Dimethyl Sulfoxide

Other names: (CH3)2SO

A 10846

DEMSODROX

DMS 70 DMS 90 DMSO

DMSO (methyl sulfoxide)

Deltan
Demasorb
Demavet
Demeso
Dermasorb

Dimethyl sulfur oxide Dimethyl sulphoxide

Dimexide

Dipirartril-tropico

Dolicur
Doligur
Domoso
Dromisol
Durasorb
Gamasol 90

Herpid Hyadur Infiltrina Kemsol M 176

Methane, 1,1'-sulfinylbis-Methane, sulfinylbis-

Methyl sulfoxide

Methylsulfinylmethane

NSC-763 Rimso 50 SQ 9453

SULFINYLBISMETHANE

Sclerosol Somipront

Sulfoxide, dimethyl Sulphinylbis methane

Syntexan

Topsym

Inchi: InChI=1S/C2H6OS/c1-4(2)3/h1-2H3
InchiKey: IAZDPXIOMUYVGZ-UHFFFAOYSA-N

Formula: C2H6OS SMILES: CS(C)=O Mol. weight [g/mol]: 78.13 CAS: 67-68-5

Physical Properties

affp 884.40 kJ/mol NIST Webbook basg 853.70 kJ/mol NIST Webbook chl -2037.30 ± 1.30 kJ/mol NIST Webbook ea 0.01 ± 0.00 eV NIST Webbook ea 0.01 eV NIST Webbook gf -251.75 kJ/mol Joback Method hf -150.50 ± 1.50 kJ/mol NIST Webbook hfl -203.40 ± 1.40 kJ/mol NIST Webbook hfus 8.69 kJ/mol Joback Method hvap 52.90 ± 0.40 kJ/mol NIST Webbook hvap 52.90 ± 0.40 kJ/mol NIST Webbook ie 9.11 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.20 eV NIST Webbook ie 9.20 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.01<	Property code	Value	Unit	Source
chi -2037.30 ± 1.30 kJ/mol NIST Webbook ea 0.01 ± 0.00 eV NIST Webbook ea 0.01 eV NIST Webbook gf -251.75 kJ/mol Joback Method hf -150.50 ± 1.50 kJ/mol NIST Webbook hfil -203.40 ± 1.40 kJ/mol NIST Webbook hfus 8.69 kJ/mol Joback Method hvap 52.90 ± 0.40 kJ/mol NIST Webbook hvap 52.90 ± 0.40 kJ/mol NIST Webbook ie 9.11 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.90 ± 0.10 eV NIST Webbook ie 9.20 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.03 eV NIST Webbook ie 9.08 ± 0.09 eV NIST Webbook ie 9.10 eV NIST Webbook ie 9.10<	affp	884.40	kJ/mol	NIST Webbook
ea 0.01 ± 0.00 eV NIST Webbook ea 0.01 eV NIST Webbook gf -251.75 kJ/mol Joback Method hf -150.50 ± 1.50 kJ/mol NIST Webbook hfl -203.40 ± 1.40 kJ/mol NIST Webbook hfus 8.69 kJ/mol NIST Webbook hvap 52.90 ± 0.40 kJ/mol NIST Webbook hvap 52.90 ± 0.40 kJ/mol NIST Webbook ie 9.11 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.90 ± 0.10 eV NIST Webbook ie 9.20 eV NIST Webbook ie 9.20 ± 0.05 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.10 eV	basg	853.70	kJ/mol	NIST Webbook
ea 0.01 eV NIST Webbook gf -251.75 kJ/mol Joback Method hf -150.50 ± 1.50 kJ/mol NIST Webbook hfII -203.40 ± 1.40 kJ/mol NIST Webbook hfus 8.69 kJ/mol NIST Webbook hvap 52.90 ± 0.40 kJ/mol NIST Webbook ie 9.11 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.90 ± 0.10 eV NIST Webbook ie 9.20 eV NIST Webbook ie 9.20 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.02 eV NIST Webbook ie 9.00 eV NIST Webbook ie 9.10 eV NIST Webb	chl	-2037.30 ± 1.30	kJ/mol	NIST Webbook
gf -251.75 kJ/mol Joback Method hf -150.50 ± 1.50 kJ/mol NIST Webbook hfI -203.40 ± 1.40 kJ/mol NIST Webbook hfus 8.69 kJ/mol NIST Webbook hvap 52.90 ± 0.40 kJ/mol NIST Webbook hvap 52.90 ± 0.40 kJ/mol NIST Webbook ie 9.11 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.20 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.02 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.10 eV NIST Webbook ie 9.10 eV NIST Webbook log10ws 0.70 Crippen Method logp -0.005 Crippen Method	ea	0.01 ± 0.00	eV	NIST Webbook
hf -150.50 ± 1.50 kJ/mol NIST Webbook hfI -203.40 ± 1.40 kJ/mol NIST Webbook hfus 8.69 kJ/mol Joback Method hvap 52.90 ± 0.40 kJ/mol NIST Webbook ie 9.11 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.90 ± 0.10 eV NIST Webbook ie 9.20 eV NIST Webbook ie 9.20 ± 0.05 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.10 eV NIST Webbook ie 9.10 eV NIST Webbook log10ws 0.70 Crippen Method logp -0.005 Crippen Me	ea	0.01	eV	NIST Webbook
hfl -203.40 ± 1.40 kJ/mol NIST Webbook hfus 8.69 kJ/mol Joback Method hvap 52.90 ± 0.40 kJ/mol NIST Webbook ie 9.11 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.90 ± 0.10 eV NIST Webbook ie 9.20 eV NIST Webbook ie 9.20 ± 0.05 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.08 ± 0.09 eV NIST Webbook ie 9.10 eV NIST Webbook log10ws 0.70 Crippen Method logp -0.005 Crippen Method	gf	-251.75	kJ/mol	Joback Method
hfus 8.69 kJ/mol Joback Method hvap 52.90 ± 0.40 kJ/mol NIST Webbook hvap 52.90 ± 0.40 kJ/mol NIST Webbook ie 9.11 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.20 ± 0.10 eV NIST Webbook ie 9.20 ± 0.05 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.08 ± 0.09 eV NIST Webbook ie 9.10 eV NIST Webbook log10ws 0.70 Crippen Method logp -0.005 Crippen Method mcvol 61.260 ml/mol McGowan Method <	hf	-150.50 ± 1.50	kJ/mol	NIST Webbook
hvap 52.90 ± 0.40 kJ/mol NIST Webbook hvap 52.90 ± 0.40 kJ/mol NIST Webbook ie 9.11 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.90 ± 0.10 eV NIST Webbook ie 9.20 eV NIST Webbook ie 9.20 ± 0.05 eV NIST Webbook ie 9.20 ± 0.05 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.08 ± 0.09 eV NIST Webbook ie 9.10 eV NIST Webbook ie 9.10 eV NIST Webbook ie 9.10 eV NIST Webbook log10ws 0.70 Crippen Method logp -0.005 Crippen Method mcvol 61.260 ml/mol McGowan Method nfpaf %Idd(float64=1) KDB pc 5704.58 kPa Joback Method	hfl	-203.40 ± 1.40	kJ/mol	NIST Webbook
hvap 52.90 ± 0.40 kJ/mol NIST Webbook ie 9.11 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.90 ± 0.10 eV NIST Webbook ie 9.20 eV NIST Webbook ie 9.20 ± 0.05 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.08 ± 0.09 eV NIST Webbook ie 9.10 eV NIST Webbook ie 9.10 eV NIST Webbook log10ws 0.70 Crippen Method logp -0.005 Crippen Method mcvol 61.260 ml/mol McGowan Method nfpaf %!d(float64=1) KDB nfpah %!d(float64=1) KDB pc 5704.58 kPa Joback Method rinpol 786.60 NIST Webbook rinpol 786.60 NIST Webbook	hfus	8.69	kJ/mol	Joback Method
ie 9.11 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.90 ± 0.10 eV NIST Webbook ie 9.20 eV NIST Webbook ie 9.20 ± 0.05 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.10 eV NIST Webbook ie 9.10 eV NIST Webbook log10ws 0.70 Crippen Method logp -0.005 Crippen Method mcvol 61.260 ml/mol McGowan Method mfpaf %ld(float64=1) KDB nfpah %ld(float64=1) KDB pc 5704.58 kPa Joback Method rinpol 786.60 NIST Webbook rinpol 786.60 NIST Webbook	hvap	52.90 ± 0.40	kJ/mol	NIST Webbook
ie 9.01 eV NIST Webbook ie 9.90 ± 0.10 eV NIST Webbook ie 9.20 eV NIST Webbook ie 9.20 ± 0.05 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.10 eV NIST Webbook ie 9.10 eV NIST Webbook log10ws 0.70 Crippen Method logp -0.005 Crippen Method mcvol 61.260 ml/mol McGowan Method nfpaf %!d(float64=1) KDB nfpah %!d(float64=1) KDB pc 5704.58 kPa Joback Method rinpol 784.00 NIST Webbook rinpol 786.60 NIST Webbook	hvap	52.90 ± 0.40	kJ/mol	NIST Webbook
ie 9.90 ± 0.10 eV NIST Webbook ie 9.20 eV NIST Webbook ie 9.20 ± 0.05 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.08 ± 0.09 eV NIST Webbook ie 9.10 eV NIST Webbook ie 9.10 eV NIST Webbook log10ws 0.70 Crippen Method logp -0.005 Crippen Method mcvol 61.260 ml/mol McGowan Method nfpaf %!d(float64=1) KDB nfpah %!d(float64=1) KDB pc 5704.58 kPa Joback Method rinpol 784.00 NIST Webbook rinpol 786.60 NIST Webbook	ie	9.11	eV	NIST Webbook
ie 9.20 eV NIST Webbook ie 9.20 ± 0.05 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.08 ± 0.09 eV NIST Webbook ie 9.10 eV NIST Webbook ie 9.10 eV NIST Webbook log10ws 0.70 Crippen Method logp -0.005 Crippen Method mcvol 61.260 ml/mol McGowan Method nfpaf %!d(float64=1) KDB nfpah %!d(float64=1) KDB pc 5704.58 kPa Joback Method rinpol 784.00 NIST Webbook rinpol 786.60 NIST Webbook rinpol 780.00 NIST Webbook	ie	9.01	eV	NIST Webbook
ie 9.20 ± 0.05 eV NIST Webbook ie 9.01 eV NIST Webbook ie 9.08 ± 0.09 eV NIST Webbook ie 9.10 eV NIST Webbook ie 9.10 eV NIST Webbook log10ws 0.70 Crippen Method logp -0.005 Crippen Method mcvol 61.260 ml/mol McGowan Method nfpaf %!d(float64=1) KDB nfpah %!d(float64=1) KDB pc 5704.58 kPa Joback Method rinpol 784.00 NIST Webbook rinpol 786.60 NIST Webbook rinpol 780.00 NIST Webbook	ie	9.90 ± 0.10	eV	NIST Webbook
ie 9.01 eV NIST Webbook ie 9.08 ± 0.09 eV NIST Webbook ie 9.10 eV NIST Webbook ie 9.10 eV NIST Webbook log10ws 0.70 Crippen Method logp -0.005 Crippen Method mcvol 61.260 ml/mol McGowan Method nfpaf %!d(float64=1) KDB nfpah %!d(float64=1) KDB pc 5704.58 kPa Joback Method rinpol 784.00 NIST Webbook rinpol 786.60 NIST Webbook rinpol 780.00 NIST Webbook	ie	9.20	eV	NIST Webbook
ie 9.08 ± 0.09 eV NIST Webbook ie 9.10 eV NIST Webbook ie 9.10 eV NIST Webbook log10ws 0.70 Crippen Method logp -0.005 Crippen Method mcvol 61.260 ml/mol McGowan Method nfpaf %!d(float64=1) KDB nfpah %!d(float64=1) KDB pc 5704.58 kPa Joback Method rinpol 784.00 NIST Webbook rinpol 786.60 NIST Webbook rinpol 780.00 NIST Webbook	ie	9.20 ± 0.05	eV	NIST Webbook
ie 9.10 eV NIST Webbook ie 9.10 eV NIST Webbook log10ws 0.70 Crippen Method logp -0.005 Crippen Method mcvol 61.260 ml/mol McGowan Method nfpaf %!d(float64=1) KDB nfpah %!d(float64=1) KDB pc 5704.58 kPa Joback Method rinpol 784.00 NIST Webbook rinpol 786.60 NIST Webbook rinpol 780.00 NIST Webbook	ie	9.01	eV	NIST Webbook
ie 9.10 eV NIST Webbook log10ws 0.70 Crippen Method logp -0.005 Crippen Method mcvol 61.260 ml/mol McGowan Method nfpaf %!d(float64=1) KDB nfpah %!d(float64=1) KDB pc 5704.58 kPa Joback Method rinpol 784.00 NIST Webbook rinpol 786.60 NIST Webbook rinpol 780.00 NIST Webbook	ie	9.08 ± 0.09	eV	NIST Webbook
log10ws 0.70 Crippen Method logp -0.005 Crippen Method mcvol 61.260 ml/mol McGowan Method nfpaf %!d(float64=1) KDB nfpah %!d(float64=1) KDB pc 5704.58 kPa Joback Method rinpol 784.00 NIST Webbook rinpol 786.60 NIST Webbook rinpol 780.00 NIST Webbook	ie	9.10	eV	NIST Webbook
logp -0.005 Crippen Method mcvol 61.260 ml/mol McGowan Method nfpaf %!d(float64=1) KDB nfpah %!d(float64=1) KDB pc 5704.58 kPa Joback Method rinpol 784.00 NIST Webbook rinpol 786.60 NIST Webbook rinpol 780.00 NIST Webbook	ie	9.10	eV	NIST Webbook
mcvol 61.260 ml/mol McGowan Method nfpaf %!d(float64=1) KDB nfpah %!d(float64=1) KDB pc 5704.58 kPa Joback Method rinpol 784.00 NIST Webbook rinpol 786.60 NIST Webbook rinpol 780.00 NIST Webbook	log10ws	0.70		Crippen Method
nfpaf %!d(float64=1) KDB nfpah %!d(float64=1) KDB pc 5704.58 kPa Joback Method rinpol 784.00 NIST Webbook rinpol 786.60 NIST Webbook rinpol 780.00 NIST Webbook	logp	-0.005		Crippen Method
nfpah %!d(float64=1) KDB pc 5704.58 kPa Joback Method rinpol 784.00 NIST Webbook rinpol 786.60 NIST Webbook rinpol 780.00 NIST Webbook	mcvol	61.260	ml/mol	McGowan Method
pc 5704.58 kPa Joback Method rinpol 784.00 NIST Webbook rinpol 786.60 NIST Webbook rinpol 780.00 NIST Webbook	nfpaf	%!d(float64=1)		KDB
rinpol 784.00 NIST Webbook rinpol 786.60 NIST Webbook rinpol 780.00 NIST Webbook	nfpah	%!d(float64=1)		KDB
rinpol 786.60 NIST Webbook rinpol 780.00 NIST Webbook	рс	5704.58	kPa	Joback Method
rinpol 780.00 NIST Webbook	rinpol	784.00		NIST Webbook
	rinpol	786.60		NIST Webbook
rinpol 782.00 NIST Webbook	rinpol	780.00		NIST Webbook
	rinpol	782.00		NIST Webbook

rinpol	787.00		NIST Webbook
rinpol	784.00		NIST Webbook
rinpol	827.00		NIST Webbook
rinpol	780.00		NIST Webbook
rinpol	772.00		NIST Webbook
rinpol	790.00		NIST Webbook
rinpol	829.20		NIST Webbook
rinpol	820.50		NIST Webbook
rinpol	782.00		NIST Webbook
rinpol	777.00		NIST Webbook
rinpol	780.00		NIST Webbook
rinpol	784.00		NIST Webbook
rinpol	820.10		NIST Webbook
ripol	1560.00		NIST Webbook
ripol	1569.10		NIST Webbook
ripol	1563.00		NIST Webbook
ripol	1582.30		NIST Webbook
ripol	1603.00		NIST Webbook
ripol	1582.00		NIST Webbook
ripol	1560.00		NIST Webbook
ripol	1569.00		NIST Webbook
ripol	1596.00		NIST Webbook
ripol	1560.00		NIST Webbook
ripol	1553.00		NIST Webbook
ripol	1595.00		NIST Webbook
ripol	1584.00		NIST Webbook
ripol	1582.00		NIST Webbook
ripol	1553.00		NIST Webbook
ripol	1549.00		NIST Webbook
ripol	1550.00		NIST Webbook
ripol	1579.00		NIST Webbook
ripol	1554.00		NIST Webbook
ripol	1569.00		NIST Webbook
ripol	1576.00		NIST Webbook
ripol	1560.00		NIST Webbook
sl	188.78	J/mol×K	NIST Webbook
tb	462.06	К	Vapor-Liquid Equilibria for the Ternary System Acetonitrile + 1-Propanol + Dimethyl Sulfoxide and the Corresponding Binary Systems at 101.3 kPa
tb	463.38	К	Vapor Liquid Equilibria for Ternary Mixtures of Isopropyl Alcohol, Isopropyl Acetate, and DMSO at 101.3 kPa

tb	462.19	К	Isobaric Vapor Liquid Equilibrium for Dimethylsulfoxide with Chloroethanes and Chloroethenes
tb	462.25	К	Isobaric Vapor Liquid Equilibrium of Binary and Ternary Systems with 2-Ethoxyethanol + Ethylbenzene + Dimethyl Sulfoxide
tb	461.92	К	Vapor liquid equilibria for water + acetic acid + (N,N-dimethylformamide or dimethyl sulfoxide) at 13.33 kPa
tb	462.18	К	Isobaric vapor-liquid equilibrium for binary and ternary systems with toluene, 2-methoxyethanol and dimethyl sulfoxide at 101.3 kPa
tb	462.24	K	Experimental isobaric vapor-liquid equilibrium for the binary and ternary systems with methanol, methyl acetate and dimethyl sulfoxide at 101.3 kPa
tb	462.19	К	Excess enthalpies and (vapour + liquid) equilibrium data for the binary mixtures of dimethylsulphoxide with ketones
tb	463.27	К	Isobaric vapor-liquid equilibrium of a ternary system of ethyl acetate + propyl acetate + dimethyl sulfoxide and binary systems of ethyl acetate + dimethyl sulfoxide and propyl acetate + dimethyl sulfoxide at 101.3 kPa
tb	463.17	К	Experimental isobaric vapour-liquid equilibrium data for the binary system (N, N-dimethyl acetamide + dimethyl sulfoxide) and the quaternary system (sec-butyl acetate + sec-butyl alcohol + N, N-dimethyl acetamide + dimethyl sulfoxide) at 101.3 kPa
tb	462.19	К	Excess molar enthalpies of dimethylsulfoxide with chloroethanes and chloroethenes at 298.15K

tb	463.85	K	Isobaric Vapor Liquid Equilibrium for the Binary and Ternary System with Isobutyl Alcohol, Isobutyl Acetate and Dimethyl Sulfoxide at 101.3 kPa
tc	718.00	К	Critical temperatures and pressures of caprolactam, dimethyl sulfoxide, 1,4-dimethylpiperazine, and 2,6-dimethylpiperazine
tf	290.95	К	Efficient determination of crystallisation and melting points at low cooling and heating rates with novel computer controlled equipment
tf	291.65 ± 0.20	K	NIST Webbook
tf	291.57 ± 0.20	K	NIST Webbook
tf	291.65 ± 0.40	K	NIST Webbook
tf	291.66	К	Phase Equilibria of (1-Ethyl-3-methylimidazolium Ethylsulfate + Hydrocarbon, + Ketone, and + Ether) Binary Systems
tt	291.67	K	KDB
tt	291.59 ± 0.10	K	NIST Webbook
tt	291.67 ± 0.06	K	NIST Webbook
VC	0.237	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	86.68	J/mol×K	303.44	Joback Method
cpg	91.87	J/mol×K	332.69	Joback Method
cpg	96.95	J/mol×K	361.95	Joback Method
cpg	101.92	J/mol×K	391.20	Joback Method
cpg	106.76	J/mol×K	420.45	Joback Method
cpg	111.48	J/mol×K	449.71	Joback Method
cpg	116.06	J/mol×K	478.96	Joback Method
cpl	152.40	J/mol×K	298.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model

cpl	153.18	J/mol×K	298.15	NIST Webbook
cpl	155.90	J/mol×K	298.15	NIST Webbook
cpl	155.90	J/mol×K	298.15	NIST Webbook
cpl	153.20	J/mol×K	298.15	NIST Webbook
cpl	153.60	J/mol×K	298.15	NIST Webbook
cpl	148.28	J/mol×K	298.15	NIST Webbook
cpl	149.39	J/mol×K	298.15	NIST Webbook
cpl	155.60	J/mol×K	323.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	154.70	J/mol×K	318.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
срІ	153.70	J/mol×K	313.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K

cpl	152.90	J/mol×K	308.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	152.20	J/mol×K	303.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	151.50	J/mol×K	298.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	150.40	J/mol×K	293.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K

cpl	149.90	J/mol×K	288.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	154.60	J/mol×K	308.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure
cpl	152.40	J/mol×K	298.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure
cpl	146.80	J/mol×K	288.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure

cpl	172.20	J/mol×K	423.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	169.00	J/mol×K	418.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	168.10	J/mol×K	413.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	167.40	J/mol×K	408.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	

cpl	166.60	J/mol×K	403.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	165.30	J/mol×K	398.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	164.20	J/mol×K	393.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	163.80	J/mol×K	388.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	

col	162.70	J/mol×K	383.15	Excess Molar	
cpl	102.70		303.13	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	161.80	J/mol×K	378.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	151.20	J/mol×K	293.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	161.30	J/mol×K	368.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	160.90	J/mol×K	363.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	

cpl	160.60	J/mol×K	358.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	159.60	J/mol×K	353.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	158.20	J/mol×K	348.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	156.80	J/mol×K	343.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	

cpl	155.30	J/mol×K	338.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	154.10	J/mol×K	333.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	152.60	J/mol×K	328.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	151.50	J/mol×K	323.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	

cpl	150.30	J/mol×K	318.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
срІ	149.40	J/mol×K	313.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	148.50	J/mol×K	308.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	146.70	J/mol×K	303.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	

cpl	145.40	J/mol×K	298.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	145.00	J/mol×K	293.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	171.20	J/mol×K	423.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	171.10	J/mol×K	418.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
срІ	170.60	J/mol×K	413.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
срІ	170.40	J/mol×K	408.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	

cpl	170.30	J/mol×K	403.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
срІ	169.10	J/mol×K	398.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	168.30	J/mol×K	393.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	153.40	J/mol×K	303.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	166.30	J/mol×K	388.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
срІ	164.80	J/mol×K	383.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	163.30	J/mol×K	378.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	

cpl	162.60	J/mol×K	373.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	161.70	J/mol×K	368.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	161.50	J/mol×K	363.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	161.30	J/mol×K	358.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	160.30	J/mol×K	353.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	149.00	J/mol×K	298.15	NIST Webbook	
cpl	159.50	J/mol×K	343.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	

cpl	159.30	J/mol×K	338.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	158.50	J/mol×K	333.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	157.80	J/mol×K	328.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	157.70	J/mol×K	323.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	156.60	J/mol×K	318.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	155.40	J/mol×K	313.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	154.80	J/mol×K	308.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	

срІ	160.20	J/mol×K	348.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	161.70	J/mol×K	373.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
dvisc	0.0009200	Paxs	353.15 1-H	Viscosities of exyl-3-methylimidazo Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile	lium
dvisc	0.0014875	Paxs	318.15	Densities and Viscosities of Rubidium Bromide in Dimethyl Sulfoxide + Water Mixtures in the Temperature Range t = (25 to 45) deg C	
dvisc	0.0015588	Paxs	313.15	Densities and Viscosities of Rubidium Bromide in Dimethyl Sulfoxide + Water Mixtures in the Temperature Range t = (25 to 45) deg C	
dvisc	0.0016523	Paxs	308.15	Densities and Viscosities of Rubidium Bromide in Dimethyl Sulfoxide + Water Mixtures in the Temperature Range t = (25 to 45) deg C	

dvisc	0.0018090	Paxs	303.15	Densities and	
uvisc	0.0010030	1 4.3	303.13	Viscosities of Rubidium Bromide in Dimethyl Sulfoxide + Water Mixtures in the Temperature Range t = (25 to 45) deg C	
dvisc	0.0019660	Paxs	298.15	Densities and Viscosities of Rubidium Bromide in Dimethyl Sulfoxide + Water Mixtures in the Temperature Range t = (25 to 45) deg C	
dvisc	0.0013935	Paxs	318.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	
dvisc	0.0015351	Paxs	313.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	
dvisc	0.0016689	Paxs	308.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	
dvisc	0.0018357	Paxs	303.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	

dvisc	0.0019960	Paxs	298.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K
dvisc	0.0008500	Paxs	353.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0009620	Paxs	343.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0011040	Paxs	333.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0012780	Paxs	323.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0015060	Paxs	313.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K

dvisc	0.0017860	Paxs	303.15	Densities and Viscosities of N,N-Dimethylformamide + N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0013980	Paxs	318.15	Partial Molar Volumes and Viscosity B-Coefficient of N-Phenylbenzohydroxamic Acid in Dimethylsulfoxide at Different Temperatures
dvisc	0.0015160	Paxs	313.15	Partial Molar Volumes and Viscosity B-Coefficient of N-Phenylbenzohydroxamic Acid in Dimethylsulfoxide at Different Temperatures
dvisc	0.0016520	Paxs	308.15	Partial Molar Volumes and Viscosity B-Coefficient of N-Phenylbenzohydroxamic Acid in Dimethylsulfoxide at Different Temperatures
dvisc	0.0018006	Paxs	303.15	Partial Molar Volumes and Viscosity B-Coefficient of N-Phenylbenzohydroxamic Acid in Dimethylsulfoxide at Different Temperatures
dvisc	0.0019932	Paxs	298.15	Partial Molar Volumes and Viscosity B-Coefficient of N-Phenylbenzohydroxamic Acid in Dimethylsulfoxide at Different Temperatures

dvisc	0.0014850	Paxs	318.15 Viscosity,
uvisc	0.0014030	Γαλδ	Density, and Speed of Sound for the Binary Mixtures of Formamide with 2-Methoxyethanol, Acetophenone, Acetonitrile, 1,2-Dimethoxyethane, and Dimethylsulfoxide at Different Temperatures
dvisc	0.0015680	Paxs	308.15 Viscosity, Density, and Speed of Sound for the Binary Mixtures of Formamide with 2-Methoxyethanol, Acetophenone, Acetonitrile, 1,2-Dimethoxyethane, and Dimethylsulfoxide at Different Temperatures
dvisc	0.0020420	Paxs	298.15 Viscosity, Density, and Speed of Sound for the Binary Mixtures of Formamide with 2-Methoxyethanol, Acetophenone, Acetonitrile, 1,2-Dimethoxyethane, and Dimethylsulfoxide at Different Temperatures
dvisc	0.0009170	Pa×s	353.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0010280	Paxs	343.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile

dvisc	0.0011650	Pa×s	333.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0013370	Paxs	323.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0015560	Paxs	313.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0018430	Paxs	303.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0020120	Pa×s	298.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0014847	Paxs	318.15 Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K

dvisc	0.0015682	Paxs	308.15	Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K
dvisc	0.0020418	Paxs	298.15	Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K
dvisc	0.0016450	Paxs	308.15	Excess Enthalpies, Heat Capacities, Densities, Viscosities and Refractive Indices of Dimethyl Sulfoxide + Three Aryl Alcohols at 308.15 K and Atmospheric Pressure
dvisc	0.0019790	Paxs	298.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K
dvisc	0.0016220	Paxs	308.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K
dvisc	0.0013814	Paxs	318.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K

dvisc	0.0012070	Paxs	328.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K	
dvisc	0.0019890	Paxs	298.15	Excess Enthalpies, Heat Capacities, Densities, Viscosities and Refractive Indices of Dimethyl Sulfoxide + Three Aryl Alcohols at 308.15 K and Atmospheric Pressure	
dvisc	0.0016696	Paxs	308.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K	
dvisc	0.0015373	Paxs	313.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K	
dvisc	0.0014080	Paxs	318.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K	
dvisc	0.0012890	Paxs	323.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K	

dvisc	0.0019960	Paxs	298.15 On the density and viscosity of (water + dimethylsulphoxide) binary mixtures
dvisc	0.0018357	Paxs	303.15 On the density and viscosity of (water + dimethylsulphoxide) binary mixtures
dvisc	0.0016689	Paxs	308.15 On the density and viscosity of (water + dimethylsulphoxide) binary mixtures
dvisc	0.0015351	Paxs	313.15 On the density and viscosity of (water + dimethylsulphoxide) binary mixtures
dvisc	0.0013935	Paxs	318.15 On the density and viscosity of (water + dimethylsulphoxide) binary mixtures
dvisc	0.0022100	Paxs	293.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0020120	Paxs	298.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0018430	Paxs	303.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0015560	Paxs	313.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents

dvisc	0.0013370	Paxs	323.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0011650	Paxs	333.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0010280	Paxs	343.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0009170	Paxs	353.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0016550	Paxs	THERMODYNAMIC INTERACTIONS OF POTASSIUM FLUORIDE IN AQUEOUS DIMETHYL SULFOXIDE SOLUTIONS AT DIFFERENT TEMPERATURES
dvisc	0.0013920	Paxs	THERMODYNAMIC INTERACTIONS OF POTASSIUM FLUORIDE IN AQUEOUS DIMETHYL SULFOXIDE SOLUTIONS AT DIFFERENT TEMPERATURES
dvisc	0.0022100	Paxs	293.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile

dvisc	0.0020100	Pa×s	298.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0018400	Paxs	303.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0015600	Paxs	313.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0013400	Paxs	323.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0011700	Paxs	333.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0010300	Paxs	343.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0018320	Paxs	303.15 Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K

econd	3.84e-04	S/m	323.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	4.37e-04	S/m	329.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	4.19e-04	S/m	327.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	3.99e-04	S/m	325.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	1.88e-04	S/m	293.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	4.55e-04	S/m	331.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	

econd	2.48e-04	S/m	303.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	2.01e-04	S/m	295.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	3.28e-04	S/m	315.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	4.74e-04	S/m	333.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	2.25e-04	S/m	299.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	2.62e-04	S/m	305.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	

econd	2.74e-04	S/m	307.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes
econd	2.87e-04	S/m	309.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes
econd	3.00e-04	S/m	311.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes
econd	3.15e-04	S/m	313.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes
econd	2.36e-04	S/m	301.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes
econd	3.41e-04	S/m	317.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes

econd 3.55e-04 S/m 319.15 Temperature and Concentration Dependences of the Electric Conductivity of Directly! Sulfoxide + Ministrate Electrolytes Not the Electric Conductivity of Directly! Sulfoxide + Ministrate Electrolytes Not the Electric Conductivity of Directly! Sulfoxide + Ammonium Nitrate Electrolytes Not the Electric Conductivity of Directly! Sulfoxide + Ammonium Nitrate Electrolytes Not the Electrolytes						
Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes Electrolytes	econd	3.55e-04	S/m	319.15	Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate	
Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes hfust 14.37 kJ/mol 291.67 NIST Webbook hfust 14.37 kJ/mol 291.70 NIST Webbook hfust 14.37 kJ/mol 291.70 NIST Webbook hfust 14.37 kJ/mol 291.70 NIST Webbook hvapt 48.10 kJ/mol 368.00 NIST Webbook hvapt 48.60 kJ/mol 368.00 NIST Webbook hvapt 52.50 kJ/mol 308.00 NIST Webbook hvapt 52.50 kJ/mol 308.00 NIST Webbook hvapt 52.10 kJ/mol 363.00 NIST Webbook hvapt 50.60 kJ/mol 383.50 NIST Webbook hvapt 50.60 kJ/mol 383.50 NIST Webbook hvapt 51.70 kJ/mol 384.50 NIST Webbook hvapt 51.70 kJ/mol 384.50 NIST Webbook pvap 0.08 kPa 298.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 95.30 kPa 460.95 Vapor-liquid equilibrium for the binary mixtures of dimethylsulfoxide with substituted	econd	3.69e-04	S/m	321.15	Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate	
hfust 14.37 kJ/mol 291.70 NIST Webbook hfust 14.37 kJ/mol 291.70 NIST Webbook hvapt 48.10 kJ/mol 368.00 NIST Webbook hvapt 48.60 kJ/mol 430.00 NIST Webbook hvapt 52.50 kJ/mol 363.00 NIST Webbook hvapt 52.10 kJ/mol 363.00 NIST Webbook hvapt 50.60 kJ/mol 383.50 NIST Webbook hvapt 52.30 kJ/mol 384.50 NIST Webbook hvapt 51.70 kJ/mol 384.50 NIST Webbook pvap 0.08 kPa 298.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 0.06 kPa 293.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfolane, and dim	econd	2.11e-04	S/m	297.15	Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate	
hfust 14.37 kJ/mol 291.70 NIST Webbook hvapt 48.10 kJ/mol 368.00 NIST Webbook hvapt 48.60 kJ/mol 430.00 NIST Webbook hvapt 52.50 kJ/mol 308.00 NIST Webbook hvapt 52.10 kJ/mol 363.00 NIST Webbook hvapt 50.60 kJ/mol 308.00 NIST Webbook hvapt 51.70 kJ/mol 384.50 NIST Webbook hvapt 51.70 kJ/mol 384.50 NIST Webbook pvap 0.08 kPa 298.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 0.06 kPa 293.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 95.30 kPa 460.95 Vapor-liquid equilibrium for the binary mixtures of dimethylsulfoxide with substituted	hfust	14.37	kJ/mol	291.67	NIST Webbook	
hvapt 48.10 kJ/mol 368.00 NIST Webbook hvapt 48.60 kJ/mol 430.00 NIST Webbook hvapt 52.50 kJ/mol 308.00 NIST Webbook hvapt 52.10 kJ/mol 363.00 NIST Webbook hvapt 50.60 kJ/mol 383.50 NIST Webbook hvapt 52.30 kJ/mol 308.00 NIST Webbook hvapt 51.70 kJ/mol 384.50 NIST Webbook pvap 0.08 kPa 298.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 95.30 kPa 460.95 Vapor-liquid equilibrium for the binary mixtures of dimethylsulfoxide with substituted	hfust	14.37	kJ/mol	291.70	NIST Webbook	
hvapt 48.60 kJ/mol 430.00 NIST Webbook hvapt 52.50 kJ/mol 308.00 NIST Webbook hvapt 52.10 kJ/mol 363.00 NIST Webbook hvapt 50.60 kJ/mol 383.50 NIST Webbook hvapt 52.30 kJ/mol 308.00 NIST Webbook hvapt 51.70 kJ/mol 384.50 NIST Webbook pvap 0.08 kPa 298.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 0.06 kPa 293.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 95.30 kPa 460.95 Vapor-liquid equilibrium for the binary mixtures of dimethylsulfoxide with substituted	hfust	14.37	kJ/mol	291.70	NIST Webbook	
hvapt 52.50 kJ/mol 308.00 NIST Webbook hvapt 52.10 kJ/mol 363.00 NIST Webbook hvapt 50.60 kJ/mol 383.50 NIST Webbook hvapt 52.30 kJ/mol 308.00 NIST Webbook hvapt 51.70 kJ/mol 384.50 NIST Webbook pvap 0.08 kPa 298.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 95.30 kPa 460.95 Vapor-liquid equilibrium for the binary mixtures of dimethylsulfoxide with substituted	hvapt	48.10	kJ/mol	368.00	NIST Webbook	
hvapt 52.10 kJ/mol 363.00 NIST Webbook hvapt 50.60 kJ/mol 383.50 NIST Webbook hvapt 52.30 kJ/mol 308.00 NIST Webbook hvapt 51.70 kJ/mol 384.50 NIST Webbook pvap 0.08 kPa 298.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 0.06 kPa 293.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 95.30 kPa 460.95 Vapor-liquid equilibrium for the binary mixtures of dimethylsulfoxide with substituted	hvapt	48.60	kJ/mol	430.00	NIST Webbook	
hvapt 50.60 kJ/mol 383.50 NIST Webbook hvapt 52.30 kJ/mol 308.00 NIST Webbook hvapt 51.70 kJ/mol 384.50 NIST Webbook pvap 0.08 kPa 298.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 0.06 kPa 293.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 95.30 kPa 460.95 Vapor-liquid equilibrium for the binary mixtures of dimethylsulfoxide with substituted	hvapt	52.50	kJ/mol	308.00	NIST Webbook	
hvapt 52.30 kJ/mol 308.00 NIST Webbook hvapt 51.70 kJ/mol 384.50 NIST Webbook pvap 0.08 kPa 298.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 0.06 kPa 293.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 95.30 kPa 460.95 Vapor-liquid equilibrium for the binary mixtures of dimethylsulfoxide with substituted	hvapt	52.10	kJ/mol	363.00	NIST Webbook	
hvapt 51.70 kJ/mol 384.50 NIST Webbook pvap 0.08 kPa 298.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 0.06 kPa 293.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 95.30 kPa 460.95 Vapor-liquid equilibrium for the binary mixtures of dimethylsulfoxide with substituted	hvapt	50.60	kJ/mol	383.50	NIST Webbook	
pvap 0.08 kPa 298.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 0.06 kPa 293.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 95.30 kPa 460.95 Vapor-liquid equilibrium for the binary mixtures of dimethylsulfoxide with substituted	hvapt	52.30	kJ/mol	308.00	NIST Webbook	
vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 0.06 kPa 293.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 95.30 kPa 460.95 Vapor-liquid equilibrium for the binary mixtures of dimethylsulfoxide with substituted	hvapt	51.70	kJ/mol	384.50	NIST Webbook	
vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide pvap 95.30 kPa 460.95 Vapor-liquid equilibrium for the binary mixtures of dimethylsulfoxide with substituted	pvap	0.08	kPa	298.15	vapor pressures for thiophene, sulfolane, and dimethyl	
equilibrium for the binary mixtures of dimethylsulfoxide with substituted	pvap	0.06	kPa	293.15	vapor pressures for thiophene, sulfolane, and dimethyl	
	pvap	95.30	kPa	460.95	equilibrium for the binary mixtures of dimethylsulfoxide with substituted	

pvap	0.07	kPa	295.65	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.07	kPa	295.65	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.07	kPa	295.65	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.08	kPa	298.15	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.06	kPa	293.15	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.08	kPa	298.15	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.10	kPa	300.65	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.10	kPa	300.65	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.10	kPa	300.65	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.11	kPa	303.16	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	

pvap	0.11	kPa	303.16	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.11	kPa	303.16	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.13	kPa	305.66	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.13	kPa	305.66	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.13	kPa	305.66	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.16	kPa	308.16	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.16	kPa	308.16	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.16	kPa	308.16	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	2.00	kPa	353.10 1-a	Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + allyl-3-methylimidazol chloride at atmospheric pressure	ium

pvap	3.20	kPa	363.10 Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride at atmospheric pressure
pvap	7.60	kPa	383.10 Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride at atmospheric pressure
pvap	16.00	kPa	403.10 Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride at atmospheric pressure
pvap	22.70	kPa	413.10 Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride at atmospheric pressure
pvap	31.60	kPa	423.10 Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride at atmospheric pressure

pvap	43.20	kPa	433.10 Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride at atmospheric pressure
pvap	101.30	kPa	463.27 Isobaric vapor-liquid equilibrium of a ternary system of ethyl acetate + propyl acetate + dimethyl sulfoxide and binary systems of ethyl acetate + dimethyl sulfoxide and propyl acetate + dimethyl sulfoxide and propyl acetate + dimethyl sulfoxide at 101.3 kPa
pvap	101.30	kPa	463.38 Vapor Liquid Equilibria for Ternary Mixtures of Isopropyl Alcohol, Isopropyl Acetate, and DMSO at 101.3 kPa
рvар	11.20	kPa	393.10 Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride at atmospheric pressure
pvap	0.06	kPa	293.15 Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
pvap	5.00	kPa	373.10 Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride at atmospheric pressure

,			5
rfi	1.47850	293.15	Densities and volumetric properties of a (xylene + dimethyl sulfoxide) at temperature from (293.15 to 353.15) K
rfi	1.47850	293.15	Experimental densities and excess volumes for binary mixtures of (dimethyl sulfoxide + an aromatic hydrocarbon) at temperatures from (293.15 to 353.15) K at atmospheric pressure
rfi	1.47790	298.15	Isobaric Vapor Liquid Equilibrium for Binary and Ternary Systems of Isoamyl Alcohol + Isoamyl Acetate + Dimethyl Sulfoxide at 101.33 kPa
rfi	1.47910	293.15	Solid-Liquid Equilibrium Measurements for Posaconazole and Voriconazole in Several Solvents between T = 278.2 and 323.2 K Using Differential Thermal Analysis/Thermal Gravimetric Analysis
rfi	1.47890	293.15	Solubility Data for Roflumilast and Maraviroc in Various Solvents between T = (278.2-323.2) K

rfi	1.47680	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K
rfi	1.45940	303.15 Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K
rfi	1.45470	308.15 Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K
rfi	1.47930	288.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.47520	298.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K

rfi	1.47100		308.15 N,N'-1	Partial Molar Volumes of 1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.46700		318.15 N,N'-1	Partial Molar Volumes of 1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.47510		293.15	Isobaric Vapor Liquid Equilibrium for the Extractive Distillation of Acetonitrile + Water Mixtures Using Dimethyl Sulfoxide at 101.3 kPa
rfi	1.47690		298.15 1-B	Viscosity, Density, Speed of Sound, and Refractive Index of Binary Mixtures of Organic Solvent + Ionic Liquid, Butyl-3-methylimidazolium Hexafluorophosphate at 298.15 K
rfi	1.47510		303.15	Measurements of the Properties of Binary Mixtures of Dimethylsulphoxide (DMSO) with 1-Alkanols (C4, C6, C7) at 303.15K
rhol	1095.20	kg/m3	298.15	Excess molar volume and viscosity deviation for binary mixtures of gamma-butyrolactone with dimethyl sulfoxide

rhol	1085.90	kg/m3	308.15	Solubility of Dilute SO2 in the Binary System Poly Ethylene Glycol 300 + Dimethyl Sulfoxide at T = 298.15 K and p = 123.15 kPa and Mixtures Excess Properties at T =	
rhol	1090.60	kg/m3	303.15	(298.15, 303.15, 308.15, 313.15, and 318.15) K Solubility of Dilute SO2 in the Binary System Poly Ethylene	
				Glycol 300 + Dimethyl Sulfoxide at T = 298.15 K and p = 123.15 kPa and Mixtures Excess Properties at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K	
rhol	1095.20	kg/m3	298.15	Solubility of Dilute SO2 in the Binary System Poly Ethylene Glycol 300 + Dimethyl Sulfoxide at T = 298.15 K and p = 123.15 kPa and Mixtures Excess Properties at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K	
rhol	1040.51	kg/m3	353.15 1-Al	Volumetric Properties of Binary Mixtures of Two Ikyl-3-Methylimidazol Tetrafluoroborate Ionic Liquids with Molecular Solvents	ium
rhol	1050.58	kg/m3	343.15 1-Al	Volumetric Properties of Binary Mixtures of Two Ikyl-3-Methylimidazol Tetrafluoroborate Ionic Liquids with Molecular Solvents	ium

rhol	1060.63	kg/m3	333.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate lonic Liquids with Molecular Solvents
rhol	1070.66	kg/m3	323.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate lonic Liquids with Molecular Solvents
rhol	1080.69	kg/m3	313.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate lonic Liquids with Molecular Solvents
rhol	1090.73	kg/m3	303.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents
rhol	1095.74	kg/m3	298.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents
rhol	1100.76	kg/m3	293.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate lonic Liquids with Molecular Solvents
rhol	1080.47	kg/m3	313.15 Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide

rhol	1080.43	kg/m3	313.15	Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide	
rhol	1080.45	kg/m3	313.15	Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide	
rhol	1081.30	kg/m3	313.15	Solubility of Dilute SO2 in the Binary System Poly Ethylene Glycol 300 + Dimethyl Sulfoxide at T = 298.15 K and p = 123.15 kPa and Mixtures Excess Properties at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K	
rhol	1075.30	kg/m3	318.15	Solubility of Dilute SO2 in the Binary System Poly Ethylene Glycol 300 + Dimethyl Sulfoxide at T = 298.15 K and p = 123.15 kPa and Mixtures Excess Properties at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K	
rhol	1100.42	kg/m3		Molar Conductivities and Association Constants of utyl-3-methylimidazol Chloride and utyl-3-methylimidazol Tetrafluoroborate in Methanol and DMSO	
rhol	1095.45	kg/m3		Molar Conductivities and Association Constants of utyl-3-methylimidazol Chloride and utyl-3-methylimidazol Tetrafluoroborate in Methanol and DMSO	

rhol	1090.47	kg/m3	303.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO
rhol	1085.48	kg/m3	308.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO
rhol	1080.49	kg/m3	313.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO
rhol	1075.49	kg/m3	318.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO
rhol	1100.22	kg/m3	293.15 Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide

rhol	1100.23	kg/m3	293.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal lons in Methanol and Dimethylsulfoxide	
rhol	1095.19	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide	
rhol	1095.19	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide	
rhol	1095.20	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide	

rhol	1095.20	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal lons in Methanol and Dimethylsulfoxide
rhol	1090.17	kg/m3	303.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide
rhol	1090.18	kg/m3	303.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide
rhol	1080.12	kg/m3	313.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal lons in Methanol and Dimethylsulfoxide

rhol	1080.12	kg/m3	313.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal lons in Methanol and Dimethylsulfoxide
rhol	1070.08	kg/m3	323.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide
rhol	1070.08	kg/m3	323.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide
rhol	1060.04	kg/m3	333.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide

rhol	1095.27	kg/m3	298.15 1	Volumetric Properties of the Ionic Liquid, -Butyl-3-methylimidazolium Tetrafluoroborate, in Organic Solvents at T = 298.15 K
rhol	1100.41	kg/m3	293.15	Apparent molar volumes and isentropic compressions of benzylalkylammonium ionic liquids in dimethylsulfoxide from 293.15 K to 328.15 K
rhol	1095.39	kg/m3	298.15	Apparent molar volumes and isentropic compressions of benzylalkylammonium ionic liquids in dimethylsulfoxide from 293.15 K to 328.15 K
rhol	1090.37	kg/m3	303.15	Apparent molar volumes and isentropic compressions of benzylalkylammonium ionic liquids in dimethylsulfoxide from 293.15 K to 328.15 K
rhol	1085.35	kg/m3	308.15	Apparent molar volumes and isentropic compressions of benzylalkylammonium ionic liquids in dimethylsulfoxide from 293.15 K to 328.15 K
rhol	1080.33	kg/m3	313.15	Apparent molar volumes and isentropic compressions of benzylalkylammonium ionic liquids in dimethylsulfoxide from 293.15 K to 328.15 K
rhol	1075.31	kg/m3	318.15	Apparent molar volumes and isentropic compressions of benzylalkylammonium ionic liquids in dimethylsulfoxide from 293.15 K to 328.15 K

	rhol	1070.29	kg/m3	323.15	Apparent molar volumes and isentropic compressions of benzylalkylammonium ionic liquids in dimethylsulfoxide from 293.15 K to 328.15 K	
	rhol	1065.26	kg/m3	328.15	Apparent molar volumes and isentropic compressions of benzylalkylammonium ionic liquids in dimethylsulfoxide from 293.15 K to 328.15 K	
	rhol	1100.40	kg/m3	293.15	Volumetric properties of binary mixtures of (water + organic solvents) at temperatures between T = 288.15 K and T = 303.15 K at p = 0.1 MPa	
	rhol	1095.27	kg/m3	298.15 1-r	Volumetric and compressibility behaviour of ionic liquid, n-butyl-3-methylimidazolium hexafluorophosphate and tetrabutylammonium hexafluorophosphate in organic solvents at T = 298.15 K	
	rhol	1095.37	kg/m3	298.15	Excess molar volumes and ultrasonic studies of dimethylsulphoxide with ketones at T = 303.15 K	
_	rhol	1095.32	kg/m3	298.15	Excess molar enthalpies of binary systems containing 2-octanone, hexanoic acid, or octanoic acid at T = 298.15 K	
	rhol	1100.22	kg/m3	293.15 tı	Apparent molar volumes and compressibilities of lanthanum, gadolinium and lutetium rifluoromethanesulfonates in dimethylsulfoxide	

rhol	1095.19	kg/m3	298.15 Apparent molar volumes and compressibilities of lanthanum, gadolinium and lutetium trifluoromethanesulfonates in dimethylsulfoxide
rhol	1090.16	kg/m3	303.15 Apparent molar volumes and compressibilities of lanthanum, gadolinium and lutetium trifluoromethanesulfonates in dimethylsulfoxide
rhol	1080.12	kg/m3	313.15 Apparent molar volumes and compressibilities of lanthanum, gadolinium and lutetium trifluoromethanesulfonates in dimethylsulfoxide
rhol	1070.07	kg/m3	323.15 Apparent molar volumes and compressibilities of lanthanum, gadolinium and lutetium trifluoromethanesulfonates in dimethylsulfoxide
rhol	1060.03	kg/m3	333.15 Apparent molar volumes and compressibilities of lanthanum, gadolinium and lutetium trifluoromethanesulfonates in dimethylsulfoxide
rhol	1100.87	kg/m3	293.14 Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K
rhol	1090.81	kg/m3	303.15 Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K

rhol	1080.77	kg/m3	313.14	Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K	
rhol	1070.73	kg/m3	323.14	Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K	
rhol	1060.68	kg/m3	333.15	Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K	
rhol	1050.62	kg/m3	343.14	Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K	
rhol	1040.54	kg/m3	353.14	Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K	
rhol	1030.43	kg/m3	363.15	Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K	
rhol	1096.02	kg/m3	298.15	Physics and chemistry of an ionic liquid in some industrially important solvent media probed by physicochemical techniques	
rhol	1096.50	kg/m3	298.15	Thermophysical and excess properties of hydroxamic acids in DMSO	

rhol	1090.30	kg/m3	303.15	Thermophysical and excess properties of hydroxamic acids in DMSO	
rhol	1085.20	kg/m3	308.15	Thermophysical and excess properties of hydroxamic acids in DMSO	
rhol	1080.20	kg/m3	313.15	Thermophysical and excess properties of hydroxamic acids in DMSO	
rhol	1076.30	kg/m3	318.15	Thermophysical and excess properties of hydroxamic acids in DMSO	
rhol	1095.37	kg/m3	298.15	Influence of anion on thermophysical properties of ionic liquids with polar solvent	
rhol	1092.41	kg/m3	303.15	Influence of anion on thermophysical properties of ionic liquids with polar solvent	
rhol	1086.06	kg/m3	308.15	Influence of anion on thermophysical properties of ionic liquids with polar solvent	
rhol	1081.43	kg/m3	313.15	Influence of anion on thermophysical properties of ionic liquids with polar solvent	
rhol	1100.43	kg/m3	293.15	Thermodynamic properties of binary mixtures of the ionic liquid [emim][BF4] with acetone and dimethylsulphoxide	
rhol	1095.42	kg/m3	298.15	Thermodynamic properties of binary mixtures of the ionic liquid [emim][BF4] with acetone and dimethylsulphoxide	

rhol	1090.41	kg/m3	303.15	Thermodynamic properties of binary mixtures of the ionic liquid [emim][BF4] with acetone and dimethylsulphoxide
rhol	1085.39	kg/m3	308.15	Thermodynamic properties of binary mixtures of the ionic liquid [emim][BF4] with acetone and dimethylsulphoxide
rhol	1096.00	kg/m3	298.15	Probing subsistence of ion-pair and triple-ion of an ionic salt in liquid environments by means of conductometric contrivance
rhol	1095.28	kg/m3	298.15	Solvation of ionic liquids based on N-methyl-N-alkyl morpholinium cations in dimethylsulfoxide - volumetric and compressibility studies
rhol	1090.26	kg/m3	303.15	Solvation of ionic liquids based on N-methyl-N-alkyl morpholinium cations in dimethylsulfoxide - volumetric and compressibility studies
rhol	1085.24	kg/m3	308.15	Solvation of ionic liquids based on N-methyl-N-alkyl morpholinium cations in dimethylsulfoxide - volumetric and compressibility studies
rhol	1080.22	kg/m3	313.15	Solvation of ionic liquids based on N-methyl-N-alkyl morpholinium cations in dimethylsulfoxide - volumetric and compressibility studies

rhol	1075.21	kg/m3	318.15 Solvation of ionic liquids based on N-methyl-N-alkyl morpholinium cations in dimethylsulfoxide - volumetric and compressibility studies
rhol	1095.25	kg/m3	298.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	1090.24	kg/m3	303.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	1085.23	kg/m3	308.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	1080.20	kg/m3	313.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	1075.18	kg/m3	318.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	1065.14	kg/m3	328.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study

rhol	1100.20	kg/m3	293.15	Excess molar
moi	1100.20	Kg/IIIS	253.13	volume and viscosity deviation for binary mixtures of gamma-butyrolactone with dimethyl sulfoxide
rhol	1060.03	kg/m3	333.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal lons in Methanol and Dimethylsulfoxide
rhol	1090.20	kg/m3	303.15	Excess molar volume and viscosity deviation for binary mixtures of gamma-butyrolactone with dimethyl sulfoxide
rhol	1080.20	kg/m3	313.15	Excess molar volume and viscosity deviation for binary mixtures of gamma-butyrolactone with dimethyl sulfoxide
rhol	1100.00	kg/m3	293.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures
rhol	1090.00	kg/m3	303.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures

rhol	1080.00	kg/m3	313.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures	
rhol	1090.29	kg/m3	303.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	
rhol	1085.28	kg/m3	308.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	
rhol	1080.30	kg/m3	313.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	
rhol	1075.31	kg/m3	318.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	
rhol	1070.32	kg/m3	323.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	
rhol	1065.33	kg/m3	328.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3-methylimidazolium chloride	
rhol	1060.34	kg/m3	333.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	

rhol	1055.34	kg/m3	338.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	
rhol	1050.35	kg/m3	343.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	
rhol	1045.34	kg/m3	348.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	
rhol	1040.33	kg/m3	353.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	
rhol	1100.00	kg/m3	293.15	Volumetric, acoustic and transport properties of mixtures containing dimethyl sulfoxide and some amines or alkanolamines: Measurement and correlation	
rhol	1090.00	kg/m3	303.15	Volumetric, acoustic and transport properties of mixtures containing dimethyl sulfoxide and some amines or alkanolamines: Measurement and correlation	
rhol	1080.00	kg/m3	313.15	Volumetric, acoustic and transport properties of mixtures containing dimethyl sulfoxide and some amines or alkanolamines: Measurement and correlation	

rhol	1070.00	kg/m3	323.15	Volumetric, acoustic and transport properties of mixtures containing dimethyl sulfoxide and some amines or alkanolamines: Measurement and correlation	
rhol	1095.00	kg/m3	298.15	Volumetric, acoustic and transport properties of mixtures containing dimethyl sulfoxide and some amines or alkanolamines: Measurement and correlation	
rhol	1095.33	kg/m3	298.15	Temperature and composition dependence of the volumetric and acoustic properties of ionic liquid [emim][HSO4] with polar protic and aprotic co-solvents	
rhol	1090.32	kg/m3	303.15	Temperature and composition dependence of the volumetric and acoustic properties of ionic liquid [emim][HSO4] with polar protic and aprotic co-solvents	
rhol	1085.31	kg/m3	308.15	Temperature and composition dependence of the volumetric and acoustic properties of ionic liquid [emim][HSO4] with polar protic and aprotic co-solvents	

rhol	1080.29	kg/m3	313.15	Temperature and composition dependence of the volumetric and acoustic properties of ionic liquid [emim][HSO4] with polar protic and aprotic co-solvents
rhol	1100.43	kg/m3	293.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	1095.42	kg/m3	298.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	1090.40	kg/m3	303.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	1085.39	kg/m3	308.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	1095.34	kg/m3	298.15	Liquid-liquid equilibria and density data for pseudoternary systems of refined soybean oil + (hexanal, or heptanal, or butyric acid, or valeric acid, or caproic acid, or caprylic acid) + dimethyl sulfoxide at 298.15 K

rhol	1090.45	kg/m3	303.15	Excess molar enthalpies and heat capacities of dimethyl sulfoxide + seven normal alkanols at 303.15K and atmospheric pressure	
rhol	1095.37	kg/m3	298.15	Effect of anion variation on the thermophysical properties of triethylammonium based protic ionic liquids with polar solvent	
rhol	1092.41	kg/m3	303.15	Effect of anion variation on the thermophysical properties of triethylammonium based protic ionic liquids with polar solvent	
rhol	1086.08	kg/m3	308.15	Effect of anion variation on the thermophysical properties of triethylammonium based protic ionic liquids with polar solvent	
rhol	1086.06	kg/m3	308.15	Effect of anion variation on the thermophysical properties of triethylammonium based protic ionic liquids with polar solvent	
rhol	1095.30	kg/m3	298.15	Conductometric, refractometric and FT-IR spectroscopic study of [EMIm]NO3, [EMIm]CH3SO3, and [EMIm]OTs in N,N-dimethyl formamide, N,N-dimethyl acetamide and dimethyl sulphoxide	

rhol	1096.80	kg/m3	298.15	Excess Properties and Spectroscopic Studies for Binary System of Polyethylene Glycol 200 (1) + Dimethyl Sulfoxide (2) at T = (298.15 to 318.15) K	
rhol	1091.40	kg/m3	303.15	Excess Properties and Spectroscopic Studies for Binary System of Polyethylene Glycol 200 (1) + Dimethyl Sulfoxide (2) at T = (298.15 to 318.15) K	
rhol	1086.10	kg/m3	308.15	Excess Properties and Spectroscopic Studies for Binary System of Polyethylene Glycol 200 (1) + Dimethyl Sulfoxide (2) at T = (298.15 to 318.15) K	
rhol	1081.20	kg/m3	313.15	Excess Properties and Spectroscopic Studies for Binary System of Polyethylene Glycol 200 (1) + Dimethyl Sulfoxide (2) at T = (298.15 to 318.15) K	
rhol	1075.30	kg/m3	318.15	Excess Properties and Spectroscopic Studies for Binary System of Polyethylene Glycol 200 (1) + Dimethyl Sulfoxide (2) at T = (298.15 to 318.15) K	
rhol	1095.28	kg/m3	298.15	Density, sound speed and viscosity of dihydropyridine derivatives in dimethyl sulfoxide at different temperatures	

rhol	1085.23	kg/m3	308.15 Density, sound speed and viscosity of dihydropyridine derivatives in dimethyl sulfoxide at different temperatures
rhol	1075.19	kg/m3	318.15 Density, sound speed and viscosity of dihydropyridine derivatives in dimethyl sulfoxide at different temperatures
rhol	1090.41	kg/m3	303.15 Density and Viscosity Measurements for Binary Mixtures of 1-Ethyl-3-methylimidazolium Tetrafluoroborate ([Emim][BF4]) with Dimethylacetamide, Dimethylformamide, and Dimethyl Sulfoxide
rhol	1080.37	kg/m3	313.15 Density and Viscosity Measurements for Binary Mixtures of 1-Ethyl-3-methylimidazolium Tetrafluoroborate ([Emim][BF4]) with Dimethylacetamide, Dimethylformamide, and Dimethyl Sulfoxide
rhol	1070.33	kg/m3	323.15 Density and Viscosity Measurements for Binary Mixtures of 1-Ethyl-3-methylimidazolium Tetrafluoroborate ([Emim][BF4]) with Dimethylacetamide, Dimethylformamide, and Dimethyl Sulfoxide

rhol	1060.29	kg/m3	333.15 1-E	Density and Viscosity Measurements for Binary Mixtures of Ethyl-3-methylimidazolium Tetrafluoroborate ([Emim][BF4]) with Dimethylacetamide, Dimethylformamide, and Dimethyl Sulfoxide
rhol	1085.42	kg/m3	308.15	Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide
rhol	1095.41	kg/m3	298.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1090.38	kg/m3	303.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1085.36	kg/m3	308.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar

rhol	1080.34	kg/m3	313.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1075.32	kg/m3	318.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1070.31	kg/m3	323.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1065.29	kg/m3	328.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1060.28	kg/m3	333.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar

rhol	1055.26	kg/m3	338.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1050.23	kg/m3	343.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1045.21	kg/m3	348.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1040.19	kg/m3	353.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1035.15	kg/m3	358.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar

rhol	1030.12	kg/m3	363.15	Carbon Dioxide
				Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1090.29	kg/m3	303.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid
rhol	1085.28	kg/m3	308.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid
rhol	1080.30	kg/m3	313.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid
rhol	1075.31	kg/m3	318.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid
rhol	1070.32	kg/m3	323.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid
rhol	1065.33	kg/m3	328.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid

rhol	1060.34	kg/m3	333.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	1055.34	kg/m3	338.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	1050.35	kg/m3	343.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	1045.34	kg/m3	348.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	1040.33	kg/m3	353.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	1101.20	kg/m3	293.15 1-E	Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with Ethyl-3-methylimidazolium Diethylphosphate [EtMeIm]+[Et2PO4]- at Atmospheric Pressure	
rhol	1091.20	kg/m3	303.15 1-E	Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with Ethyl-3-methylimidazolium Diethylphosphate [EtMeIm]+[Et2PO4]- at Atmospheric Pressure	

rhol	1081.10	kg/m3	313.15 Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with 1-Ethyl-3-methylimidazolium Diethylphosphate [EtMelm]+[Et2PO4]- at Atmospheric Pressure
rhol	1071.10	kg/m3	323.15 Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with 1-Ethyl-3-methylimidazolium Diethylphosphate [EtMelm]+[Et2PO4]- at Atmospheric Pressure
rhol	1061.20	kg/m3	333.15 Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with 1-Ethyl-3-methylimidazolium Diethylphosphate [EtMelm]+[Et2PO4]- at Atmospheric Pressure
rhol	1051.30	kg/m3	343.15 Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with 1-Ethyl-3-methylimidazolium Diethylphosphate [EtMelm]+[Et2PO4]- at Atmospheric Pressure
rhol	1041.10	kg/m3	353.15 Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with 1-Ethyl-3-methylimidazolium Diethylphosphate [EtMelm]+[Et2PO4]- at Atmospheric Pressure

rhol	1031.30	kg/m3	363.15 Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with 1-Ethyl-3-methylimidazolium Diethylphosphate [EtMelm]+[Et2PO4]- at Atmospheric Pressure
rhol	1021.40	kg/m3	373.15 Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with 1-Ethyl-3-methylimidazolium Diethylphosphate [EtMeIm]+[Et2PO4]- at Atmospheric Pressure
rhol	1095.40	kg/m3	298.15 Isobaric Vapor-Liquid Equilibrium for Binary and Ternary Systems of 2-Methoxyethanol, Ethylbenzene, and Dimethyl Sulfoxide at 100.00 kPa
rhol	1100.20	kg/m3	293.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate
rhol	1090.20	kg/m3	303.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate

rhol	1080.40	kg/m3	313.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate
rhol	1070.20	kg/m3	323.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate
rhol	1060.30	kg/m3	333.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate
rhol	1050.20	kg/m3	343.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate
rhol	1040.20	kg/m3	353.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate

rhol	1029.90	kg/m3	363.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate
rhol	1019.80	kg/m3	373.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate
rhol	1100.40	kg/m3	293.15 Experimental High-Temperature, High-Pressure Density Measurement and Perturbed-Chain Statistical Associating Fluid Theory Modeling of Dimethyl Sulfoxide, Isoamyl Acetate, and Benzyl Alcohol
rhol	1095.40	kg/m3	298.15 Experimental High-Temperature, High-Pressure Density Measurement and Perturbed-Chain Statistical Associating Fluid Theory Modeling of Dimethyl Sulfoxide, Isoamyl Acetate, and Benzyl Alcohol

rhol	1080.30	kg/m3	313.15	Experimental High-Temperature, High-Pressure Density Measurement and Perturbed-Chain Statistical Associating Fluid Theory Modeling of Dimethyl Sulfoxide, Isoamyl Acetate, and Benzyl Alcohol
rhol	1060.20	kg/m3	333.15	Experimental High-Temperature, High-Pressure Density Measurement and Perturbed-Chain Statistical Associating Fluid Theory Modeling of Dimethyl Sulfoxide, Isoamyl Acetate, and Benzyl Alcohol
rhol	1085.50	kg/m3	308.15	Excess Molar Enthalpies of Binary Mixtures Containing Glycols or Polyglycols + Dimethyl Sulfoxide at 308.15 K
rhol	1095.54	kg/m3	298.15	Excess Molar volumes and Surface Tensions of Trimethylbenzene with Tetrahydrofuran Tetrachloromethane and Dimethylsulfoxide at 298.15 K
rhol	1095.36	kg/m3	298.15	Densities and Volumetric Properties of Ethylene Glycol + Dimethylsulfoxide Mixtures at Temperatures of (278.15 to 323.15) K and Pressures of (0.1 to 100) MPa

rhol	1085.36	kg/m3	308.15	Densities and Volumetric Properties of Ethylene Glycol + Dimethylsulfoxide Mixtures at Temperatures of (278.15 to 323.15) K and Pressures of (0.1 to 100) MPa	
rhol	1070.28	kg/m3	323.15	Densities and Volumetric Properties of Ethylene Glycol + Dimethylsulfoxide Mixtures at Temperatures of (278.15 to 323.15) K and Pressures of (0.1 to 100) MPa	
rhol	1100.31	kg/m3	293.15	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	1095.30	kg/m3	298.15	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	1090.31	kg/m3	303.13	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	1085.27	kg/m3	308.15	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	1080.27	kg/m3	313.15	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	

rhol	1100.22	kg/m3	293.15	Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide
rhol	1090.36	kg/m3	303.15	Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide
rhol	1090.34	kg/m3	303.15	Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide
rhol	1090.37	kg/m3	303.15	Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide
rhol	1090.38	kg/m3	303.15	Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide
rhol	1085.41	kg/m3	308.15	Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide
rhol	1100.42	kg/m3	293.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar

sdco	0.00	m2/s	298.29	Viscous	
				Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	338.12	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	328.10	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	318.03	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	308.10	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	363.71	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	298.26	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	348.17	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	293.09	Viscous Calibration Liquids for Self-diffusion Measurements	
sfust	49.26	J/mol×K	291.67	NIST Webbook	
speedsl	1519.12	m/s	288.15 1-Pi	Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, ropyl-3-Methylimidaze Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K	

speedsl	1451.47	m/s	308.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
speedsl	1484.12	m/s	298.15 Adiabatic Compressibilities of Divalent Transition-Metal Perchlorates and Chlorides in N,N-Dimethylacetamide and Dimethylsulfoxide
speedsl	1468.32	m/s	303.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
speedsl	1502.19	m/s	293.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
speedsl	1485.21	m/s	298.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K

srf	0.04	N/m	318.15	Equilibrium surface tension and the interaction energy of DMSO with tert-butyl alcohol or iso-amyl alcohol at various temperatures	
srf	0.04	N/m	328.15	Equilibrium surface tension and the interaction energy of DMSO with tert-butyl alcohol or iso-amyl alcohol at various temperatures	
srf	0.04	N/m	298.15	Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols	
srf	0.04	N/m	308.15	Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols	
srf	0.04	N/m	318.15	Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols	
srf	0.04	N/m	308.15	Equilibrium surface tension and the interaction energy of DMSO with tert-butyl alcohol or iso-amyl alcohol at various temperatures	

srf	0.04	N/m	298.15	Surface Tension and Refractive Index of Dialkylsulfoxide + Water Mixtures at Several Temperatures	
srf	0.04	N/m	303.15	Surface Tension and Refractive Index of Dialkylsulfoxide + Water Mixtures at Several Temperatures	
srf	0.04	N/m	308.15	Surface Tension and Refractive Index of Dialkylsulfoxide + Water Mixtures at Several Temperatures	
srf	0.04	N/m	313.15	Surface Tension and Refractive Index of Dialkylsulfoxide + Water Mixtures at Several Temperatures	
srf	0.04	N/m	318.15	Surface Tension and Refractive Index of Dialkylsulfoxide + Water Mixtures at Several Temperatures	
srf	0.04	N/m	298.15	Equilibrium surface tension and the interaction energy of DMSO with tert-butyl alcohol or iso-amyl alcohol at various temperatures	
srf	0.04	N/m	328.15	Surface Tension and Refractive Index of Dialkylsulfoxide + Water Mixtures at Several Temperatures	
srf	0.04	N/m	328.15	Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures	

srf	0.04	N/m	318.15	Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures	
srf	0.04	N/m	308.15	Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures	
srf	0.04	N/m	298.15	Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures	
srf	0.04	N/m	323.15	Surface Tension and Refractive Index of Dialkylsulfoxide + Water Mixtures at Several Temperatures	
srf	0.04	N/m	288.15	Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures	
srf	0.04	N/m	313.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	
srf	0.04	N/m	308.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	

srf	0.04	N/m	303.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	
srf	0.04	N/m	293.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][Ntf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	
srf	0.04	N/m	313.15	Surface and bulk behavior of (dialkylsulfoxides + carbon tetrachloride) mixtures	
srf	0.04	N/m	308.15	Surface and bulk behavior of (dialkylsulfoxides + carbon tetrachloride) mixtures	
srf	0.04	N/m	303.15	Surface and bulk behavior of (dialkylsulfoxides + carbon tetrachloride) mixtures	
srf	0.04	N/m	298.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	
srf	0.04	N/m	298.15	Surface and bulk behavior of (dialkylsulfoxides + carbon tetrachloride) mixtures	

o uf	0.04	NI/m	200.45	Γ#a at a t	
srf	0.04	N/m	328.15	Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols	
tcondl	0.19	W/m×K	294.83	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	
tcondl	0.19	W/m×K	299.84	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	
tcondl	0.18	W/m×K	304.64	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	
tcondl	0.18	W/m×K	339.35	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	
tcondl	0.18	W/m×K	314.33	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	

tcondl	0.18	W/m×K	319.33	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	
tcondl	0.18	W/m×K	324.37	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	
tcondl	0.18	W/m×K	329.31	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	
tcondl	0.18	W/m×K	334.49	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	
tcondl	0.18	W/m×K	309.47	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	

Pressure Dependent Properties

Property code Value Unit Pressure [kPa] Source

tbp	462.19	К	95.30	Excess enthalpies of dimethylsulfoxide with substituted benzenes at 298.15K
tbp	461.55	К	96.60	Low cost apparatus for rapid boiling point determination of small air sensitive samples under inert atmosphere

Correlations

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	4.67806e+01
Coeff. B	-7.52281e+03
Coeff. C	-4.21562e+00
Coeff. D	-2.45086e-07
Temperature range (K), min.	291.67
Temperature range (K), max.	519.15

Datasets

Viscosity, Pa*s

Pressure, kPa - Liquid	Temperature, K - Liquid	Viscosity, Pa*s - Liquid
101.00	303.15	0.0018030
Reference		https://www.doi.org/10.1016/j.jct.2006.04.005

Reference https://www.doi.org/10.1016/j.jct.2006.04.005

Refractive index (Na D-line)

Pressure, kPa - Liquid	Temperature, K - Liquid	Refractive index (Na D-line) - Liquid
85.90	298.15	1.4762

Reference https://www.doi.org/10.1016/j.jct.2013.04.022

Pressure, kPa	Temperature, K	Refractive index (Na D-line)
81.50	298.15	1.4767
Reference		https://www.doi.org/10.1021/je700645p

Mass density, kg/m3

Pressure, kPa - Liquid	Temperature, K - Liquid	Mass density, kg/m3 - Liquid
85.90	298.15	1095.29
D (1.00	// // // // // // // // // // // // //

Reference

https://www.doi.org/10.1016/j.fluid.2013.05.001

Sources

to 338.15) K:

Solubility and Solvation
Thermodynamics of a Series of Hohinegonesularimite Accions of ionic individual production of the Horizon of the Solubility of Sodium 2-Chase conditions of 1,4-Butanediol, N.N-Digital of the Horizon of the Solubility of Sodium 2-Chase conditions of the Solubility of Sodium 2-Chase conditions of the Horizon of the Horizon of the Solubility of Sodium 2-Chase conditions of the Solubi https://www.doi.org/10.1021/je5007899 Solubility and Solvation

Viscosity, Density, Speed of Sound, https://www.doi.org/10.1021/je700338t and Refractive Index of Binary Mixtures http://link.springer.com/article/10.1007/BF02311772 McGregatate Mother + Ionic Liquid, 1-Butyl-3-methylimidazolium The alessolutions behavior and appearent https://www.doi.org/10.1016/j.jct.2018.11.026 thermodynamic analysis of ไย่คณะยี่ใช้คิเลีย in pure and mixed รูปและพูเร-methylimidazolium จือให้มีในเยอมชาลเล แห่นเนล รูสู่เล่ามา five https://www.doi.org/10.1021/acs.jced.8b00684 https://www.doi.org/10.1016/j.fluid.2017.12.034 The state of the s https://www.doi.org/10.1016/j.tca.2011.08.013 https://www.doi.org/10.1016/j.fluid.2011.02.002 https://www.doi.org/10.1016/j.fluid.2015.08.014 equilibrium for the binary and ternary Solublity with methanol, methyl acetate a full interpretable of biological with or Rainwing Solublity of Biological with or Rainwing Solublity and Biological biological with the Ringery https://www.doi.org/10.1021/je500447r https://www.doi.org/10.1021/je500447r https://www.doi.org/10.1021/je500447r https://www.doi.org/10.1021/je500067f bysican files and solublity for the Ringery https://www.doi.org/10.1021/je500067f https://www.doi.org/10.1021/je500067f https://www.doi.org/10.1016/j.fluid.2014.https://www.doi.org/10.1016/j.fluid.2014.https://www.doi.org/10.1016/j.jct.2009.03 https://www.doi.org/10.1021/je6005357 Binary Mixtures of Nitrogen with equilibrium for the binary and ternary https://www.doi.org/10.1021/acs.jced.7b00982 https://www.doi.org/10.1016/j.fluid.2014.01.020 https://www.doi.org/10.1016/j.jct.2009.03.005 EXECUTION TO SUPPOSE T https://www.doi.org/10.1021/je100089s https://www.doi.org/10.1021/acs.jced.8b01265 https://www.doi.org/10.1016/j.fluid.2019.05.024 https://www.doi.org/10.1021/je800340v Systems Sulfide + Octane + Solvents at Chirakishint Leavish Routing From the Control of Cyclohexane + Dimethyl Sulfoxide + Westernexandhand Cyclohexane + Dimethyl Sulfoxide And Cyc https://www.doi.org/10.1021/je900549r https://www.doi.org/10.1016/j.tca.2019.178375 https://www.doi.org/10.1016/j.fluid.2017.12.035 https://www.doi.org/10.1021/acs.jced.6b00733 https://www.doi.org/10.1021/acs.jced.6b00833 https://www.doi.org/10.1016/j.jct.2006.01.007 https://www.doi.org/10.1021/je3007474 https://www.doi.org/10.1021/acs.jced.9b00065 https://www.doi.org/10.1016/j.jct.2006.04.005 https://www.doi.org/10.1016/j.jct.2019.05.007 of 3030 it 50 kenzamide in aqueous co-solvent mixtures of dimethyl sulfoxide, ethanol, isopropanol and

ethylene glycol:

Solubility of sodium diclofenac in https://www.doi.org/10.1016/j.fluid.2007.07.020 different solvents: Electrical Conductivity in Dimethyl https://www.doi.org/10.1021/je4010678 Sulfoxide + Potassium Iodide Solutions https://www.doi.org/10.1016/j.jct.2017.07.016
then the first of 1-hexyl-3high first of 1-hexyl Expession that mexand, (vaneptantiqued) https://www.doi.org/10.1016/j.jct.2007.04.004 Expisea nothal piexand, (vane ptantiquid) aquitier um detate the bigary mixtures bigary mixtures bigary mixtures bigary mixtures. Solvents at the sent particular mixtures: Compressibility Behavior of lonic Enquisity Proby primethod and management Acecipitation of by the mixtures at the mixtures at the mixtures at the mixtures at the mixtures of the https://www.doi.org/10.1021/je060133l https://www.doi.org/10.1007/s10765-009-0648-5 https://www.doi.org/10.1021/acs.jced.9b00432 https://www.doi.org/10.1021/je7001013 https://www.doi.org/10.1016/j.jct.2017.04.019 https://en.wikipedia.org/wiki/Joback_method mixtures of (methanol + ethyl acetate) pensity and Melting Holpts for the Binary Mixtures Dimethyl Sulfoxide https://www.doi.org/10.1021/acs.jced.8b01048 Binary Mixtures Dimetnyi Sunoxide (SMASO) ty of Ethyl-3-methylimidazolium Acelitetand Dinscentionarine wifetate: Exseq swood level emember of the light of the level of the light of the li https://www.doi.org/10.1021/acs.jced.5b00033 https://www.doi.org/10.1016/j.jct.2007.08.006 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1859 https://www.doi.org/10.1021/je800138b N,N-Dimethylformamide + N.N-Dimethylrormamide +
Normality of Sprrolidinone and +
Dimethyles of registration and the property of the spring https://www.doi.org/10.1021/je900386p https://www.doi.org/10.1016/j.jct.2017.02.009 Speeds of Some Acetate Salts in Binary mokyatism of fiorish judids has action halky his method in spin in the cations of the control of the c https://www.doi.org/10.1016/j.jct.2016.09.023 https://www.doi.org/10.1016/j.jct.2013.03.018 https://www.doi.org/10.1021/acs.jced.6b00009 https://www.doi.org/10.1016/j.tca.2006.05.010 https://www.doi.org/10.1021/acs.jced.6b00660 https://www.doi.org/10.1016/j.fluid.2007.10.017 Inermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. Ivipich salement for Vennaus Fryskensings taking the ball of the System of the Salement of https://www.doi.org/10.1016/j.jct.2014.12.014 https://www.doi.org/10.1021/acs.jced.6b00040 https://www.doi.org/10.1016/j.jct.2005.07.012 https://www.doi.org/10.1021/acs.jced.8b00043 https://www.doi.org/10.1016/j.jct.2004.07.024 https://www.doi.org/10.1021/je030115t Hamethylsum exite with a remainer before the common and the common https://www.doi.org/10.1016/j.jct.2019.06.025 https://www.doi.org/10.1016/j.jct.2018.06.006 https://www.doi.org/10.1016/j.jct.2007.06.010 http://webbook.nist.gov/cgi/cbook.cgi?ID=C67685&Units=SI 1.4-dioxane, and 1.2-dimethoxyethane activities from the special section of the special sec https://www.doi.org/10.1016/j.jct.2019.04.001 https://www.doi.org/10.1021/acs.jced.8b01126 N,N-dimethylformamide and

isopropanol:

Thermophysical and excess properties https://www.doi.org/10.1016/j.jct.2012.10.022 of hydroxamic acids in DMSO: Solubility of dibenzothiophene in nine https://www.doi.org/10.1016/j.jct.2018.09.017 organic solvents: Experimental https://www.doi.org/10.1021/je9005322 https://www.doi.org/10.1021/je9005322 https://www.doi.org/10.1021/je4006739 https://www.doi.org/10.1021/je4006739 https://www.doi.org/10.1021/je406739 https://www.doi.org/10.1021/je4066739 https://www.doi.org/10.1021/je49610v https://www.doi.org/10.1021/je4066739 https://www.doi.org/10.1021/je4066739 https://www.doi.org/10.1021/je4066739 https://www.doi.org/10.1021/je4066739 https://www.doi.org/10.1021/je4066739 https://www.doi.org/10.1021/je4066739 https://www.doi.org/10.1021/je4066739 https://www.doi.org/10.1021/je4066739 https://www.doi.org/10.1021/je406739 https://www.doi The state of squad for Binary

What he seed of squad for Binary

Intros://www.doi.org/10.1021/je0504449

https://www.doi.org/10.1016/j.jct.2012.11.014

https://www.doi.org/10.1016/j.jct.2018.05.011

solutions of metanol, ethanol,

by the seed of squad for Binary

https://www.doi.org/10.1021/je0504449

https://www.doi.org/10.1016/j.jct.2018.05.011

https://www.doi.org/10.1016/j.jct.2018.05.011 https://www.doi.org/10.1021/acs.jced.8b00732 https://www.doi.org/10.1016/j.jct.2018.05.011
solutions of methanol, ethanol, ethano The many sum of the plant of the properties of t https://www.doi.org/10.1016/j.jct.2019.02.016 https://www.doi.org/10.1016/j.jct.2019.03.004 https://www.doi.org/10.1016/j.tca.2007.08.008 https://www.doi.org/10.1016/j.tca.2012.02.004 https://www.doi.org/10.1021/acs.jced.7b00002 https://www.doi.org/10.1021/je500068b https://www.doi.org/10.1016/j.jct.2013.02.021 https://www.doi.org/10.1016/j.jct.2012.01.015 https://www.doi.org/10.1016/j.fluid.2007.08.001 https://www.doi.org/10.1016/j.jct.2008.05.012 https://www.doi.org/10.1016/j.jct.2010.04.013 https://www.doi.org/10.1016/j.fluid.2015.01.012 ที่สามาจัดสะเวล ที่คุณคลิศตาลสติโนบาไปเก่า สุกสุนทางเหตุเลขาสะ in selected pure รู้ดับผู้เมื่อคุณ เก่าสะเคา in selected pure รู้ดับผู้เมื่อคุณ เก่าสะเคา in selected pure รู้ดับผู้เมื่อคุณ เก่าสะเคา in selected pure มีที่สุด เก่าสะเคา เก่าสะเคา รู้เลขาลสะเคา บาลสะเคา เก่าสะเคา เก่าสะเคา เก่าสะเคา เก่าสะเคา บาลสะเคา เก่าสะเคา เก่าสะเค https://www.doi.org/10.1021/je900022k https://www.doi.org/10.1021/je600557n https://www.doi.org/10.1021/je400531a https://www.doi.org/10.1016/j.jct.2012.08.021 https://www.doi.org/10.1016/j.jct.2013.01.010 https://www.doi.org/10.1016/j.fluid.2013.07.010 https://www.doi.org/10.1016/j.jct.2018.02.002 Surviage and Substantaviacouracil in https://www.doi.org/10.1016/j.jct.2009.06.021 Somethylediczelosite withous of Halding Holling and Somethylediczelosite withous of Halding Holling and Somethylediczelosite withous with withous withous withous withous withous withous withous withous https://www.doi.org/10.1021/je100315g

Relation between characteristic https://www.doi.org/10.1016/j.jct.2010.04.011 molecular volume and hydrophobicity stopsiso yaperolacules Equilibrium for Binary and Ternary Systems of E-methocytes and Ternary Systems of E-method Systems of Ternary Systems of E-method Systems of Ternary Systems of E-method Systems of Ternary Systems molecular volume and hydrophobicity brokerisovaperoleiguis Equilibrium for https://www.doi.org/10.1021/acs.jced.8b00225 https://www.doi.org/10.1016/j.fluid.2015.09.039 Solubility modelling and preferential solvation of adenine in solvent Measweere min deficiently reafficients of solvent measurement of solvent measu Solubility modelling and preferential bienyiach entrin eigenmenwith bienyiach entrin eigenmenwith entrin eigenmenwith entrin eigenmenwith entrin eigenmenwith entrin eigenmenwith entrin eigenmen entrin eigenmen eigenmen entrin eigenmen eigen eigenmen eigen eigenmen eigen e Priface the Solve Composition: Phase equilibria of ternary systems of Phase equilibria of ternary systems of carbon dioxide + ethanol, dimethyl sartonide of ternary systems of carbon dioxide + ethanol, dimethyl sartonide of the street of th

BSGO OPER DIONING Stimethylformamide, ethylene glycol and dimethylsulfoxide:

https://www.doi.org/10.1021/acs.jced.5b00209 https://www.doi.org/10.1016/j.fluid.2010.01.002 https://www.doi.org/10.1016/j.fluid.2013.09.026 https://www.doi.org/10.1016/j.fluid.2018.05.029 https://www.doi.org/10.1021/acs.jced.5b00246 https://www.doi.org/10.1021/acs.jced.9b00294 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1859 https://www.doi.org/10.1016/j.jct.2018.05.030 https://www.doi.org/10.1016/j.fluid.2011.01.026 https://www.doi.org/10.1016/j.fluid.2014.04.025 https://www.doi.org/10.1016/j.fluid.2012.02.013 https://www.doi.org/10.1021/acs.jced.9b00229 https://www.doi.org/10.1021/je600564q https://www.doi.org/10.1016/j.fluid.2016.08.033 https://www.doi.org/10.1021/je7006956 https://www.doi.org/10.1021/acs.jced.8b01014 https://www.doi.org/10.1021/acs.jced.7b00316 https://www.doi.org/10.1016/j.jct.2019.01.026 https://www.doi.org/10.1016/j.jct.2011.05.034

```
Effect of Cosolvents DMSO and
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.8b00326
     Glycerol on the Self-Assembly
     Banaviorentas in serial capour Hquid
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2019.05.005
  Byparine of the properties of 
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je0501991
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je900531b
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.9b00560
                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.jct.2018.11.021
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2010.03.009
https://www.doi.org/10.1016/j.jct.2010.00

https://www.doi.org/10.1016/j.jct.2010.00

https://www.doi.org/10.1016/j.jct.2010.00

https://www.doi.org/10.1016/j.jct.2010.00

https://www.doi.org/10.1016/j.jct.2018.00

https://www.doi.org/10.1016/j.jct.2018.00

https://www.doi.org/10.1016/j.jct.2018.00

https://www.doi.org/10.1016/j.jct.2018.00

https://www.doi.org/10.1021/je8001909

https://www.doi.org/10.1021/je8001909

https://www.doi.org/10.1021/je8001909

https://www.doi.org/10.1021/je700591h

https://www.doi.org/10.1016/j.fluid.2007.

https://www.doi.org/10.1016/j.fluid.2007.

https://www.doi.org/10.1016/j.fluid.2007.

https://www.doi.org/10.1016/j.fluid.2013.

https://www.doi.org/10.1016/j.fluid.2013.
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2005.01.016
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2018.03.007
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2007.07.070
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.9b00396
  High-Pressure Density measurement Energy (solvention) that and the articles are the properties of the 
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2013.05.001
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je034007i
                                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je800468h
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2004.04.004
  a (xylene + dimethyl sulfoxide) at terminal hours (2001) at terminal hours (2001) at Supercritical CO2 Containing Different countries and compressibility
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.7b01108
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2005.07.018
  behaviour of ionic liquid, Viaquaity Japanity in indexprend of Sound https://www.doi.org/10.1021/je700026d fextiful in indexprend formamide https://www.doi.org/10.1021/je700026d https://pubs.acs.org/doi/abs/10.1021/ci99 https://pubs.acs.org/doi/abs/10.1021/ci99 https://www.chemeo.com/doc/models/ciputerity/stifutering/doi/abs/10.1021/ci99 https://www.chemeo.com/doc/models/ciputerity/stifutering/doi/abs/10.1021/ciputerity/stifutering/doi/abs/10.1021/ciputerity/stifutering/doi/abs/10.1021/ciputerity/stifutering/doi/abs/10.1021/ciputerity/stifutering/doi/abs/10.1021/ciputerity/stifutering/doi/abs/10.1021/ciputerity/stifutering/doi/abs/10.1021/ciputerity/stifutering/doi/abs/10.1021/ciputerity/stifutering/doi/abs/10.
                                                                                                                                                                                                                                                                                                                      http://pubs.acs.org/doi/abs/10.1021/ci990307l
                                                                                                                                                                                                                                                                                                                      https://www.chemeo.com/doc/models/crippen_log10ws
Solubility Data for Roflumilast and Maraviroc in Various Solvents between Propyriting 200 Solubility in Aqueous Solutions of Ethylene Glycol, Industrial Committee Com
      Solubility Data for Roflumilast and
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.9b00710
   Mount के अभिनेत्र अभिनेत्र के अधिप्रकार के 
                                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.tca.2017.05.005
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.5b00627
     Densitiveseum plependentheis cosity of
  aihydropyridine derivatives in dimethyl
รัศไปมีใช้ ส่ ส่กับงานยากาลสนาะระ
I-Tyrosine in Several Organic Solvents:
Belยหน้ามูลถึงคนุคเรื่องจะกายแขยแร
co-solvent mixtures of
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.9b00258
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2019.07.001
                                                                                                                                                                                                                                                                                                                      https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1859
https://www.cheric.org/research/kdb/hcprop/shsulfoxide, N-methyl-2-pyrrolidone and patering and 
     MABdimethylformamide, dimethyl
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1007/s10765-008-0395-z
                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2015.07.029
   Miennalmolis Nife Didn eth 1046 channide, and
```

Acetic Acid:

Measurements of the Properties of Binary Mixtures of Dimethylsulphoxide Massipement anik shore (CP) CP) at Source (CP)

5,5'-Dinitramino-3,3'-bi[1,2,4-triazolate]
Carbohydrazide Salt (CBNT) in Various
Pure Solvents and a Binary Mixture
Dimetry Salfaxide + Water) from

https://www.doi.org/10.1007/s10765-005-8102-9 https://www.doi.org/10.1021/acs.jced.9b00275

affp: Proton affinity **basg:** Gas basicity

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacity

cpl: Liquid phase heat capacity

dvisc: Dynamic viscosity **ea:** Electron affinity

econd: Electrical conductivity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions
hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws:Log10 of Water solubility in mol/llogp:Octanol/Water partition coefficientmcvol:McGowan's characteristic volume

nfpaf: NFPA Fire Rating
nfpah: NFPA Health Rating
pc: Critical Pressure
pvap: Vapor pressure
rfi: Refractive Index
rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices sdco: Self diffusion coefficient

sfust: Entropy of fusion at a given temperature

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

tb: Normal Boiling Point Temperaturetbp: Boiling point at given pressure

tc: Critical Temperature

tcondl: Liquid thermal conductivity

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/53-580-9/Dimethyl-Sulfoxide.pdf

Generated by Cheméo on 2025-12-06 17:55:47.244892635 +0000 UTC m=+4791944.774933300.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.