1-Hexyne

Other names: BUTYLACETYLENE

Hex-1-yne Hexyne

N-BUTYLACETYLENE

NSC 9709

Inchi: InChl=1S/C6H10/c1-3-5-6-4-2/h1H,4-6H2,2H3

InchiKey: CGHIBGNXEGJPQZ-UHFFFAOYSA-N

Formula: C6H10
SMILES: C#CCCCC

Mol. weight [g/mol]: 82.14 **CAS:** 693-02-7

Physical Properties

Value	Unit	Source
0.2490		KDB
799.80	kJ/mol	NIST Webbook
774.80	kJ/mol	NIST Webbook
222.71	kJ/mol	Joback Method
3889.86	kJ/mol	KDB
3670.205	kJ/mol	KDB
122.30 ± 1.20	kJ/mol	NIST Webbook
14.27	kJ/mol	Joback Method
28.81	kJ/mol	Joback Method
10.07 ± 0.01	eV	NIST Webbook
10.03 ± 0.05	eV	NIST Webbook
10.07 ± 0.02	eV	NIST Webbook
10.52 ± 0.05	eV	NIST Webbook
9.95 ± 0.05	eV	NIST Webbook
-2.36		Estimated Solubility Method
-2.36		Aqueous Solubility Prediction Method
1.810		Crippen Method
86.800	ml/mol	McGowan Method
3690.00	kPa	KDB
610.00		NIST Webbook
586.00		NIST Webbook
	0.2490 799.80 774.80 222.71 3889.86 3670.205 122.30 ± 1.20 14.27 28.81 10.07 ± 0.01 10.03 ± 0.05 10.07 ± 0.02 10.52 ± 0.05 9.95 ± 0.05 -2.36 1.810 86.800 3690.00 610.00	0.2490 799.80 kJ/mol 774.80 kJ/mol 222.71 kJ/mol 3889.86 kJ/mol 3670.205 kJ/mol 122.30 ± 1.20 kJ/mol 14.27 kJ/mol 28.81 kJ/mol 10.07 ± 0.01 eV 10.03 ± 0.05 eV 10.07 ± 0.02 eV 10.52 ± 0.05 eV 9.95 ± 0.05 eV -2.36 eV 1.810 86.800 86.800 ml/mol 3690.00 kPa 610.00

win n a l	500.00		NICT Wahhaak
rinpol rinpol	586.00 584.00		NIST Webbook NIST Webbook
	588.00		NIST Webbook
rinpol			NIST Webbook
rinpol	587.30		
rinpol		587.00 NIST Webbo	
rinpol	587.00		NIST Webbook
rinpol	584.00		NIST Webbook
rinpol	584.00		NIST Webbook
rinpol	584.00		NIST Webbook
rinpol	584.00		NIST Webbook
rinpol	583.00		NIST Webbook
rinpol	590.00		NIST Webbook
rinpol	588.20		NIST Webbook
rinpol	587.30		NIST Webbook
rinpol	586.00		NIST Webbook
rinpol	587.00		NIST Webbook
rinpol	587.00		NIST Webbook
rinpol	587.00		NIST Webbook
rinpol	587.30		NIST Webbook
rinpol	612.00		NIST Webbook
rinpol	611.00		NIST Webbook
rinpol	584.00		
ripol	827.00		NIST Webbook
ripol	827.00		NIST Webbook
ripol	837.00		NIST Webbook
ripol	833.00		NIST Webbook
ripol	847.30		NIST Webbook
tb	323.15	K	NIST Webbook
tb	344.65 ± 1.00	K	NIST Webbook
tb	344.65 ± 0.70	K	NIST Webbook
tb	344.50 ± 0.30	K	NIST Webbook
tb	344.52 ± 0.40	K	NIST Webbook
tb	344.65 ± 1.50	K	NIST Webbook
tb	343.65 ± 1.50	K	NIST Webbook
tb	344.40 ± 2.00	K	NIST Webbook
tb	344.65 ± 1.50	K	NIST Webbook
tb	344.55 ± 0.30	K	NIST Webbook
tb	344.00 ± 2.00	K	NIST Webbook
tb	343.35 ± 0.70	K	NIST Webbook
tb	345.05 ± 0.50	K	NIST Webbook
tb	344.65 ± 1.00	K	NIST Webbook
tb	344.48 ± 0.20	K	NIST Webbook
tb	344.53 ± 0.30	K	NIST Webbook
tb	344.00 ± 1.00	K	NIST Webbook
· ·	5 14.00 ± 1.00	IX	THE TWO DOOR

tb	344.15 ± 1.50	K	NIST Webbook
tb	344.15 ± 1.50	K	NIST Webbook
tb	343.45 ± 1.00	K	NIST Webbook
tb	344.70 ± 1.50	K	NIST Webbook
tb	344.80 ± 0.30	K	NIST Webbook
tb	344.70 ± 1.00	K	NIST Webbook
tb	344.80 ± 0.40	K	NIST Webbook
tb	344.70 ± 1.00	K	NIST Webbook
tb	344.49 ± 0.30	K	NIST Webbook
tb	345.00 ± 1.00	K	NIST Webbook
tb	344.50	K	KDB
tb	343.65 ± 1.50	K	NIST Webbook
tb	343.65 ± 1.50	K	NIST Webbook
tb	344.15 ± 1.50	K	NIST Webbook
tb	344.15 ± 1.00	K	NIST Webbook
tb	344.15 ± 0.50	K	NIST Webbook
tb	345.15 ± 1.50	K	NIST Webbook
tb	343.40 ± 0.70	K	NIST Webbook
tb	344.50	K	NIST Webbook
tc	529.00	K	KDB
tf	141.00	K	KDB
tf	141.15 ± 1.50	K	NIST Webbook
tf	141.06 ± 0.10	K	NIST Webbook
tf	140.75 ± 0.40	K	NIST Webbook
tf	141.18	K	Aqueous Solubility Prediction Method
VC	0.334	m3/kmol	KDB
ZC	0.2797890		KDB
	-		

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	186.81	J/mol×K	501.88	Joback Method
cpg	147.77	J/mol×K	355.98	Joback Method
cpg	138.91	J/mol×K	326.80	Joback Method
cpg	179.67	J/mol×K	472.70	Joback Method
cpg	172.20	J/mol×K	443.52	Joback Method
cpg	164.40	J/mol×K	414.34	Joback Method
cpg	156.26	J/mol×K	385.16	Joback Method
hvapt	33.50	kJ/mol	270.00	NIST Webbook
hvapt	34.20	kJ/mol	262.00	NIST Webbook

pvap 32.65 kPa 313.15 Thermodynamics of isomeric nexynes HMTBE binary mixtures pvap 68.90 kPa 333.15 Thermodynamics of isomeric nexynes +MTBE binary mixtures pvap 96.32 kPa 343.15 Thermodynamics of isomeric nexynes +MTBE binary mixtures pvap 2.72 kPa 263.15 Thermodynamics of isomeric nexynes +MTBE binary mixtures pvap 21.50 kPa 303.15 Thermodynamics of isomeric nexynes +MTBE binary mixtures pvap 17.22 kPa 298.15 Thermodynamics of isomeric nexynes +MTBE binary mixtures pvap 13.67 kPa 293.15 Thermodynamics of isomeric nexynes +MTBE binary mixtures pvap 8.36 kPa 283.15 Thermodynamics of isomeric nexynes +MTBE binary mixtures pvap 4.89 kPa 273.15 Thermodynamics of isomeric nexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric nexynes +MTBE binary mixtures rfi 1.39600 298.15 KDB	hvapt	33.40	kJ/mol	328.00	NIST Webbook	
pvap 96.32 kPa 343.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 2.72 kPa 263.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 21.50 kPa 303.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 17.22 kPa 298.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 17.22 kPa 298.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 13.67 kPa 293.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 8.36 kPa 283.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 4.89 kPa 273.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures	pvap	32.65	kPa	313.15	of isomeric hexynes +MTBE	
pvap 2.72 kPa 263.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 21.50 kPa 303.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 17.22 kPa 298.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 17.22 kPa 298.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 13.67 kPa 293.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 8.36 kPa 283.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 4.89 kPa 273.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 4.89 kPa 273.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures	pvap	68.90	kPa	333.15	of isomeric hexynes +MTBE	
pvap 21.50 kPa 303.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 17.22 kPa 298.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 13.67 kPa 293.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 8.36 kPa 283.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 8.36 kPa 283.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 4.89 kPa 273.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures	pvap	96.32	kPa	343.15	of isomeric hexynes +MTBE	
pvap 17.22 kPa 298.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 13.67 kPa 293.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 8.36 kPa 283.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 8.36 kPa 283.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 4.89 kPa 273.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures	pvap	2.72	kPa	263.15	of isomeric hexynes +MTBE	
pvap 13.67 kPa 293.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 8.36 kPa 283.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 4.89 kPa 273.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures	pvap	21.50	kPa	303.15	of isomeric hexynes +MTBE	
pvap 8.36 kPa 283.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 4.89 kPa 273.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures	pvap	17.22	kPa	298.15	of isomeric hexynes +MTBE	
pvap 4.89 kPa 273.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures	pvap	13.67	kPa	293.15	of isomeric hexynes +MTBE	
of isomeric hexynes +MTBE binary mixtures pvap 48.09 kPa 323.15 Thermodynamics of isomeric hexynes +MTBE binary mixtures	pvap	8.36	kPa	283.15	of isomeric hexynes +MTBE	
of isomeric hexynes +MTBE binary mixtures	pvap	4.89	kPa	273.15	of isomeric hexynes +MTBE	
rfi 1.39600 298.15 KDB	pvap	48.09	kPa	323.15	of isomeric hexynes +MTBE	
	rfi	1.39600		298.15	KDB	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbrp	285.70	K	10.00	NIST Webbook

Correlations

Information	Value
Information	Value

Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.46089e+01
Coeff. B	-3.07754e+03
Coeff. C	-3.64370e+01
Temperature range (K), min.	251.33
Temperature range (K), max.	367.45

Information	Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	9.50798e+01
Coeff. B	-6.95750e+03
Coeff. C	-1.22828e+01
Coeff. D	1.25260e-05
Temperature range (K), min.	141.25
Temperature range (K), max.	516.20

Sources

Measurements of activity coefficients Assessment of Pyrrolidinium-Based lonic Liquid for the Separation of Sapara ware of Europe in the Separation of the Separation of Sapara ware of Europe in the Separation of the Separation o his tis the premethylaution on the hours gas-liquid chromatography at T = (313.15, 333.15, 353.15 and 373.15) K:

Measurements of activity coefficients at infinite dilution for organic solutes infinite dilution for properties and infinite dilution infinite d https://www.doi.org/10.1016/j.jct.2013.07.004 https://www.doi.org/10.1016/j.fluid.2010.08.016 https://www.doi.org/10.1016/j.fluid.2010.10.022 https://www.doi.org/10.1021/acs.jced.9b00341

```
Determination of activity coefficients at https://www.doi.org/10.1016/j.fluid.2006.03.002
     infinite dilution of organic solutes in
                                                                                                                                                                                                                                        https://www.cheric.org/files/research/kdb/mol/mol407.mol
     theBonic liquid,
   tributylmethylphosphonium
Realitys her yeen characteristic
molecular yellime and hydrophobicity
of notice that the molecular in the molecular coefficients at infinite dilution using
                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2010.04.011
                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2003.09.011
     Gripper Methodarbons in furfural at T = http://pubs.acs.org/doi/abs/10.1021/ci990307l
    278:15 K and T = 298:15 K:
Experimental and theoretically study of https://www.doi.org/10.1016/j.jct.2014.12.027
    interaction between organic
                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2013.02.006
 Activity under finite patrioline alitation passed and is a flution of organic solutes in the finite dilution at the first section of th
     Activition activities at inclinity at italian
                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.8b00080
                                                                                                                                                                                                                                    https://www.doi.org/10.1016/j.jct.2012.01.019
                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2005.01.015
                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2013.05.011
                                                                                                                                                                                                                                       https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
 Activity coefficients at infinite dilution of organic solutes in the ionic liquid Minasungeente of petitish conflicients at infinite dilution as in the ionic liquid Minasungeente of petitish conflicients at infinite dilution are infinite dilution are infinite dilution are infinitely in the ionic liquid https://www.doi.org/10.1016/j.jct.2011.06 https://www.doi.org/
                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2010.12.005
                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2012.03.005
                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2016.02.004
                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2011.06.007
                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2013.05.008
                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2018.09.024
                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2009.07.010
https://www.doi.org/10.1016/j.jct.2004.03.001
https://www.doi.org/10.1016/j.jct.2004.03.001
https://www.doi.org/10.1016/j.jct.2004.03.001
https://www.doi.org/10.1016/j.jct.2004.03.001
https://www.doi.org/10.1016/j.jct.2012.01.004
https://www.doi.org/10.1016/j.jct.2012.01.004
https://www.doi.org/10.1016/j.jct.2012.01.004
https://www.doi.org/10.1016/j.jct.2012.01.004
https://www.doi.org/10.1016/j.jct.2012.01.004
https://www.doi.org/10.1016/j.jct.2012.01.004
https://www.doi.org/10.1016/j.jct.2012.01.004
https://www.doi.org/10.1016/j.jct.2012.01.004
https://www.doi.org/10.1016/j.jct.2012.01.004
https://www.doi.org/10.1016/j.jct.2012.03.015
https://www.doi.org/10
                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2014.11.020
                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2018.07.028
                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2006.07.015
                                                                                                                                                                                                                                      http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt
                                                                                                                                                                                                                                    https://www.doi.org/10.1021/je060033f
 Tracempady a monitories of Mixtures Gental in the properties of Mixtures and the properties of Mixtures (Contained International 
      <del>Watermadyneamonic Proper</del>ties of Mixtures
```

ionic liquid choline

bis(trifluoromethylsulfonyl)imide:

```
McGowan Method:
                                                                                                                                                                                                                                                                                                                       http://link.springer.com/article/10.1007/BF02311772
        Activity Coefficients at Infinite Dilution
                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1021/je9008443
     Activity Coefficients at Infinite Dilution of Organic Solutes in paramiparation of India in the Dilution of Organic Solutes in paramiparation of India in the Ind
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.fluid.2017.06.001
                                                                                                                                                                                                                                                                                                                      Solutes and water in the system of the syste
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2018.07.024
                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1016/j.jct.2016.08.008
      Massesementa measurements for organic
Massesementa et artinisuonefigiants
atantia teritian monargemia solutes
brai mitta tantanin surionnin imide:
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2011.11.025
                                                                                                                                                                                                                                                                                                                       http://webbook.nist.gov/cgi/cbook.cgi?ID=C693027&Units=SI
The property of the property o
        1-hexyl-3-methylimidazolium
Defermination of Activity Coefficients
at Infinite Dilution of Solutes in the
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je800105r
                                                                                                                                                                                                                                                                                                               uhttps://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=407
   and physicochinical properties which is presented by the system was a fall the policic in the properties of the interest of th
          Segandisprites virginization in the relation
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je201129y
                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.fluid.2006.08.007
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2011.02.012
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je200637v
                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2016.07.017
                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2008.01.004
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2017.11.017
```

Activity coefficients at infinite dilution for solutes in the Activityการสหรับลากราสบาดfinite dilution ABBUT MARKINITH AND THE COLUMN TO THE PROPERTY OF THE PROPERTY water the figure of a ctivity coefficients at in finite of white the first of a ctivity coefficients at in finite of white figure of the first of th The say He was a superior of the same of t

https://www.doi.org/10.1016/j.jct.2009.08.012 https://www.doi.org/10.1016/j.fluid.2008.10.008 https://www.doi.org/10.1021/je4001894

https://www.doi.org/10.1016/j.jct.2015.05.014 https://www.doi.org/10.1016/j.fluid.2018.11.011

https://www.doi.org/10.1021/je500050p https://www.doi.org/10.1016/j.fluid.2009.08.017 https://www.doi.org/10.1016/j.jct.2007.01.004 https://www.doi.org/10.1016/j.jct.2009.12.004 https://www.doi.org/10.1016/j.jct.2015.02.023 https://www.doi.org/10.1016/j.jct.2017.10.003 https://www.doi.org/10.1021/acs.jced.5b00980 https://www.doi.org/10.1016/j.jct.2010.05.017 https://www.doi.org/10.1016/j.jct.2005.03.014 https://www.doi.org/10.1016/j.jct.2009.06.011

Legend

af: Acentric Factor affp: Proton affinity Gas basicity basg:

Ideal gas heat capacity cpg:

Standard Gibbs free energy of formation gf:

Heat of Combustion, Gross form hcg: hcn: Heat of Combustion, Net Form

hf: Enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions Enthalpy of vaporization at a given temperature hvapt:

ie: Ionization energy

Log10 of Water solubility in mol/l log10ws: Octanol/Water partition coefficient logp: mcvol: McGowan's characteristic volume

Critical Pressure pc: pvap: Vapor pressure rfi: Refractive Index

rinpol: Non-polar retention indices

ripol: Polar retention indices

tb: Normal Boiling Point Temperature tbrp: Boiling point at reduced pressure

tc: Critical Temperature tf: Normal melting (fusion) point

vc: Critical Volume

zc: Critical Compressibility

Latest version available from:

https://www.chemeo.com/cid/53-304-5/1-Hexyne.pdf

Generated by Cheméo on 2024-04-19 01:38:23.15309148 +0000 UTC m=+15779952.073668793.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.