webbook
rinpol	602.00	NIST Webbook
rinpol	611.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	622.00	NIST Webbook
rinpol	646.00	NIST Webbook
rinpol	621.00	NIST Webbook
rinpol	630.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	606.00	NIST Webbook
rinpol	595.00	NIST Webbook
rinpol	638.00	NIST Webbook
rinpol	610.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	600.00	NIST Webbook
rinpol	594.00	NIST Webbook
rinpol	601.00	NIST Webbook
rinpol	616.00	NIST Webbook
rinpol	618.00	NIST Webbook
rinpol	622.00	NIST Webbook
rinpol	606.00	NIST Webbook
rinpol	610.00	NIST Webbook

rinpol	610.00	NIST Webbook
rinpol	610.00	NIST Webbook
rinpol	610.00	NIST Webbook
rinpol	610.00	NIST Webbook
rinpol	591.00	NIST Webbook
rinpol	591.00	NIST Webbook
rinpol	630.00	NIST Webbook
rinpol	612.00	NIST Webbook
rinpol	644.00	NIST Webbook
rinpol	612.00	NIST Webbook
rinpol	614.00	NIST Webbook
ripol	1471.00	NIST Webbook
ripol	1480.00	NIST Webbook
ripol	1446.00	NIST Webbook
ripol	1478.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1467.00	NIST Webbook
ripol	1461.00	NIST Webbook
ripol	1428.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1462.00	NIST Webbook
ripol	1465.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1479.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1444.00	NIST Webbook
ripol	1431.00	NIST Webbook
ripol	1472.00	NIST Webbook
ripol	1442.00	NIST Webbook
ripol	1435.00	NIST Webbook
ripol	1471.00	NIST Webbook
ripol	1415.00	NIST Webbook
ripol	1403.00	NIST Webbook
ripol	1492.00	NIST Webbook
ripol	1457.00	NIST Webbook
ripol	1409.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1476.00	NIST Webbook
ripol	1439.00	NIST Webbook
ripol	1469.00	NIST Webbook
ripol	1485.00	NIST Webbook

ripol	1470.00	NIST Webbook
ripol	1466.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1443.00	NIST Webbook
ripol	1410.00	NIST Webbook
ripol	1422.00	NIST Webbook
ripol	1432.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1465.00	NIST Webbook
ripol	1465.00	NIST Webbook
ripol	1408.00	NIST Webbook
ripol	1400.00	NIST Webbook
ripol	1400.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1435.00	NIST Webbook
ripol	1402.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1427.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1436.00	NIST Webbook
ripol	1461.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1429.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1464.00	NIST Webbook
ripol	1479.00	NIST Webbook
ripol	1463.00	NIST Webbook
ripol	1434.00	NIST Webbook
ripol	1441.00	NIST Webbook
ripol	1424.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1467.00	NIST Webbook
ripol	1433.00	NIST Webbook
ripol	1486.00	NIST Webbook
ripol	1463.00	NIST Webbook
ripol	1480.00	NIST Webbook
ripol	1465.00	NIST Webbook
ripol	1443.00	NIST Webbook
ripol	1436.00	NIST Webbook

ripol	1464.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1434.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1429.00	NIST Webbook
ripol	1444.00	NIST Webbook
ripol	1418.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1433.00	NIST Webbook
ripol	1442.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1488.00	NIST Webbook
ripol	1419.00	NIST Webbook
ripol	1434.00	NIST Webbook
ripol	1443.00	NIST Webbook
ripol	1431.00	NIST Webbook
ripol	1443.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1436.00	NIST Webbook
ripol	1426.00	NIST Webbook
ripol	1472.00	NIST Webbook
ripol	1440.00	NIST Webbook
ripol	1442.00	NIST Webbook
ripol	1484.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1472.00	NIST Webbook
ripol	1468.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1434.00	NIST Webbook
ripol	1440.00	NIST Webbook
ripol	1442.00	NIST Webbook
ripol	1442.00	NIST Webbook
ripol	1498.00	NIST Webbook
ripol	1442.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1462.00	NIST Webbook
ripol	1462.00	NIST Webbook
ripol	1435.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1435.00	NIST Webbook
ripol	1435.00	NIST Webbook
ripol	1459.00	NIST Webbook

ripol	1459.00	NIST Webbook
ripol	1404.00	NIST Webbook
ripol	1405.00	NIST Webbook
ripol	1442.00	NIST Webbook
ripol	1484.00	NIST Webbook
ripol	1424.00	NIST Webbook
ripol	1415.00	NIST Webbook
ripol	1431.00	NIST Webbook
ripol	1415.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1415.00	NIST Webbook
ripol	1418.00	NIST Webbook
ripol	1415.00	NIST Webbook
ripol	1419.00	NIST Webbook
ripol	1415.00	NIST Webbook
ripol	1415.00	NIST Webbook
ripol	1419.00	NIST Webbook
ripol	1403.00	NIST Webbook
ripol	1455.00	NIST Webbook
ripol	1480.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1463.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1446.00	NIST Webbook
ripol	1463.00	NIST Webbook
ripol	1461.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1478.00	NIST Webbook
ripol	1478.00	NIST Webbook
ripol	1478.00	NIST Webbook
ripol	1430.00	NIST Webbook
ripol	1486.00	NIST Webbook
ripol	1476.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1461.00	NIST Webbook
ripol	1461.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1467.00	NIST Webbook
ripol	1430.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1443.00	NIST Webbook
ripol	1444.00	NIST Webbook

ripol	1461.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1444.00	NIST Webbook
ripol	1413.00	NIST Webbook
ripol	1431.00	NIST Webbook
ripol	1428.00	NIST Webbook
ripol	1439.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1420.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1486.60	NIST Webbook
ripol	1486.60	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1436.00	NIST Webbook
ripol	1462.00	NIST Webbook
ripol	1465.00	NIST Webbook
ripol	1476.00	NIST Webbook
ripol	1431.00	NIST Webbook
ripol	1465.00	NIST Webbook
ripol	1429.00	NIST Webbook
ripol	1439.00	NIST Webbook
ripol	1455.00	NIST Webbook
ripol	1465.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1468.00	NIST Webbook
ripol	1441.00	NIST Webbook
ripol	1464.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1471.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1436.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1469.00	NIST Webbook
ripol	1478.00	NIST Webbook
ripol	1462.00	NIST Webbook
ripol	1436.00	NIST Webbook
ripol	1424.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1424.00	NIST Webbook
ripol	1473.00	NIST Webbook

ripol	1433.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1485.00	NIST Webbook
ripol	1477.00	NIST Webbook
ripol	1473.00	NIST Webbook
ripol	1458.00	NIST Webbook
ripol	1409.00	NIST Webbook
ripol	1470.00	NIST Webbook
ripol	1471.00	NIST Webbook
ripol	1454.00	NIST Webbook
ripol	1466.00	NIST Webbook
ripol	1466.00	NIST Webbook
ripol	1457.00	NIST Webbook
ripol	1477.00	NIST Webbook
ripol	1455.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1466.00	NIST Webbook
ripol	1463.00	NIST Webbook
ripol	1471.00	NIST Webbook
ripol	1455.00	NIST Webbook
ripol	1474.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1454.00	NIST Webbook
ripol	1434.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1467.00	NIST Webbook
ripol	1459.00	NIST Webbook
ripol	1475.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1442.00	NIST Webbook
ripol	1465.00	NIST Webbook
ripol	1476.00	NIST Webbook
ripol	1443.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1461.00	NIST Webbook
ripol	1433.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1410.00	NIST Webbook
ripol	1453.00	NIST Webbook

ripol	1415.00	NIST Webbook
ripol	1432.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1480.00	NIST Webbook
ripol	1424.00	NIST Webbook
ripol	1437.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1455.00	NIST Webbook
ripol	1422.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1480.00	NIST Webbook
ripol	1441.00	NIST Webbook
ripol	1480.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1435.00	NIST Webbook
ripol	1440.00	NIST Webbook
ripol	1465.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1424.00	NIST Webbook
ripol	1430.00	NIST Webbook
ripol	1457.00	NIST Webbook
ripol	1432.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1454.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1440.00	NIST Webbook
ripol	1470.00	NIST Webbook
ripol	1430.00	NIST Webbook
ripol	1424.00	NIST Webbook
ripol	1446.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1430.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1459.00	NIST Webbook
ripol	1415.00	NIST Webbook
ripol	1460.00	NIST Webbook
ripol	1488.00	NIST Webbook
ripol	1418.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1405.00	NIST Webbook

ripol	1410.00	NIST Webbook
ripol	1410.00	NIST Webbook
ripol	1405.00	NIST Webbook
ripol	1417.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1471.00	NIST Webbook
ripol	1403.00	NIST Webbook
ripol	1413.00	NIST Webbook
ripol	1403.00	NIST Webbook
ripol	1413.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1403.00	NIST Webbook
ripol	1413.00	NIST Webbook
ripol	1403.00	NIST Webbook
ripol	1413.00	NIST Webbook
ripol	1430.00	NIST Webbook
ripol	1430.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1458.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1457.00	NIST Webbook
ripol	1446.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1462.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1473.00	NIST Webbook
ripol	1492.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1457.00	NIST Webbook
ripol	1456.00	NIST Webbook
ripol	1454.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1462.00	NIST Webbook
ripol	1448.00	NIST Webbook
ripol	1443.00	NIST Webbook
ripol	1498.00	NIST Webbook
ripol	1445.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1480.00	NIST Webbook

ripol	1449.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1410.00	NIST Webbook
ripol	1440.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1443.00	NIST Webbook
ripol	1428.00	NIST Webbook
ripol	1457.00	NIST Webbook
ripol	1457.00	NIST Webbook
ripol	1409.00	NIST Webbook
ripol	1441.00	NIST Webbook
ripol	1454.00	NIST Webbook
ripol	1459.00	NIST Webbook
ripol	1476.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1432.00	NIST Webbook
ripol	1452.00	NIST Webbook
ripol	1418.00	NIST Webbook
ripol	1401.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1436.00	NIST Webbook
ripol	1451.00	NIST Webbook
ripol	1453.00	NIST Webbook
ripol	1449.00	NIST Webbook
ripol	1461.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1435.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1434.00	NIST Webbook
ripol	1446.00	NIST Webbook
ripol	1476.00	NIST Webbook
ripol	1450.00	NIST Webbook
ripol	1447.00	NIST Webbook
ripol	1468.00	NIST Webbook
ripol	1430.00	NIST Webbook
ripol	1439.00	NIST Webbook
ripol	1475.00	NIST Webbook
ripol	1425.00	NIST Webbook
ripol	1408.00	NIST Webbook
ripol	1457.00	NIST Webbook

ripol	1453.00		NIST Webbook
ripol	1463.00		NIST Webbook
ripol	1431.00		NIST Webbook
ripol	1435.00		NIST Webbook
ripol	1439.00		NIST Webbook
ripol	1428.00		NIST Webbook
ripol	1435.00		NIST Webbook
ripol	1446.00		NIST Webbook
ripol	1455.00		NIST Webbook
ripol	1435.00		NIST Webbook
ripol	1409.00		NIST Webbook
ripol	1454.00		NIST Webbook
ripol	1454.00		NIST Webbook
ripol	1430.00		NIST Webbook
ripol	1430.00		NIST Webbook
ripol	1413.00		NIST Webbook
sg	282.84	J/mol×K	NIST Webbook
sl	193.70	J/mol×K	NIST Webbook
sl	158.00	J/mol×K	NIST Webbook
tb	391.15	К	Liquid-Liquid Equilibria of (Water + Acetic Acid + Diethyl Succinate or Diethyl Glutarate or Diethyl Adipate) Ternary Systems
tb	391.00	К	KDB
tb	391.05	К	Determination and correlation of liquid liquid equilibria for the (water + carboxylic acid + dimethyl maleate) ternary systems at T = 298.2K
tb	391.00	К	Vapor liquid equilibria for water + acetic acid + (N,N-dimethylformamide or dimethyl sulfoxide) at 13.33 kPa
tb	391.05	К	Quaternary phase equilibrium of water-carboxylic acid mixture (formic-propionic acid or acetic-propionic acid)-solvent liquid systems at 298.15 K
tb	390.95	K	Ternary liquid-liquid phase equilibria of (water-carboxylic acid-1-undecanol) systems at 298.15 K
tb	391.03	К	Isobaric vapor-liquid equilibrium for water + acetic acid + 1-butyl-3-methylimidazolium dibutylphosphate at 101.32 kPa

tb	391.20	К	(Liquid + liquid) equilibria of the (water + acetic acid + dibutyl phthalate) system
tb	390.93	К	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems
tb	391.20	К	Liquid-Liquid Equilibria of Water + Acetic Acid + Dimethyl Glutarate Ternary System
tb	390.85	К	Measurements of Quaternary Liquid-Liquid Equilibrium for Water + Acetic Acid + Propionic Acid + Solvent (Butyronitrile, Benzyl Acetate, or Methyl Isobutyl Ketone) at 298.15 K
tb	391.03	К	Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + 1- Ethyl-3-methylimidazolium Diethylphosphate at 101.32 kPa
tb	390.96	К	Investigation on Isobaric Vapor Liquid Equilibrium for Water + Acetic Acid + sec-Butyl Acetate
tb	391.20	К	Liquid liquid equilibria of the ternary system water + acetic acid + dimethyl succinate
tb	390.85	К	Isobaric vapor liquid equilibria for water + acetic acid + (N-methyl pyrrolidone or N-methyl acetamide)
tb	391.44	К	Isobaric Vapor-Liquid Equilibria for (Acetic Acid + Cyclohexane) and (Cyclohexane + Acetylacetone) at a Pressure of 101.3 kPa and for (Acetic Acid + Acetylacetone) at a Pressure of 60.0 kPa
tb	391.20	К	Liquid liquid equilibria of the ternary system water + acetic acid + dimethyl adipate
tb	390.95	K	Vapor liquid equilibria for the quaternary reactive system ethyl acetate + ethanol +water + acetic acid and some of the constituent binary systems at 101.3 kPa
tc	592.71	K	KDB
tf	289.49 ± 0.05	K	NIST Webbook

tf	289.95	К	Differential scanning calorimetry determination of phase diagrams and water activities of aqueous carboxylic acid solutions
tf	289.70 ± 0.03	K	NIST Webbook
tf	289.85	K	NIST Webbook
tf	289.62 ± 0.10	K	NIST Webbook
tf	289.84	К	Solid liquid equilibrium in the ternary system acetic acid propanoic acid formamide
tf	289.75 ± 0.05	K	NIST Webbook
tf	289.80 ± 0.30	K	NIST Webbook
tf	289.70	K	KDB
tf	289.00 ± 1.50	K	NIST Webbook
tf	289.69 ± 0.20	K	NIST Webbook
tf	289.93	К	Aqueous Solubility Prediction Method
tf	289.67 ± 0.05	К	NIST Webbook
tt	289.80 ± 0.15	K	NIST Webbook
tt	289.69 ± 0.04	K	NIST Webbook
tt	289.80 ± 0.05	K	NIST Webbook
tt	289.69	K	KDB
VC	0.171	m3/kmol	KDB
ZC	0.2007690		KDB
zra	0.22		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	81.64	J/mol×K	420.52	Joback Method	
cpg	95.29	J/mol×K	537.78	Joback Method	
cpg	92.08	J/mol×K	508.46	Joback Method	
cpg	88.73	J/mol×K	479.15	Joback Method	
cpg	85.25	J/mol×K	449.84	Joback Method	
cpg	77.89	J/mol×K	391.21	Joback Method	
cpg	98.37	J/mol×K	567.09	Joback Method	
cpl	159.80	J/mol×K	298.10	NIST Webbook	
cpl	121.30	J/mol×K	297.10	NIST Webbook	
cpl	137.00	J/mol×K	311.00	NIST Webbook	
cpl	120.50	J/mol×K	298.00	NIST Webbook	
cpl	123.50	J/mol×K	298.00	NIST Webbook	
cpl	139.70	J/mol×K	332.00	NIST Webbook	

cpl	123.10	J/mol×K	298.15	NIST Webbook
cpl	137.21	J/mol×K	333.15	Heat Capacities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures
cpl	135.50	J/mol×K	313.15	Heat Capacities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures
cpl	123.40	J/mol×K	294.70	NIST Webbook
dvisc	0.0007410	Paxs	328.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures
dvisc	0.0005700	Paxs	353.15	Densities and Viscosities of N,N-Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to 353.15) K
dvisc	0.0012040	Paxs	293.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures
dvisc	0.0012040	Paxs	293.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures

dvisc	0.0008040	Paxs	323.15	Densities and Viscosities of N,N-Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to 353.15) K
dvisc	0.0007090	Paxs	333.15	Densities and Viscosities of N,N-Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to 353.15) K
dvisc	0.0009200	Pa×s	313.15	Densities and Viscosities of N,N-Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to 353.15) K
dvisc	0.0010590	Pa×s	303.15	Densities and Viscosities of N,N-Dimethylformamide + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to 353.15) K
dvisc	0.0010340	Paxs	303.15	Dynamic Viscosities, Densities, and Speed of Sound and Derived Properties of the Binary Systems Acetic Acid with Water, Methanol, Ethanol, Ethyl Acetate and Methyl Acetate at T = (293.15, 298.15, and 303.15) K at Atmospheric Pressure

dvisc	0.0011150	Paxs	298.15	Dynamic Viscosities, Densities, and Speed of Sound and Derived Properties of the Binary Systems Acetic Acid with Water, Methanol, Ethanol, Ethyl Acetate and Methyl Acetate at T = (293.15, 298.15, and 303.15) K at Atmospheric Pressure	
dvisc	0.0011140	Paxs	298.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0012110	Pa×s	293.15	Dynamic Viscosities, Densities, and Speed of Sound and Derived Properties of the Binary Systems Acetic Acid with Water, Methanol, Ethanol, Ethyl Acetate and Methyl Acetate at T = (293.15, 298.15, and 303.15) K at Atmospheric Pressure	
dvisc	0.0011140	Pa×s	298.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0010370	Paxs	303.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	

dvisc	0.0010370	Paxs	303.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0009640	Paxs	308.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0009640	Paxs	308.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0009020	Paxs	313.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0006570	Paxs	338.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0006970	Paxs	333.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0006970	Paxs	333.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	

dvisc	0.0007410	Paxs	328.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0009020	Paxs	313.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0007870	Paxs	323.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0007870	Paxs	323.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0008410	Paxs	318.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0008410	Paxs	318.15	Densities and Viscosities of Binary Mixtures of Acetic Acid with Acetic Anhydride and Methenamine at Different Temperatures	
dvisc	0.0006320	Pa×s	343.15	Densities and Viscosities of N,N-Dimethylformami + Formic Acid, and + Acetic Acid in the Temperature Range from (303.15 to 353.15) K	de

hfust	11.72	kJ/mol	298.70	NIST Webbook	
hfust	11.72	kJ/mol	298.70	NIST Webbook	
hfust	11.73	kJ/mol	289.90	NIST Webbook	
hfust	10.83	kJ/mol	289.80	NIST Webbook	
hfust	11.52	kJ/mol	283.70	NIST Webbook	
hfust	11.13	kJ/mol	290.06	NIST Webbook	
hsubt	67.00 ± 1.00	kJ/mol	221.50	NIST Webbook	
hsubt	70.00 ± 1.00	kJ/mol	221.50	NIST Webbook	
hvapt	23.68	kJ/mol	391.30	KDB	
hvapt	41.60	kJ/mol	340.50	NIST Webbook	
hvapt	43.00	kJ/mol	308.00	NIST Webbook	
hvapt	40.30	kJ/mol	358.00	NIST Webbook	
hvapt	38.10	kJ/mol	486.00	NIST Webbook	
hvapt	38.70	kJ/mol	419.00	NIST Webbook	
hvapt	42.00	kJ/mol	343.00	NIST Webbook	
hvapt	41.60	kJ/mol	351.00	NIST Webbook	
hvapt	40.90	kJ/mol	357.50	NIST Webbook	
hvapt	39.10	kJ/mol	364.00	NIST Webbook	
hvapt	23.70	kJ/mol	391.10	NIST Webbook	
hvapt	37.90	kJ/mol	470.50	NIST Webbook	
hvapt	38.80	kJ/mol	559.00	NIST Webbook	
pvap	101.32	kPa	391.03 Eth	Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + 1- iyl-3-methylimidazolium Diethylphosphate at 101.32 kPa	
рvар	20.00	kPa	345.27	Isobaric Vapor Liquid Equilibrium for Binary Systems of Toluene + Acrylic Acid, Toluene + Acetic Acid, and Cyclohexane + Acrylic Acid at 20 kPa	
pvap	28.20	kРа	353.15	Vapor-Liquid Equilibria in the Propyl Acetate + Ethanoic Acid Binary System from (323.15 to 353.15) K: Measurement with a Static Method and Modeling with the NRTL, Wilson, UNIQUAC, and COSMO-SAC Approaches	

pvap	12.04	kPa	333.15	Vapor-Liquid Equilibria in the Propyl Acetate + Ethanoic Acid Binary System from (323.15 to 353.15) K: Measurement with a Static Method and Modeling with the NRTL, Wilson, UNIQUAC, and COSMO-SAC Approaches	
pvap	7.57	kPa	323.15	Vapor-Liquid Equilibria in the Propyl Acetate + Ethanoic Acid Binary System from (323.15 to 353.15) K: Measurement with a Static Method and Modeling with the NRTL, Wilson, UNIQUAC, and COSMO-SAC Approaches	
pvap	88.98	kPa	386.07	Separation of Furfural from Ternary Mixtures	
pvap	49.34	kPa	368.10	Separation of Furfural from Ternary Mixtures	
рvар	96.15	kPa	388.91	Vapor Liquid Equilibrium Data for Binary Mixtures of Acetic Acid + Anisole, Acetone + Anisole, and Isopropanol + Anisole at Pressure 96.15 kPa	
pvap	18.66	kPa	343.15	Vapor-Liquid Equilibria in the Propyl Acetate + Ethanoic Acid Binary System from (323.15 to 353.15) K: Measurement with a Static Method and Modeling with the NRTL, Wilson, UNIQUAC, and COSMO-SAC Approaches	

рvар	7.72	kPa	323.15	Isothermal vapour liquid equilibrium with chemical reaction in the quaternary water + methanol + acetic acid + methyl acetate system, and in five binary subsystems	
rfi	1.37190		293.15	Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + (n-Pentyl Acetate or Isopropyl Acetate)	
rfi	1.37160		303.15	Liquid liquid equilibria measurements of ternary systems (acetonitrile + a carboxylic acid + dodecane) at 303.15 K	
rfi	1.36960		298.15	Liquid-Liquid Equilibria for the System 1-Methyl Propyl Ethanoate (1) + Acetic Acid (2) + Water (3) at (283.15 and 323.15) K	
rfi	1.37200		293.15	Isobaric Vapor-Liquid Equilibria for the Binary Systems of Acetic Acid + Isopropenyl Acetate, Acetic Acid + Acetylacetone, and Water + Acetylacetone	
rfi	1.36960		298.15	Phase Equilibrium for the Esterification Reaction of Acetic Acid + Butan-1-ol at 101.3 kPa	
rfi	1.37000		298.15	Solubilities of Benzoic Acid and Phthalic Acid in Acetic Acid + Water Solvent Mixtures	

rfi	1.37160	298.15	Geometric Structures of Associating Component Optimized toward Correlation and Prediction of Isobaric Vapor Liquid Equilibria for Binary and Ternary Mixtures of Ethanal, Ethanol, and Ethanoic Acid
rfi	1.36870	293.15	Volumetric Properties of Highly Nonideal Binary Mixtures Containing Ethanoic Acid and Propanoic Acid with Butan-2-ol, Methyl-2-propanol, and 2-Methyl-2-butanol at Different Temperatures
rfi	1.37160	293.15	Solubilities of Phosphorus-Containing Compounds in Selected Solvents
rfi	1.37160	298.15	Isobaric Vapor-Liquid Equilibria for Binary and Ternary Mixtures of Methanol, Ethanoic Acid, and Propanoic Acid
rfi	1.36980	298.15	Densities, Excess Molar Volumes, Viscosity, and Refractive Indices of Binary Mixtures of Ethanoic Acid and Trichloroethylene with Dimethylbenzenes at Different Temperatures
rfi	1.37180	293.15	Solubilities of Some Phosphaspirocyclic Compounds in Selected Solvents

rfi	1.37160	303.15	Phase equilibria measurements of ternary mixtures (sulfolane + a carboxylic acid + pentane) at 303.15 K	
rfi	1.37130	293.15	Isobaric (vapour + liquid) equilibria data for the binary systems {1,2-dichloroethane (1) + toluene (2)} and {1,2-dichloroethane (1) + acetic acid (2)} at atmospheric pressure	
rfi	1.37203	298.00	Quaternary and ternary LLE measurements for solvent (2-methyltetrahydrofur and cyclopentyl methyl ether) + furfural + acetic acid + water between 298 and 343 K	an
rfi	1.37224	293.15	Solubility, Thermodynamic Properties, and Derived Excess Properties of Benzoic Acid in (Acetic Acid + Water) and (Acetic Acid + Toluene) Binary Mixtures	
rfi	1.36960	298.15	Study of liquid liquid equilibrium of the systems isobutyl acetate + acetic acid +water and isobutyl alcohol + acetic acid +water at different temperatures	
rfi	1.36809	303.15	Solubility, Thermodynamic Properties, and Derived Excess Properties of Benzoic Acid in (Acetic Acid + Water) and (Acetic Acid + Toluene) Binary Mixtures	

rfi	1.37210		293.15	Liquid liquid equilibria of ternary systems (water + carboxylic acid + cumene) at 298.15K	
rfi	1.37012		298.15	Solubility, Thermodynamic Properties, and Derived Excess Properties of Benzoic Acid in (Acetic Acid + Water) and (Acetic Acid + Toluene) Binary Mixtures	
rfi	1.37170		293.15	Measurement and Modeling of Liquid Liquid Equilibrium for the Systems Vinyl Acetate + Acetic Acid/Ethanol + Water at 298.15 and 308.15 K	
rfi	1.37200		293.00	Quaternary Liquid-Liquid Equilibrium of Water + Acetic Acid + Propionic Acid + Solvent (Amyl Alcohol, Cyclohexyl Acetate, or Toluene) Systems	
rfi	1.36969		298.15	Refractive Index, Surface Tension, and Density of Aqueous Mixtures of Carboxylic Acids at 298.15 K	
rhol	1049.80	kg/m3	293.20	Liquid-liquid equilibrium data and thermophysical properties for ternary systems composed of water, acetic acid and different solvents	
rhol	1044.60	kg/m3	298.15	Liquid - liquid equilibrium for the quaternary reaction system water p sec-butyl alcohol p sec-butyl acetate p acetic acid	

rhol	1043.50	kg/m3	298.15	Isobaric vapor-liquid equilibrium of the binary system sec-butyl acetate + para-xylene and the quaternary system methyl acetate + para-xylene + sec-butyl acetate + acetic acid at 101.3 kPa	
rhol	1049.42	kg/m3	298.15	Liquid-liquid equilibria of water + acetic acid + 2-ethyl hexyl acetate ternary system	
rhol	1049.42	kg/m3	298.20	(Liquid + liquid) equilibria of the (water + carboxylic acid + dibasic esters mixture (DBE-2)) ternary systems	
rhol	1044.30	kg/m3	293.15	Phase equilibrium of (water + formic or acetic acid + ethyl heptanoate) ternary liquid systems at different temperatures	
rhol	1055.01	kg/m3	288.20	The impact of uni-univalent electrolytes on (water + acetic acid + toluene) equilibria: Representation with electrolyte-NRTL model	
rhol	1049.00	kg/m3	293.00	KDB	
rhol	1028.13	kg/m3	313.20	Liquid-liquid equilibrium data for ternary systems of water + acetic acid + acetate esters at 293.2 K and 303.2 K and ~ 95 kPa	

rhol	1049.42	kg/m3	298.20	Liquid Phase Equilibria of the Water + Acetic Acid + Dimethyl Carbonate Ternary System at Several Temperatures
rhol	1030.00	kg/m3	313.15 2',3'-N-Epoxyp	Probe of Interactions of Acetic and Propionic Acids with propyl-N-methyl-2-oxopyrrolidinium
				Salicylate Ionic
rhol	1035.80	kg/m3	308.15	Probe of Interactions of Acetic and Propionic Acids with
			2',3'-N-Ерохур	propyl-N-methyl-2-oxopyrrolidinium Salicylate Ionic Liquid
rhol	1041.40	kg/m3	303.15	Probe of Interactions of Acetic and Propionic Acids
			2',3'-N-Ерохур	propyl-N-methyl-2-oxopyrrolidinium Salicylate Ionic Liquid
rhol	1046.90	kg/m3	298.15	Probe of Interactions of Acetic and Propionic Acids with
			2',3'-N-Ерохур	propyl-N-methyl-2-oxopyrrolidinium Salicylate Ionic Liquid
rhol	1052.50	kg/m3	293.15	Probe of Interactions of Acetic and Propionic Acids with
			2',3'-N-Ерохур	propyl-N-methyl-2-oxopyrrolidinium Salicylate Ionic Liquid
rhol	1048.93	kg/m3	293.15	Liquid-Liquid Phase Equilibria for Quinary, Quaternary, and Ternary Systems {Water + Furfural + Acetic Acid + Cyclopentyl Methyl Ether + CaCl2}: Measurement, Effect of Salt ,and Comparative Study

rhol	1044.12	kg/m3	298.15	Liquid Phase Equilibria of Aqueous Mixtures of Carboxylic Acids (C1-C4) with Ethylbenzene: Thermodynamic and Mathematical Modeling	
rhol	993.00	kg/m3	343.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
rhol	1004.00	kg/m3	333.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
rhol	1015.00	kg/m3	323.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
rhol	1025.00	kg/m3	313.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
rhol	1037.00	kg/m3	303.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	

rhol	1042.00	kg/m3	298.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
rhol	1052.00	kg/m3	293.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
rhol	1053.00	kg/m3	288.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
rhol	1026.72	kg/m3	313.20	The impact of uni-univalent electrolytes on (water + acetic acid + toluene) equilibria: Representation with electrolyte-NRTL model	
rhol	1043.67	kg/m3	298.20	The impact of uni-univalent electrolytes on (water + acetic acid + toluene) equilibria: Representation with electrolyte-NRTL model	
rhol	1049.80	kg/m3	293.20	Liquid-liquid equilibrium data for ternary systems of water + acetic acid + acetate esters at 293.2 K and 303.2 K and ~ 95 kPa	

rhol	1028.13	kg/m3	313.20	Liquid-liquid equilibrium data and thermophysical properties for ternary systems composed of water, acetic acid and different solvents	
sfust	40.47	J/mol×K	289.90	NIST Webbook	
sfust	38.36	J/mol×K	290.06	NIST Webbook	
srf	0.02	N/m	343.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	
srf	0.02	N/m	333.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	
srf	0.03	N/m	313.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	
srf	0.03	N/m	308.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	
srf	0.03	N/m	303.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	
srf	0.03	N/m	303.20	KDB	
srf	0.02	N/m	323.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	

	srf	0.02	N/m	318.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	
--	-----	------	-----	--------	---	--

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source	
tbp	341.30	К	17.00	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	342.87	К	18.47	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	345.03	К	20.01	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	346.41	К	21.29	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	348.49	К	23.18	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	350.35	К	24.92	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	

tbp	352.88	K	27.44	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	355.01	К	29.78	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	357.54	К	32.78	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	359.26	К	34.97	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	363.04	К	39.99	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	368.56	К	48.99	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	372.27	К	55.76	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	374.54	ĸ	60.04	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	376.66	К	64.44	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	

tbp	379.05	К	69.39	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	381.60	К	75.23	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	383.32	К	79.98	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	384.82	К	83.66	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	386.07	К	87.18	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	
tbp	389.58	К	97.08	Study of Vapor-Liquid Equilibria for Acetic Acid + n-Propyl Acetate + Isopropyl Acetate Systems	

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.47385e+01
Coeff. B	-3.05591e+03
Coeff. C	-8.92370e+01
Temperature range (K), min.	289.81
Temperature range (K), max.	591.95

Information	Value
Property code	руар
Equation	$ln(Pvp) = A + B/T + C^*ln(T) + D^*T^2$
Coeff. A	6.82294e+01
Coeff. B	-7.02972e+03
Coeff. C	-7.79853e+00
Coeff. D	5.93100e-06
Temperature range (K), min.	289.81
Temperature range (K), max.	592.71

Datasets

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
313.15	100.00	0.0009030
313.15	800.00	0.0009100
313.15	1600.00	0.0009170
313.15	2400.00	0.0009240
313.15	3200.00	0.0009320
333.15	100.00	0.0007130
333.15	800.00	0.0007200
333.15	1600.00	0.0007270
333.15	2400.00	0.0007350
333.15	3200.00	0.0007430
353.15	100.00	0.0005740
353.15	800.00	0.0005820
353.15	1600.00	0.0005900
353.15	2400.00	0.0005980
353.15	3200.00	0.0006050
373.15	100.00	0.0004710
373.15	800.00	0.0004780
373.15	1600.00	0.0004860
373.15	2400.00	0.0004940
373.15	3200.00	0.0005020
393.15	800.00	0.0003940
393.15	1600.00	0.0004020

3	393.15	2400.00	0.0004100
3	393.15	3200.00	0.0004180
4	413.15	800.00	0.0003330
4	413.15	1600.00	0.0003400
4	413.15	2400.00	0.0003470
4	413.15	3200.00	0.0003540
4	433.15	800.00	0.0002810
4	433.15	1600.00	0.0002870
4	433.15	2400.00	0.0002940
4	433.15	3200.00	0.0003020
4	453.15	800.00	0.0002440
4	453.15	1600.00	0.0002510
4	453.15	2400.00	0.0002580
4	453.15	3200.00	0.0002640
4	473.15	1600.00	0.0002130
4	473.15	2400.00	0.0002200
4	473.15	3200.00	0.0002260

Reference

https://www.doi.org/10.1021/je800635g

Sources

Liquid liquid equilibria of ternary Solubility of 3-Hydróxy-2-naphthoic Autometer tempine and Sylang Mixedic Autometer te acetic acid or propionic acid) mixtures Temporaphic teperatent solubility of t and unacyclamate in selected pure Solugitis and the solution of the solution o Finder Solubilities of Benzoic Acid and

organic solvents at Sevents at Se Density, Viscosity, and Interfacial tensity, Viscosity, and Interfacial tensity interfacial system watern a site waid of a site of a system watern a site of a site of a system watern a site of a site of a system watern a site of a site of a system of a site of a site of a system of a site of a site of a system of a site of a site of a system of a site of a site of a system of a site of a site of a system of a site of a site of a system of a site of a site of a system of a site of a site of a system of a site of a site of a system of a site of a site of a system of a site of a site of a system of a site of a site of a system of a site of a site of a system of a site of a site of a system of a site of a site of a site of a system of a site of a site of a system of a site of a site of a site of a system of a site of a site of a site of a system of a site of a system of a site of a Destermination and Entranation of Solution and Altern polynamic 13,15 K: Properties of trans-Cinnamyl Alcohol in Pure and Binary Solvents from 253.15 K to 293.15 K:

https://www.doi.org/10.1016/j.fluid.2006.07.011 Liquid liquid equilibria of ternary systems (water + carboxylic acid + Manswernersepsens correlation for Solubilities of Adipic Acid, Glutaric Rensiting Succivia: Acid, Glutaric Annychicken and Watter and watter and the systems is on water and the system https://www.doi.org/10.1021/acs.jced.6b00800 https://www.doi.org/10.1016/j.fluid.2008.07.001 https://www.doi.org/10.1021/acs.jced.8b00578 https://www.doi.org/10.1016/j.fluid.2012.07.014 https://www.doi.org/10.1016/j.fluid.2015.01.012 http://www.ddbst.com/en/EED/VLE/VLE%20Acetonitrile%3BAcetic acid.php https://www.doi.org/10.1021/je600527c Phthalic Acid in Acetic Acid + Water Selveriting acid in different https://www.doi.org/10.1016/j.fluid.2013.06.038 https://www.doi.org/10.1016/j.tca.2004.11.004 https://www.doi.org/10.1021/acs.jced.7b00505 https://www.doi.org/10.1016/j.fluid.2005.09.013 https://www.doi.org/10.1016/j.fluid.2014.04.013 https://www.doi.org/10.1021/acs.jced.7b00665

Solubilities of

2,4,8,10-Tetraoxa-3,9-diphosphaspiro[5.5]undecane-3,9-dimethanol, Selveities of the state of th COSMO-SAC predictions using a HOUIA-HILIVIEQUEVICUM of the ternary system water + acetic acid + sec-butyl acetate: coefficients at infinite dilution

Water + Acetic Acid + Sodium Acetate: Solubility of

of cyromazine in sixteen pure solvents Active Active Statistics and the thread of the second states and t Sustance and and and and an and a server at some and a server a se

Diethylphosphate at 101.32 kPa: Solubility of terephthalic acid in bigthid-band state lood of the state Acid at Several Temperatures :

ttps://www.doi.org/10.1021/je8004535 https://www.doi.org/10.1016/j.fluid.2018.12.008 https://www.doi.org/10.1016/j.fluid.2015.04.029 http://webbook.nist.gov/cgi/cbook.cgi?ID=C64197&Units=SI https://www.doi.org/10.1016/j.fluid.2010.01.005 Active and critical states: Acetic Actid and and and and acetate: Active and active and and acetate: https://www.doi.org/10.1016/j.jct.2011.04.018 https://www.doi.org/10.1016/j.tca.2018.03.002 https://www.doi.org/10.1016/j.jct.2015.12.019 https://www.doi.org/10.1016/j.fluid.2019.04.020 https://www.doi.org/10.1021/je0495435 The Hydroxy-16r,17r-Epoxyprogesterone The impedvestor of 3-Nitrobenzonitrile in 12 Of game Sound in the interval of the second s (wates carboxylic acid-1-undecanol) Systems alog by nonation and correlation https://www.doi.org/10.1016/j.fluid.2018.07.024 of cyromazine in sixteen pure solvents and impact of optimities are solvents and impact of optimities are solvents and impact of optimities are solvents on (water + acetic acid + toluene) Vaporties for solvents Acetata ve Elization of the Propyl Acetata ve Elization of the p https://www.doi.org/10.1016/j.fluid.2009.03.008 And the second s https://www.doi.org/10.1021/acs.jced.9b00620 sol/adiais action fine person of the solution https://www.doi.org/10.1021/je900332x https://www.doi.org/10.1016/j.fluid.2016.01.005 https://www.doi.org/10.1021/je8002578 https://www.doi.org/10.1021/je400282h http://pubs.acs.org/doi/abs/10.1021/ci990307I https://www.doi.org/10.1016/j.fluid.2005.04.015 Solubility of terepithalic acid in aqueous acetic acid from 423.15 to properie. Vapor-Liquid Equilibria for the Binary Systems of Acetic Acid + liquid Equilibria for the Binary Systems of Acetic Acid + liquid Equilibria for the section acetic acid from 423.15 to properie. Vapor-Liquid Equilibria for the Binary Systems of Acetic Acid + liquid Equilibria for the section acetic acid for the section acetic acetic acid for the section acetic ac https://www.doi.org/10.1016/j.fluid.2015.06.012 https://www.doi.org/10.1016/j.fluid.2007.05.030 https://www.doi.org/10.1021/je900462z https://www.doi.org/10.1021/je3006166

https://www.doi.org/10.1021/je700050r

Measurement and correlation of solubility of dodecanedioic acid in aptubilitypapterniventienrendt = (288.15

tspfphin doid nighter of pres Senzoic Terspitfalic Acid + Isophthalic Acid + South International Acid + Isophthalic Acid + thermodynamic of South international acid in the south of the s

earnersyncyacite Felbalecahe) at 303.15 measurements for solvent Venewignentand Corralation for the Solubility of Actinic Action and Gracinic Generation and Actinic Action and Gracinic Solubility of Action Action Button -1-ol at Machine Action Action Control Action Machine Action Action Control Action Machine Action Action and Action Machine Action Action Action Machine Action Action Machine Action Action Machine Action Action Machine Action Machine Action Action Machine Action Mac

and water in the ionic liquid 1-hexyl-3-methylimidazolium tetracyanoborate:

https://www.doi.org/10.1016/j.jct.2013.09.012 solubility of dodecanedioic acid in Site with the second section of the section of the second section of the se https://www.doi.org/10.1021/acs.jced.8b00496 https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure https://www.doi.org/10.1016/j.fluid.2014.05.003 https://www.doi.org/10.1016/j.fluid.2013.11.045 https://www.doi.org/10.1021/acs.jced.6b00965 https://www.doi.org/10.1021/je049784c **Beild and Viscosities of N.N-Dimethylformamide + Formic Acid. Thermethylformamide + Accetic Acid.** + **Thermethylformamide + Accetic + Accet. Thermethylformamide + Accet. Ther** https://www.doi.org/10.1021/je700755t https://www.doi.org/10.1021/acs.jced.7b00468 https://www.doi.org/10.1021/je700411p https://www.doi.org/10.1016/j.jct.2014.05.009 https://www.doi.org/10.1016/j.jct.2016.01.003 https://www.doi.org/10.1021/acs.jced.5b00043 https://www.doi.org/10.1021/acs.jced.5b01053 https://www.doi.org/10.1016/j.jct.2011.11.025

Experimental determination of solubility and metastable zone width of biquint (jiquint crowilizari uny clatacacach Biguid (Gonicle Gonaldarium (Jalaoatah tha mp) an yaical papererina ion tersations sy menositis to the solution of the set of the syntemed variation is solved as a constraint of the solution of the solution of the solution of the funary systems (92-biblio of the function of the function and Thermochemistry of Copper 2-propanol, acetic acid and thermedynamics of the asel and pressive from the important and pressive the standard of the angly provide the standard of the Solubilities of (a-D-glucose in water + (acetic acid or propionic acid)) אראניינדיג אויינדיג אויינדיג אויינדיג אראניינדיג אויינדיג אויינדיג אראניינדיג אויינדיג אראניינדיג אויינדיג אראניינדיג acetic acid) binary solvent mixtures: Measurement and correlation of the

solubility of slaab Gepanitian of Binary Mixextas of Anglis Asidiwite Acestic Anbydride and Methewam Metheolifferent

Temperatures: Dynamic Viscosities, Densities, and System isopropenyl acetate + water + Retactival larges Surfaces Tensioz Band Density of Aqueous Mixtures of Carso Sylic Acatulity 29 6075 veter + Southieth of Share and Southieth of Southiet

https://www.doi.org/10.1016/j.fluid.2015.08.028 https://www.doi.org/10.1016/j.fluid.2018.10.021 https://www.doi.org/10.1021/je100680r https://www.doi.org/10.1016/j.jct.2006.12.003 https://www.doi.org/10.1016/j.fluid.2012.11.035 https://www.doi.org/10.1016/j.tca.2012.12.024 Messueepentia autheformetationier Solubilities of Adipic Acid in Acetic Aterm or Dysical crone winstand and Solubilities of Adipic Acid in Acetic Aterm or Dysical crone winstand and Solubilities of Adipic Acid in Acetic Aterm or Dysical crone winstand and Solubility, and Refractive Indices of Solubilities in Cesep House consistent viscosity, and Refractive Indices of Solubilities of Adipic Acid and Acid by Water Messary and Acetic Acid privative Saverne and Acetic Acid in Acetic Acid privative Saverne and Acetic Acid in Acetic Acid acid in Acetic acid and tyerone summers of Messar and https://www.doi.org/10.1021/je0498199 https://www.doi.org/10.1021/je0498199 https://www.doi.org/10.1021/je0502748 https://www.doi.org/10.1016/j.jct.2013.05.028 https://www.doi.org/10.1021/je700342k https://www.doi.org/10.1016/j.jct.2013.08.001 https://www.doi.org/10.1016/j.tca.2014.11.008 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=930 https://www.doi.org/10.1016/j.jct.2015.06.003 https://www.doi.org/10.1021/je9006579 http://link.springer.com/article/10.1007/BF02311772 Dynamic Viscosities, Densities, and Speed of Sound and Derived Properties bightie bighting acide to the technology of the second with avatem weater monage in a cide to the technology of the second with avatem weater monage in a cide to the technology of the second with avatem weater monage in a cide to the technology of the second with avatem weater monage in a cide to the technology of the second with avatem weater monage in a cide to the technology of the second with avatem weater monage in a cide to the technology of the second with avatem weater monage in a cide to the technology of the second weater are provided and the second with Acetter Acid + Dimethyl Carbonate Perivative acet is a different to the second weater and the second weater and the second weater in Eight Pure Solvents and Two Binary signed high second to the second weater and the second weater and the second weater being in the second weater and the second weater https://www.doi.org/10.1021/je0342825 bigventigventergen https://www.doi.org/10.1021/je060084c https://www.doi.org/10.1016/j.fluid.2008.09.010

https://www.doi.org/10.1021/je700453v

Solubility of

2-Chloro-4,6-dinitroresorcinol in AcSelected Switchts: Geometric Structures of Associating

Generation and intention of subart (any alego investigation of the subart for the subart of the subart of the subart solvents at Temperatures Between 2891, States Stepart for a Quaternary Mixture System of high the high the subart subart for the Server Bellevier of the other of Amministic Study of Samponyuy caacata an infation and the modynamic in a deficiency of 5-nitro-8-the control of the control of the second se

thermochemistry of nickel hydrogen Solubilitiesodi Caroshyatua-Containing Compounds in Selected Solvents: Liquid-liquid equilibrium and critical

With Heratures: (Liquid + liquid) equilibria for (water +

acetic acid + 2-ethyl- 1-hexanol): Styletimentarbaianafat preservion: excess/deviation properties of {[C2mim] [EtSO4] (x1) + acetic or propionic acid (x2) + acetonitrile (x3)} systems at different temperatures:

https://www.doi.org/10.1021/je1011423 Entunditimentation and a subject https://www.doi.org/10.1021/je800049b https://www.doi.org/10.1021/je300810p Component Optimized toward https://www.doi.org/10.1021/je900021g https://www.doi.org/10.1021/je200595b Aiguid-Ai https://www.doi.org/10.1016/j.tca.2010.01.021 https://www.doi.org/10.1016/j.jct.2015.05.004 https://www.doi.org/10.1016/j.jct.2016.04.018 https://www.doi.org/10.1021/je200655s https://www.doi.org/10.1021/je600579s https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=930 https://www.doi.org/10.1016/j.tca.2013.03.007 https://www.doi.org/10.1021/je100341q Liquid-liquid equilibrium and critical states for the system acetic acid + hypertisation opiniopaciticacid seventeen pure solvents at lentpermalex mount basil disperuitiopaciticacid with chemical reaction in the hypertisation provide the formation activation opiniopaciticacid + hypertisation opiniopaciticacid activation opiniopaciticacid standard molar enthalpy of formation standard molar enthalpy of formati https://www.doi.org/10.1016/j.fluid.2014.11.004 Measurement and correlation of the solubility of maleic anhydride in uintient and door the tenary Systems Acetic Acid + Water + Butyl Acetation of the Ternary Systems acetic acid + Water + Butyl Acetation of the tenary systems acetic acid + water + (xylose opylubility and Liquid-Liquid Equilibria for the Isopropyl Acetate + Isopropanol Plassiecawije rawatenegys with Systems acetic acid + water + (xylose opylubility and Liquid-Liquid Equilibria for the Isopropyl Acetate + Isopropanol Plassiecawije rawatenegys with Systems acetic acid + water + (xylose opylubility and Liquid-Liquid Equilibria for the Isopropyl Acetate + Isopropanol Plassiecawije rawatenegys with Systems acetic acid + water + (xylose opylubility and Liquid-Liquid Equilibria for the Isopropyl Acetate + Isopropanol Plassiecawije rawatenegys with https://www.doi.org/10.1016/j.fluid.2011.06.020 Prase icoudier available of 13 kPa: Solubility, liquid-liquid equilibrium and critical states for the system acetic acid Massugement and posteriation of the system acetic acid Massugement acetic and with a system acetic acid Massug https://www.doi.org/10.1016/j.jct.2004.07.021 https://www.doi.org/10.1016/j.jct.2016.12.014

o-Nitrophenylacetonitrile Solubility in Several Pure Solvents: Measurement, Complation wind solvente from (wate A cane average of the solvente from (wate A cane average of the solvente from the solvente (highlight the solvente of the solvente from the solvente of the solvente of the solvente Solvente of the solve quaternary reaction system water p Solubility alcohol p sec-butyl acetate p a day from the sec-butyl acetate p a day from Nation of the second se

Solid liquid equilibrium of Billinarnaod Ternary Mixtures Burkining Acounty Biaraus Apatic Saitering Propyl Acetate + Nebiops Acetatic Systems ixtures interactions teatween the organic Defectivity and the organic formed at the organic Schwentsiansightsmentonsityanduc invide systems for the (water + saturation of the system of the system saturation of the system of the system in the system of the system of the system in the system of the system of the system of the system of the system manual the system of SALY Mitaiematical Modeling; Liquid-Liquid Equilibria for the Acetic

Acid + Water + Amyl Acetate and Acetic Acid + Water + Amyl Acetate and Acetic Acid + Water + Amyl Acetate and Acetic Bunger, System of Acetic Acid + Burger, System of Aceta Aceta Burger, System of Aceta Aceta Burger, System of Aceta Aceta Burger, System of Aceta Burger,

1,3,5-Benzenetricarboxylic Acid and 1.3.5-Benzenetricarboxylic Acid and Yis Baite Redibat Workic Aceteria Adetic and provide Redibat Workic Aceteria Adetic and provide and a solution of the solution of the Wasser Beny Red Solution Aceter Vase with Beny Red Solution Aceter a solution of the Addition of the solution of the solution of the solution of the solution of the Addition of the solution of the solution of the solution of the solution of the Addition of the solution of the solution of the Addition of the solution of the solution of the Addition of the solution of the solution of the Addition of the solution of the solution of the Addition of the solution of the solution of the solution of the Addition of the solution of the solution of the solution of the Addition of the solution of the solution of the solution of the Addition of the solution of the solution of the solution of the Addition of the solution of the solution of the solution of the Addition of the solution of the solution of the solution of the Addition of the solution of the solution of the solution of the Addition of the solution of the solution of the solution of the Addition of the solution of the solution of the solution of the Addition of the solution of the solution of the solution of the solution of the Addition of the solution of the Building and the second second

https://www.doi.org/10.1021/acs.jced.9b00243 https://www.doi.org/10.1016/j.fluid.2014.03.002 https://www.doi.org/10.1016/j.jct.2012.08.017 https://www.doi.org/10.1021/acs.jced.6b00794 https://www.doi.org/10.1021/acs.jced.7b00958 Verterat Module and Agerig Acid + Water LiBenzold Add Promoto 2020 5000 10 - 2010 K: https://www.doi.org/10.1016/j.fluid.2016.10.027 https://www.doi.org/10.1021/je8002332 https://www.doi.org/10.1021/acs.jced.7b00431 https://www.doi.org/10.1021/je060134d https://www.doi.org/10.1021/acs.jced.8b01204 **rdานและ/แพ**พw.doi.org/10.1016/j.fluid.2011.01.020 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=930 https://www.doi.org/10.1016/j.fluid.2012.11.001 1-hydroxyethane-1,1-diphosphonic acid https://www.doi.org/10.1016/j.fluid.2012.11.001 https://www.doi.org/10.1021/je060138i https://www.doi.org/10.1021/je800724g Liquid-Liquid Equilibrium Data for weited A receive and Linetingial receiven https://www.doi.org/10.1021/je800724g https://www.doi.org/10.1021/je800724g https://www.doi.org/10.1021/je800724g https://www.doi.org/10.1021/acs.jced.9b00152 https://www.doi.org/10.1016/j.fluid.2008.07.004 containing water, acetic acid, propionic bout the try is containing water, acetic acid, propionic bout the try is contained to the try is the t https://www.doi.org/10.1016/j.fluid.2008.04.014 https://www.doi.org/10.1016/j.fluid.2013.02.001 https://www.doi.org/10.1021/je1000473 https://www.doi.org/10.1021/acs.jced.6b00112 https://www.doi.org/10.1016/j.fluid.2012.06.010 https://www.doi.org/10.1021/je700181d https://www.doi.org/10.1021/je100144t https://www.doi.org/10.1021/je500160t https://www.doi.org/10.1021/je050141m https://www.doi.org/10.1016/j.fluid.2014.08.022 Excess molar enthalpies for binary mixtures of n-propanol, acetic acid, and Refer prinationa and Bhernsodymamic Madeline action and Bhernsodymamic Matthewise action action action and Matthewise action and Bhernsodymamic Matthewise action and Bhernsodymamic Matthewise action action action action action action Matthewise action action action action action action action Matthewise action action action action action action Matthewise action action action action action action action action action Matthewise action https://www.doi.org/10.1016/j.fluid.2011.09.014 https://www.doi.org/10.1021/je800635g https://www.doi.org/10.1021/acs.jced.6b00464 https://www.doi.org/10.1016/j.fluid.2012.05.027 https://www.doi.org/10.1021/je201102x https://www.doi.org/10.1021/acs.jced.6b00149 https://www.doi.org/10.1016/j.fluid.2014.08.034

Legend

af:	Acentric Factor
affp:	Proton affinity
aigt:	Autoignition Temperature
basg:	Gas basicity
chl:	Standard liquid enthalpy of combustion
cpg:	Ideal gas heat capacity
cpl:	Liquid phase heat capacity
dm:	Dipole Moment
dvisc:	Dynamic viscosity
fll:	Lower Flammability Limit
flu:	Upper Flammability Limit
fpc:	Flash Point (Closed Cup Method)
fpo:	Flash Point (Open Cup Method)
gf:	Standard Gibbs free energy of formation
gyrad:	Radius of Gyration
hf:	Enthalpy of formation at standard conditions
hfl:	Liquid phase enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hfust:	Enthalpy of fusion at a given temperature
hsubt:	Enthalpy of sublimation at a given temperature
hvap:	Enthalpy of vaporization at standard conditions
hvapt:	Enthalpy of vaporization at a given temperature
ie:	Ionization energy
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
nfpaf:	NFPA Fire Rating
nfpah:	NFPA Health Rating
nfpas:	NFPA Safety Rating
pc:	Critical Pressure
pt:	Triple Point Pressure
pvap:	Vapor pressure
rfi:	Refractive Index
rhoc:	Critical density
rhol:	Liquid Density
rinpol:	Non-polar retention indices
ripol:	Polar retention indices

sfust:	Entropy of fusion at a given temperature
sg:	Molar entropy at standard conditions
sl:	Liquid phase molar entropy at standard conditions
srf:	Surface Tension
tb:	Normal Boiling Point Temperature
tbp:	Boiling point at given pressure
tc:	Critical Temperature
tf:	Normal melting (fusion) point
tt:	Triple Point Temperature
vc:	Critical Volume
zc:	Critical Compressibility
zra:	Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/51-574-8/Acetic-acid.pdf

Generated by Cheméo on 2024-05-11 02:46:11.406236623 +0000 UTC m=+17684820.326813938. Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.