Dimethyl Sulfoxide

Other names: (CH3)2SO

A 10846

DEMSODROX

DMS 70 DMS 90 DMSO

DMSO (methyl sulfoxide)

Deltan
Demasorb
Demavet
Demeso
Dermasorb

Dimethyl sulfur oxide Dimethyl sulphoxide

Dimexide

Dipirartril-tropico

Dolicur
Doligur
Domoso
Dromisol
Durasorb
Gamasol 90

Herpid Hyadur Infiltrina Kemsol M 176

Methane, 1,1'-sulfinylbis-Methane, sulfinylbis-

Methyl sulfoxide

Methylsulfinylmethane

NSC-763 Rimso 50 SQ 9453

SULFINYLBISMETHANE

Sclerosol Somipront

Sulfoxide, dimethyl Sulphinylbis methane

Syntexan

Topsym

Inchi: InChI=1S/C2H6OS/c1-4(2)3/h1-2H3
InchiKey: IAZDPXIOMUYVGZ-UHFFFAOYSA-N

Formula: C2H6OS SMILES: CS(C)=O Mol. weight [g/mol]: 78.13 CAS: 67-68-5

Physical Properties

Property code	Value	Unit	Source
affp	884.40	kJ/mol	NIST Webbook
basg	853.70	kJ/mol	NIST Webbook
chl	-2037.30 ± 1.30	kJ/mol	NIST Webbook
ea	0.01 ± 0.00	eV	NIST Webbook
ea	0.01	eV	NIST Webbook
gf	-251.75	kJ/mol	Joback Method
hf	-150.50 ± 1.50	kJ/mol	NIST Webbook
hfl	-203.40 ± 1.40	kJ/mol	NIST Webbook
hfus	8.69	kJ/mol	Joback Method
hvap	52.90 ± 0.40	kJ/mol	NIST Webbook
hvap	52.90 ± 0.40	kJ/mol	NIST Webbook
ie	9.11	eV	NIST Webbook
ie	9.01	eV	NIST Webbook
ie	9.10	eV	NIST Webbook
ie	9.20 ± 0.05	eV	NIST Webbook
ie	9.01	eV	NIST Webbook
ie	9.90 ± 0.10	eV	NIST Webbook
ie	9.08 ± 0.09	eV	NIST Webbook
ie	9.20	eV	NIST Webbook
ie	9.10	eV	NIST Webbook
log10ws	0.70		Crippen Method
logp	-0.005		Crippen Method
mcvol	61.260	ml/mol	McGowan Method
nfpaf	%!d(float64=1)		KDB
nfpah	%!d(float64=1)		KDB
рс	5704.58	kPa	Joback Method
rinpol	790.00		NIST Webbook
rinpol	777.00		NIST Webbook
rinpol	782.00		NIST Webbook
rinpol	820.50		NIST Webbook

rinpol	829.20		NIST Webbook
rinpol	786.60		NIST Webbook
rinpol	820.10		NIST Webbook
rinpol	780.00		NIST Webbook
rinpol	772.00		NIST Webbook
rinpol	780.00		NIST Webbook
rinpol	827.00		NIST Webbook
rinpol	784.00		NIST Webbook
rinpol	784.00		NIST Webbook
rinpol	782.00		NIST Webbook
rinpol	780.00		NIST Webbook
rinpol	787.00		NIST Webbook
rinpol	784.00		NIST Webbook
ripol	1550.00		NIST Webbook
ripol	1584.00		NIST Webbook
ripol	1569.10		NIST Webbook
ripol	1560.00		NIST Webbook
ripol	1560.00		NIST Webbook
ripol	1560.00		NIST Webbook
ripol	1569.00		NIST Webbook
ripol	1560.00		NIST Webbook
ripol	1553.00		NIST Webbook
ripol	1582.30		NIST Webbook
ripol	1576.00		NIST Webbook
ripol	1563.00		NIST Webbook
ripol	1582.00		NIST Webbook
ripol	1553.00		NIST Webbook
ripol	1549.00		NIST Webbook
ripol	1596.00		NIST Webbook
ripol	1603.00		NIST Webbook
ripol	1595.00		NIST Webbook
ripol	1569.00		NIST Webbook
ripol	1554.00		NIST Webbook
ripol	1579.00		NIST Webbook
ripol	1582.00		NIST Webbook
sl	188.78	J/mol×K	NIST Webbook
tb	462.24	К	Experimental isobaric vapor-liquid equilibrium for the binary and ternary systems with methanol, methyl acetate and dimethyl sulfoxide at 101.3 kPa

tb	462.19	K	Excess enthalpies and (vapour + liquid) equilibrium data for the binary mixtures of dimethylsulphoxide with ketones
tb	463.27	K	Isobaric vapor-liquid equilibrium of a ternary system of ethyl acetate + propyl acetate + dimethyl sulfoxide and binary systems of ethyl acetate + dimethyl sulfoxide and propyl acetate + dimethyl sulfoxide at 101.3 kPa
tb	463.17	K	Experimental isobaric vapour-liquid equilibrium data for the binary system (N, N-dimethyl acetamide + dimethyl sulfoxide) and the quaternary system (sec-butyl acetate + sec-butyl alcohol + N, N-dimethyl acetamide + dimethyl sulfoxide) at 101.3 kPa
tb	462.19	К	Excess molar enthalpies of dimethylsulfoxide with chloroethanes and chloroethenes at 298.15K
tb	463.38	К	Vapor Liquid Equilibria for Ternary Mixtures of Isopropyl Alcohol, Isopropyl Acetate, and DMSO at 101.3 kPa
tb	463.85	K	Isobaric Vapor Liquid Equilibrium for the Binary and Ternary System with Isobutyl Alcohol, Isobutyl Acetate and Dimethyl Sulfoxide at 101.3 kPa
tb	462.06	K	Vapor-Liquid Equilibria for the Ternary System Acetonitrile + 1-Propanol + Dimethyl Sulfoxide and the Corresponding Binary Systems at 101.3 kPa
tb	462.25	К	Isobaric Vapor Liquid Equilibrium of Binary and Ternary Systems with 2-Ethoxyethanol + Ethylbenzene + Dimethyl Sulfoxide
tb	462.18	K	Isobaric vapor-liquid equilibrium for binary and ternary systems with toluene, 2-methoxyethanol and dimethyl sulfoxide at 101.3 kPa

tb	461.92	K	Vapor liquid equilibria for water + acetic acid + (N,N-dimethylformamide or dimethyl sulfoxide) at 13.33 kPa
tb	462.19	K	Isobaric Vapor Liquid Equilibrium for Dimethylsulfoxide with Chloroethanes and Chloroethenes
tc	718.00	K	Critical temperatures and pressures of caprolactam, dimethyl sulfoxide, 1,4-dimethylpiperazine, and 2,6-dimethylpiperazine
tf	291.65 ± 0.20	K	NIST Webbook
tf	291.66	K	Phase Equilibria of (1-Ethyl-3-methylimidazolium Ethylsulfate + Hydrocarbon, + Ketone, and + Ether) Binary Systems
tf	291.65 ± 0.40	K	NIST Webbook
tf	291.57 ± 0.20	K	NIST Webbook
tf	290.95	K	Efficient determination of crystallisation and melting points at low cooling and heating rates with novel computer controlled equipment
tt	291.67	K	KDB
tt	291.59 ± 0.10	K	NIST Webbook
tt	291.67 ± 0.06	K	NIST Webbook
VC	0.237	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	116.06	J/mol×K	478.96	Joback Method
cpg	106.76	J/mol×K	420.45	Joback Method
cpg	101.92	J/mol×K	391.20	Joback Method
cpg	96.95	J/mol×K	361.95	Joback Method
cpg	91.87	J/mol×K	332.69	Joback Method
cpg	111.48	J/mol×K	449.71	Joback Method
cpg	86.68	J/mol×K	303.44	Joback Method

cpl	159.30	J/mol×K	338.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
срІ	158.50	J/mol×K	333.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	157.80	J/mol×K	328.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	159.50	J/mol×K	343.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	160.20	J/mol×K	348.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	160.30	J/mol×K	353.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	161.30	J/mol×K	358.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	

cpl	161.50	J/mol×K	363.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	161.70	J/mol×K	368.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	162.60	J/mol×K	373.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	163.30	J/mol×K	378.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	164.80	J/mol×K	383.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	166.30	J/mol×K	388.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	168.30	J/mol×K	393.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	

cpl	169.10	J/mol×K	398.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	170.30	J/mol×K	403.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	170.40	J/mol×K	408.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	170.60	J/mol×K	413.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	171.10	J/mol×K	418.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	171.20	J/mol×K	423.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	

cpl	145.00	J/mol×K	293.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	145.40	J/mol×K	298.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	146.70	J/mol×K	303.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	148.50	J/mol×K	308.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	

cpl	149.40	J/mol×K	313.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
срІ	150.30	J/mol×K	318.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	151.50	J/mol×K	323.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	152.60	J/mol×K	328.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	

cpl	154.10	J/mol×K	333.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	151.20	J/mol×K	293.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	156.80	J/mol×K	343.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
срІ	158.20	J/mol×K	348.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
срІ	159.60	J/mol×K	353.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	

cpl	160.60	J/mol×K	358.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	160.90	J/mol×K	363.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	161.30	J/mol×K	368.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	161.70	J/mol×K	373.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	

cpl	161.80	J/mol×K	378.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	162.70	J/mol×K	383.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	163.80	J/mol×K	388.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	164.20	J/mol×K	393.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	

cpl	165.30	J/mol×K	398.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	166.60	J/mol×K	403.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	167.40	J/mol×K	408.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	168.10	J/mol×K	413.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	

cpl	169.00	J/mol×K	418.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	172.20	J/mol×K	423.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure	
cpl	146.80	J/mol×K	288.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure	
cpl	157.70	J/mol×K	323.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	154.60	J/mol×K	308.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure	

cpl	149.90	J/mol×K	288.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	150.40	J/mol×K	293.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	151.50	J/mol×K	298.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	152.20	J/mol×K	303.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K

cpl	152.90	J/mol×K	308.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
срі	153.70	J/moi×K	313.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	154.70	J/mol×K	318.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	155.60	J/mol×K	323.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	149.39	J/mol×K	298.15	NIST Webbook
cpl	148.28	J/mol×K	298.15	NIST Webbook
cpl	153.60	J/mol×K	298.15	NIST Webbook
cpl	153.20	J/mol×K	298.15	NIST Webbook

cpl	156.60	J/mol×K	318.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	155.90	J/mol×K	298.15	NIST Webbook	
cpl	153.18	J/mol×K	298.15	NIST Webbook	
cpl	149.00	J/mol×K	298.15	NIST Webbook	
cpl	152.40	J/mol×K	298.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure	
cpl	155.40	J/mol×K	313.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	154.80	J/mol×K	308.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	153.40	J/mol×K	303.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	152.40	J/mol×K	298.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	

cpl	155.90	J/mol×K	298.15	NIST Webbook
cpl	155.30	J/mol×K	338.15	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure
dvisc	0.0019790	Paxs	298.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K
dvisc	0.0016220	Paxs	308.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K
dvisc	0.0013814	Paxs	318.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K
dvisc	0.0012070	Paxs	328.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K
dvisc	0.0018320	Paxs	303.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K

dvisc	0.0016696	Paxs	308.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K
dvisc	0.0015373	Paxs	313.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K
dvisc	0.0014080	Paxs	318.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K
dvisc	0.0012890	Paxs	323.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K
dvisc	0.0019960	Paxs	298.15	On the density and viscosity of (water + dimethylsulphoxide) binary mixtures
dvisc	0.0018357	Paxs	303.15	On the density and viscosity of (water + dimethylsulphoxide) binary mixtures
dvisc	0.0016689	Paxs	308.15	On the density and viscosity of (water + dimethylsulphoxide) binary mixtures
dvisc	0.0015351	Paxs	313.15	On the density and viscosity of (water + dimethylsulphoxide) binary mixtures

dvisc	0.0013935	Paxs	318.15 On the density and viscosity of (water + dimethylsulphoxide) binary mixtures
dvisc	0.0022100	Paxs	293.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0018430	Paxs	303.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0015560	Paxs	313.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0013370	Paxs	323.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0011650	Paxs	333.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0010280	Paxs	343.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0009170	Paxs	353.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents

dvisc	0.0016550	Paxs	THERMODYNAMIC INTERACTIONS OF POTASSIUM FLUORIDE IN AQUEOUS DIMETHYL SULFOXIDE SOLUTIONS AT DIFFERENT TEMPERATURES
dvisc	0.0013920	Paxs	THERMODYNAMIC INTERACTIONS OF POTASSIUM FLUORIDE IN AQUEOUS DIMETHYL SULFOXIDE SOLUTIONS AT DIFFERENT TEMPERATURES
dvisc	0.0022100	Paxs	293.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0020120	Paxs	298.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0016689	Paxs	308.15 Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K
dvisc	0.0020100	Paxs	298.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0018400	Paxs	303.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile

dvisc	0.0015600	Paxs	313.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0013400	Paxs	323.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0011700	Paxs	333.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0010300	Paxs	343.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0009200	Paxs	353.15 Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0019890	Paxs	Excess Enthalpies, Heat Capacities, Densities, Viscosities and Refractive Indices of Dimethyl Sulfoxide + Three Aryl Alcohols at 308.15 K and Atmospheric Pressure

dvisc	0.0016450	Paxs	308.15 Excess Enthalpies, Heat Capacities, Densities, Viscosities and Refractive Indices of Dimethyl Sulfoxide + Three Aryl Alcohols at 308.15 K and Atmospheric Pressure
dvisc	0.0020418	Paxs	298.15 Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K
dvisc	0.0015682	Paxs	308.15 Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K
dvisc	0.0014847	Paxs	318.15 Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K
dvisc	0.0020120	Paxs	298.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0018430	Paxs	303.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile

	0.0045500	D	040.45
dvisc	0.0015560	Paxs	313.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0013370	Paxs	323.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0011650	Paxs	333.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0010280	Paxs	343.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0009170	Paxs	353.15 Properties of Pure 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate Ionic Liquid and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile
dvisc	0.0020420	Paxs	298.15 Viscosity, Density, and Speed of Sound for the Binary Mixtures of Formamide with 2-Methoxyethanol, Acetophenone, Acetonitrile, 1,2-Dimethoxyethane, and Dimethylsulfoxide at Different Temperatures

dvisc	0.0015680	Paxs	308.15 Viscosity, Density, and Speed of Sound for the Binary Mixtures of Formamide with 2-Methoxyethanol, Acetophenone, Acetonitrile, 1,2-Dimethoxyethane, and Dimethylsulfoxide at Different Temperatures
dvisc	0.0014850	Paxs	318.15 Viscosity, Density, and Speed of Sound for the Binary Mixtures of Formamide with 2-Methoxyethanol, Acetophenone, Acetonitrile, 1,2-Dimethoxyethane, and Dimethylsulfoxide at Different Temperatures
dvisc	0.0019932	Paxs	298.15 Partial Molar Volumes and Viscosity B-Coefficient of N-Phenylbenzohydroxamic Acid in Dimethylsulfoxide at Different Temperatures
dvisc	0.0018006	Paxs	303.15 Partial Molar Volumes and Viscosity B-Coefficient of N-Phenylbenzohydroxamic Acid in Dimethylsulfoxide at Different Temperatures
dvisc	0.0015160	Paxs	313.15 Partial Molar Volumes and Viscosity B-Coefficient of N-Phenylbenzohydroxamic Acid in Dimethylsulfoxide at Different Temperatures
dvisc	0.0013980	Paxs	318.15 Partial Molar Volumes and Viscosity B-Coefficient of N-Phenylbenzohydroxamic Acid in Dimethylsulfoxide at Different Temperatures

dvisc	0.0017860	Paxs	303.15	Densities and
				Viscosities of N,N-Dimethylformamide
				N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to
				353.15) K
dvisc	0.0015060	Paxs	313.15	Densities and Viscosities of N,N-Dimethylformamide
				N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0012780	Paxs	323.15	Densities and Viscosities of N,N-Dimethylformamide
				N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0011040	Paxs	333.15	Densities and Viscosities of N,N-Dimethylformamide
				N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0009620	Paxs	343.15	Densities and Viscosities of N,N-Dimethylformamide
				N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
dvisc	0.0008500	Paxs	353.15	Densities and Viscosities of N,N-Dimethylformamide
				N-Methyl-2-pyrrolidinone and + Dimethyl Sulfoxide in the Temperature Range (303.15 to 353.15) K
				<u> </u>

dvisc	0.0019960	Paxs	298.15	Density and	
				Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	
dvisc	0.0018357	Paxs	303.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	
dvisc	0.0014875	Paxs	318.15	Densities and Viscosities of Rubidium Bromide in Dimethyl Sulfoxide + Water Mixtures in the Temperature Range t = (25 to 45) deg C	
dvisc	0.0015588	Paxs	313.15	Densities and Viscosities of Rubidium Bromide in Dimethyl Sulfoxide + Water Mixtures in the Temperature Range t = (25 to 45) deg C	
dvisc	0.0016523	Paxs	308.15	Densities and Viscosities of Rubidium Bromide in Dimethyl Sulfoxide + Water Mixtures in the Temperature Range t = (25 to 45) deg C	
dvisc	0.0018090	Paxs	303.15	Densities and Viscosities of Rubidium Bromide in Dimethyl Sulfoxide + Water Mixtures in the Temperature Range t = (25 to 45) deg C	

dvisc	0.0019660	Paxs	298.15	Densities and Viscosities of	
				Rubidium Bromide in Dimethyl Sulfoxide + Water Mixtures in the Temperature Range t = (25 to 45) deg C	
dvisc	0.0013935	Paxs	318.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	
dvisc	0.0015351	Paxs	313.15	Density and Viscosity of Anhydrous Mixtures of Dimethylsulfoxide with Acetonitrile in the Range (298.15 to 318.15) K	
dvisc	0.0016520	Paxs	308.15 N-I	Partial Molar Volumes and Viscosity B-Coefficient of Phenylbenzohydroxar Acid in Dimethylsulfoxide at Different Temperatures	mic
econd	3.28e-04	S/m	315.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	2.01e-04	S/m	295.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	

econd	2.25e-04	S/m	299.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes
econd	2.36e-04	S/m	301.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes
econd	2.48e-04	S/m	303.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes
econd	2.74e-04	S/m	307.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes
econd	2.62e-04	S/m	305.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes
econd	2.11e-04	S/m	297.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes

econd	2.87e-04	S/m	309.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	3.00e-04	S/m	311.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	3.15e-04	S/m	313.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	4.74e-04	S/m	333.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	4.55e-04	S/m	331.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	4.37e-04	S/m	329.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	

econd	4.19e-04	S/m	327.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	3.99e-04	S/m	325.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	3.84e-04	S/m	323.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	3.69e-04	S/m	321.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	3.55e-04	S/m	319.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	
econd	3.41e-04	S/m	317.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes	

econd	1.88e-04	S/m	293.15	Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes
hfust	14.37	kJ/mol	291.67	NIST Webbook
hfust	14.37	kJ/mol	291.70	NIST Webbook
hfust	14.37	kJ/mol	291.70	NIST Webbook
hvapt	52.30	kJ/mol	308.00	NIST Webbook
hvapt	50.60	kJ/mol	383.50	NIST Webbook
hvapt	52.10	kJ/mol	363.00	NIST Webbook
hvapt	52.50	kJ/mol	308.00	NIST Webbook
hvapt	48.10	kJ/mol	368.00	NIST Webbook
hvapt	48.60	kJ/mol	430.00	NIST Webbook
hvapt	51.70	kJ/mol	384.50	NIST Webbook
pvap	5.00	kPa	373.10 1-	Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + allyl-3-methylimidazolium chloride at atmospheric pressure
pvap	101.30	kPa	463.38	Vapor Liquid Equilibria for Ternary Mixtures of Isopropyl Alcohol, Isopropyl Acetate, and DMSO at 101.3 kPa
pvap	43.20	kPa	433.10 1-	Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + allyl-3-methylimidazolium chloride at atmospheric pressure

pvap	31.60	kPa	423.10 Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride at atmospheric pressure
pvap	22.70	kPa	413.10 Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride at atmospheric pressure
pvap	16.00	kPa	403.10 Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride at atmospheric pressure
pvap	11.20	kPa	393.10 Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride at atmospheric pressure
рvар	101.30	kPa	Isobaric vapor-liquid equilibrium of a ternary system of ethyl acetate + propyl acetate + dimethyl sulfoxide and binary systems of ethyl acetate + dimethyl sulfoxide and propyl acetate + dimethyl sulfoxide and propyl acetate + dimethyl sulfoxide at 101.3 kPa

pvap	7.60	kPa	383.10	Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride at atmospheric pressure
pvap	3.20	kPa	363.10	Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride at atmospheric pressure
pvap	2.00	kPa	353.10	Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride at atmospheric pressure
pvap	0.16	kPa	308.16	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
pvap	0.16	kPa	308.16	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
pvap	0.16	kPa	308.16	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
pvap	0.13	kPa	305.66	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
pvap	0.13	kPa	305.66	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide

pvap	0.13	kPa	305.66	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.11	kPa	303.16	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.11	kPa	303.16	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.11	kPa	303.16	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.10	kPa	300.65	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.10	kPa	300.65	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.08	kPa	298.15	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.08	kPa	298.15	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.08	kPa	298.15	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.07	kPa	295.65	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	

pvap	0.07	kPa	295.65	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.07	kPa	295.65	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.06	kPa	293.15	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.06	kPa	293.15	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	0.06	kPa	293.15	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
pvap	95.30	kPa	460.95	Vapor-liquid equilibrium for the binary mixtures of dimethylsulfoxide with substituted benzenes	
pvap	0.10	kPa	300.65	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
rfi	1.45470		308.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K	

rfi	1.47690	298.15 Viscosity, Density, Speed of Sound, and Refractive Index of Binary Mixtures of Organic Solvent + Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate at 298.15 K
rfi	1.47510	293.15 Isobaric Vapor Liquid Equilibrium for the Extractive Distillation of Acetonitrile + Water Mixtures Using Dimethyl Sulfoxide at 101.3 kPa
rfi	1.46700	318.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.47100	308.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.47520	298.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K
rfi	1.47930	288.15 Partial Molar Volumes of N,N'-1,2-Ethyl-bis(salicyladimine) Schiff Base (Salen) in Organic Solvents at T = (283.15 to 318.15) K

rfi	1.45940	303.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K
rfi	1.47680	298.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K
rfi	1.47890	293.15	Solubility Data for Roflumilast and Maraviroc in Various Solvents between T = (278.2-323.2) K
rfi	1.47910	293.15	Solid-Liquid Equilibrium Measurements for Posaconazole and Voriconazole in Several Solvents between T = 278.2 and 323.2 K Using Differential Thermal Analysis/Thermal Gravimetric Analysis
rfi	1.47790	298.15	Isobaric Vapor Liquid Equilibrium for Binary and Ternary Systems of Isoamyl Alcohol + Isoamyl Acetate + Dimethyl Sulfoxide at 101.33 kPa

rfi	1.47850		293.15	Experimental densities and excess volumes for binary mixtures of (dimethyl sulfoxide + an aromatic hydrocarbon) at temperatures from (293.15 to 353.15) K at atmospheric pressure	
rfi	1.47850		293.15	Densities and volumetric properties of a (xylene + dimethyl sulfoxide) at temperature from (293.15 to 353.15) K	
rfi	1.47510		303.15	Measurements of the Properties of Binary Mixtures of Dimethylsulphoxide (DMSO) with 1-Alkanols (C4, C6, C7) at 303.15K	
rhol	1071.10	kg/m3		Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with thyl-3-methylimidazolium Diethylphosphate [EtMeIm]+[Et2PO4]- at Atmospheric Pressure	
rhol	1100.40	kg/m3	293.15	Experimental High-Temperature, High-Pressure Density Measurement and Perturbed-Chain Statistical Associating Fluid Theory Modeling of Dimethyl Sulfoxide, Isoamyl Acetate, and Benzyl Alcohol	

rhol	1095.40	kg/m3	298.15	Experimental High-Temperature, High-Pressure Density Measurement and Perturbed-Chain Statistical Associating Fluid Theory Modeling of Dimethyl Sulfoxide, Isoamyl Acetate, and Benzyl Alcohol
rhol	1080.30	kg/m3	313.15	Experimental High-Temperature, High-Pressure Density Measurement and Perturbed-Chain Statistical Associating Fluid Theory Modeling of Dimethyl Sulfoxide, Isoamyl Acetate, and Benzyl Alcohol
rhol	1060.20	kg/m3	333.15	Experimental High-Temperature, High-Pressure Density Measurement and Perturbed-Chain Statistical Associating Fluid Theory Modeling of Dimethyl Sulfoxide, Isoamyl Acetate, and Benzyl Alcohol
rhol	1085.50	kg/m3	308.15	Excess Molar Enthalpies of Binary Mixtures Containing Glycols or Polyglycols + Dimethyl Sulfoxide at 308.15 K
rhol	1095.54	kg/m3	298.15	Excess Molar volumes and Surface Tensions of Trimethylbenzene with Tetrahydrofuran Tetrachloromethane and Dimethylsulfoxide at 298.15 K

Thol
Volumetric Properties of Ethylene Glycol + Dimethylsulfoxide Mixtures at Temperatures of (278.15 to 323.15) K and Pressures of (0.1 to 100) MPa rhol 1070.28 kg/m3 323.15 Densities and Volumetric Properties of Ethylene Glycol + Dimethylsulfoxide Mixtures at Temperatures of (278.15 to
Volumetric Properties of Ethylene Glycol + Dimethylsulfoxide Mixtures at Temperatures of (278.15 to
Pressurés of (0.1 to 100) MPa
rhol 1100.31 kg/m3 293.15 Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents
rhol 1095.30 kg/m3 298.15 Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents
rhol 1090.31 kg/m3 303.13 Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents
rhol 1085.27 kg/m3 308.15 Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents

rhol	1080.27	kg/m3	313.15	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	1100.22	kg/m3	293.15	Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide	
rhol	1081.10	kg/m3	313.15 1-E	Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with thyl-3-methylimidazoliu Diethylphosphate [EtMeIm]+[Et2PO4]- at Atmospheric Pressure	ım
rhol	1090.34	kg/m3	303.15	Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide	
rhol	1090.37	kg/m3	303.15	Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide	
rhol	1090.38	kg/m3	303.15	Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide	
rhol	1085.41	kg/m3	308.15	Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide	

rhol	1085.42	kg/m3	308.15 Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide
rhol	1080.45	kg/m3	313.15 Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide
rhol	1080.43	kg/m3	313.15 Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide
rhol	1080.47	kg/m3	313.15 Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide
rhol	1100.76	kg/m3	293.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents
rhol	1095.74	kg/m3	298.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents
rhol	1090.73	kg/m3	303.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents

rhol	1080.69	kg/m3	313.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents
rhol	1070.66	kg/m3	323.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate lonic Liquids with Molecular Solvents
rhol	1060.63	kg/m3	333.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents
rhol	1050.58	kg/m3	343.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents
rhol	1040.51	kg/m3	353.15 Volumetric Properties of Binary Mixtures of Two 1-Alkyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquids with Molecular Solvents
rhol	1095.20	kg/m3	298.15 Solubility of Dilute SO2 in the Binary System Poly Ethylene Glycol 300 + Dimethyl Sulfoxide at T = 298.15 K and p = 123.15 kPa and Mixtures Excess Properties at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K

rhol	1090.60	kg/m3	303.15	Solubility of Dilute SO2 in the Binary System Poly Ethylene Glycol 300 + Dimethyl Sulfoxide at T = 298.15 K and p = 123.15 kPa and Mixtures Excess Properties at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K	
rhol	1085.90	kg/m3	308.15	Solubility of Dilute SO2 in the Binary System Poly Ethylene Glycol 300 + Dimethyl Sulfoxide at T = 298.15 K and p = 123.15 kPa and Mixtures Excess Properties at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K	
rhol	1081.30	kg/m3	313.15	Solubility of Dilute SO2 in the Binary System Poly Ethylene Glycol 300 + Dimethyl Sulfoxide at T = 298.15 K and p = 123.15 kPa and Mixtures Excess Properties at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K	
rhol	1075.30	kg/m3	318.15	Solubility of Dilute SO2 in the Binary System Poly Ethylene Glycol 300 + Dimethyl Sulfoxide at T = 298.15 K and p = 123.15 kPa and Mixtures Excess Properties at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K	

rhol	1100.42	kg/m3	293.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO
rhol	1095.45	kg/m3	298.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO
rhol	1090.47	kg/m3	303.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO
rhol	1085.48	kg/m3	308.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO
rhol	1080.49	kg/m3	313.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO
rhol	1075.49	kg/m3	318.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO

rhol	1100.22	kg/m3	293.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide
rhol	1100.23	kg/m3	293.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide
rhol	1095.19	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide
rhol	1095.19	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide

rhol	1095.20	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide
rhol	1095.20	kg/m3	298.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal lons in Methanol and Dimethylsulfoxide
rhol	1090.17	kg/m3	303.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide
rhol	1090.18	kg/m3	303.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide

rhol	1080.12	kg/m3	313.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide	
rhol	1080.12	kg/m3	313.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide	
rhol	1070.08	kg/m3	323.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide	
rhol	1070.08	kg/m3	323.15	Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide	

rhol	1060.04	kg/m3	333.15 Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal lons in Methanol and Dimethylsulfoxide
rhol	1060.03	kg/m3	333.15 Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal lons in Methanol and Dimethylsulfoxide
rhol	1091.20	kg/m3	303.15 Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with 1-Ethyl-3-methylimidazolium Diethylphosphate [EtMeIm]+[Et2PO4]- at Atmospheric Pressure
rhol	1101.20	kg/m3	293.15 Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with 1-Ethyl-3-methylimidazolium Diethylphosphate [EtMeIm]+[Et2PO4]- at Atmospheric Pressure
rhol	1040.33	kg/m3	353.15 Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid

rhol	1045.34	kg/m3	348.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	1050.35	kg/m3	343.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	1055.34	kg/m3	338.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	1060.34	kg/m3	333.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	1065.33	kg/m3	328.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	1070.32	kg/m3	323.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	
rhol	1075.31	kg/m3	318.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid	

rhol	1080.30	kg/m3	313.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid
rhol	1085.28	kg/m3	308.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid
rhol	1090.29	kg/m3	303.15	Influence of Aprotic Cosolvents on the Thermophysical Properties of Imidazolium-Based Ionic Liquid
rhol	1030.12	kg/m3	363.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1035.15	kg/m3	358.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1040.19	kg/m3	353.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar

rhol	1045.21	kg/m3	348.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1050.23	kg/m3	343.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1090.36	kg/m3	303.15	Apparent Molar Volumes and Expansivities of Ionic Liquids [Cnmim]Br (n = 4, 8, 10, 12) in Dimethyl Sulfoxide
rhol	1055.26	kg/m3	338.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1060.28	kg/m3	333.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1065.29	kg/m3	328.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar

rhol	1070.31	kg/m3	323.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1075.32	kg/m3	318.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1080.34	kg/m3	313.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1085.36	kg/m3	308.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1090.38	kg/m3	303.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar

rh ol	100F 44	ka/m2	200 15 Carbon Diavida
rhol	1095.41	kg/m3	298.15 Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based lonic Liquids and their Mixtures at Moderate Pressures up to 10 bar
rhol	1060.29	kg/m3	333.15 Density and Viscosity Measurements for Binary Mixtures of 1-Ethyl-3-methylimidazolium Tetrafluoroborate ([Emim][BF4]) with Dimethylacetamide, Dimethylformamide, and Dimethyl Sulfoxide
rhol	1070.33	kg/m3	323.15 Density and Viscosity Measurements for Binary Mixtures of 1-Ethyl-3-methylimidazolium Tetrafluoroborate ([Emim][BF4]) with Dimethylacetamide, Dimethylformamide, and Dimethyl Sulfoxide
rhol	1080.37	kg/m3	313.15 Density and Viscosity Measurements for Binary Mixtures of 1-Ethyl-3-methylimidazolium Tetrafluoroborate ([Emim][BF4]) with Dimethylacetamide, Dimethylformamide, and Dimethyl Sulfoxide
rhol	1090.41	kg/m3	303.15 Density and Viscosity Measurements for Binary Mixtures of 1-Ethyl-3-methylimidazolium Tetrafluoroborate ([Emim][BF4]) with Dimethylacetamide, Dimethylformamide, and Dimethyl Sulfoxide

rhol	1075.19	kg/m3	318.15	Density, sound speed and viscosity of dihydropyridine derivatives in dimethyl sulfoxide at different temperatures	
rhol	1085.23	kg/m3	308.15	Density, sound speed and viscosity of dihydropyridine derivatives in dimethyl sulfoxide at different temperatures	
rhol	1095.28	kg/m3	298.15	Density, sound speed and viscosity of dihydropyridine derivatives in dimethyl sulfoxide at different temperatures	
rhol	1075.30	kg/m3	318.15	Excess Properties and Spectroscopic Studies for Binary System of Polyethylene Glycol 200 (1) + Dimethyl Sulfoxide (2) at T = (298.15 to 318.15) K	
rhol	1081.20	kg/m3	313.15	Excess Properties and Spectroscopic Studies for Binary System of Polyethylene Glycol 200 (1) + Dimethyl Sulfoxide (2) at T = (298.15 to 318.15) K	
rhol	1086.10	kg/m3	308.15	Excess Properties and Spectroscopic Studies for Binary System of Polyethylene Glycol 200 (1) + Dimethyl Sulfoxide (2) at T = (298.15 to 318.15) K	

rhol	1091.40	kg/m3	303.15	Excess Properties and Spectroscopic Studies for Binary System of Polyethylene Glycol 200 (1) + Dimethyl Sulfoxide (2) at T = (298.15 to 318.15) K	
rhol	1096.80	kg/m3	298.15	Excess Properties and Spectroscopic Studies for Binary System of Polyethylene Glycol 200 (1) + Dimethyl Sulfoxide (2) at T = (298.15 to 318.15) K	
rhol	1095.30	kg/m3	298.15	Conductometric, refractometric and FT-IR spectroscopic study of [EMIm]NO3, [EMIm]CH3SO3, and [EMIm]OTs in N,N-dimethyl formamide, N,N-dimethyl acetamide and dimethyl sulphoxide	
rhol	1086.06	kg/m3	308.15	Effect of anion variation on the thermophysical properties of triethylammonium based protic ionic liquids with polar solvent	
rhol	1086.08	kg/m3	308.15	Effect of anion variation on the thermophysical properties of triethylammonium based protic ionic liquids with polar solvent	
rhol	1092.41	kg/m3	303.15	Effect of anion variation on the thermophysical properties of triethylammonium based protic ionic liquids with polar solvent	

rhol	1095.37	kg/m3	298.15	Effect of anion variation on the thermophysical properties of triethylammonium based protic ionic liquids with polar solvent
rhol	1090.45	kg/m3	303.15	Excess molar enthalpies and heat capacities of dimethyl sulfoxide + seven normal alkanols at 303.15K and atmospheric pressure
rhol	1095.34	kg/m3	298.15	Liquid-liquid equilibria and density data for pseudoternary systems of refined soybean oil + (hexanal, or heptanal, or butyric acid, or valeric acid, or caproic acid, or caprylic acid) + dimethyl sulfoxide at 298.15 K
rhol	1085.39	kg/m3	308.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	1090.40	kg/m3	303.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	1095.42	kg/m3	298.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents
rhol	1100.43	kg/m3	293.15	Thermodynamic evidence for nano-heterogeneity in solutions of the macrocycle C-butylresorcin[4]arene in non-aqueous solvents

rhol	1080.29	kg/m3	313.15	Temperature and composition dependence of the volumetric and acoustic properties of ionic liquid [emim][HSO4] with polar protic and aprotic co-solvents	
rhol	1085.31	kg/m3	308.15	Temperature and composition dependence of the volumetric and acoustic properties of ionic liquid [emim][HSO4] with polar protic and aprotic co-solvents	
rhol	1090.32	kg/m3	303.15	Temperature and composition dependence of the volumetric and acoustic properties of ionic liquid [emim][HSO4] with polar protic and aprotic co-solvents	
rhol	1095.33	kg/m3	298.15	Temperature and composition dependence of the volumetric and acoustic properties of ionic liquid [emim][HSO4] with polar protic and aprotic co-solvents	
rhol	1095.00	kg/m3	298.15	Volumetric, acoustic and transport properties of mixtures containing dimethyl sulfoxide and some amines or alkanolamines: Measurement and correlation	

rhol	1070.00	kg/m3	323.15	Volumetric, acoustic and transport properties of mixtures containing dimethyl sulfoxide and some amines or alkanolamines: Measurement and correlation	
rhol	1080.00	kg/m3	313.15	Volumetric, acoustic and transport properties of mixtures containing dimethyl sulfoxide and some amines or alkanolamines: Measurement and correlation	
rhol	1090.00	kg/m3	303.15	Volumetric, acoustic and transport properties of mixtures containing dimethyl sulfoxide and some amines or alkanolamines: Measurement and correlation	
rhol	1100.00	kg/m3	293.15	Volumetric, acoustic and transport properties of mixtures containing dimethyl sulfoxide and some amines or alkanolamines: Measurement and correlation	
rhol	1040.33	kg/m3	353.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	
rhol	1045.34	kg/m3	348.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride	

rhol	1050.35	kg/m3	343.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride
rhol	1055.34	kg/m3	338.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride
rhol	1095.39	kg/m3	298.15	Apparent molar volumes and isentropic compressions of benzylalkylammonium ionic liquids in dimethylsulfoxide from 293.15 K to 328.15 K
rhol	1065.33	kg/m3	328.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride
rhol	1070.32	kg/m3	323.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride
rhol	1075.31	kg/m3	318.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride
rhol	1080.30	kg/m3	313.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride
rhol	1085.28	kg/m3	308.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride

rhol	1090.29	kg/m3	303.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride
rhol	1080.00	kg/m3	313.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures
rhol	1090.00	kg/m3	303.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures
rhol	1100.00	kg/m3	293.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures
rhol	1080.20	kg/m3	313.15	Excess molar volume and viscosity deviation for binary mixtures of gamma-butyrolactone with dimethyl sulfoxide
rhol	1090.20	kg/m3	303.15	Excess molar volume and viscosity deviation for binary mixtures of gamma-butyrolactone with dimethyl sulfoxide

rhol	1095.20	kg/m3	298.15 Excess molar volume and viscosity deviation for binary mixtures of gamma-butyrolactone with dimethyl sulfoxide
rhol	1100.20	kg/m3	293.15 Excess molar volume and viscosity deviation for binary mixtures of gamma-butyrolactone with dimethyl sulfoxide
rhol	1065.14	kg/m3	328.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	1075.18	kg/m3	318.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	1080.20	kg/m3	313.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	1019.80	kg/m3	373.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate

rhol	1085.23	kg/m3	308.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	1090.24	kg/m3	303.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	1095.25	kg/m3	298.15 Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide A volumetric and acoustic study
rhol	1075.21	kg/m3	318.15 Solvation of ionic liquids based on N-methyl-N-alkyl morpholinium cations in dimethylsulfoxide - volumetric and compressibility studies
rhol	1080.22	kg/m3	313.15 Solvation of ionic liquids based on N-methyl-N-alkyl morpholinium cations in dimethylsulfoxide - volumetric and compressibility studies
rhol	1085.24	kg/m3	308.15 Solvation of ionic liquids based on N-methyl-N-alkyl morpholinium cations in dimethylsulfoxide - volumetric and compressibility studies
rhol	1090.26	kg/m3	303.15 Solvation of ionic liquids based on N-methyl-N-alkyl morpholinium cations in dimethylsulfoxide - volumetric and compressibility studies

rhol	1095.28	kg/m3	298.15	Solvation of ionic	
				liquids based on N-methyl-N-alkyl morpholinium cations in dimethylsulfoxide - volumetric and compressibility studies	
rhol	1096.00	kg/m3	298.15	Probing subsistence of ion-pair and triple-ion of an ionic salt in liquid environments by means of conductometric contrivance	
rhol	1085.39	kg/m3	308.15	Thermodynamic properties of binary mixtures of the ionic liquid [emim][BF4] with acetone and dimethylsulphoxide	
rhol	1090.41	kg/m3	303.15	Thermodynamic properties of binary mixtures of the ionic liquid [emim][BF4] with acetone and dimethylsulphoxide	
rhol	1095.42	kg/m3	298.15	Thermodynamic properties of binary mixtures of the ionic liquid [emim][BF4] with acetone and dimethylsulphoxide	
rhol	1100.43	kg/m3	293.15	Thermodynamic properties of binary mixtures of the ionic liquid [emim][BF4] with acetone and dimethylsulphoxide	
rhol	1081.43	kg/m3	313.15	Influence of anion on thermophysical properties of ionic liquids with polar solvent	
rhol	1086.06	kg/m3	308.15	Influence of anion on thermophysical properties of ionic liquids with polar solvent	

rhol	1092.41	kg/m3	303.15	Influence of anion on thermophysical properties of ionic liquids with polar solvent	
rhol	1095.37	kg/m3	298.15	Influence of anion on thermophysical properties of ionic liquids with polar solvent	
rhol	1076.30	kg/m3	318.15	Thermophysical and excess properties of hydroxamic acids in DMSO	
rhol	1080.20	kg/m3	313.15	Thermophysical and excess properties of hydroxamic acids in DMSO	
rhol	1085.20	kg/m3	308.15	Thermophysical and excess properties of hydroxamic acids in DMSO	
rhol	1090.30	kg/m3	303.15	Thermophysical and excess properties of hydroxamic acids in DMSO	
rhol	1096.50	kg/m3	298.15	Thermophysical and excess properties of hydroxamic acids in DMSO	
rhol	1096.02	kg/m3	298.15	Physics and chemistry of an ionic liquid in some industrially important solvent media probed by physicochemical techniques	
rhol	1030.43	kg/m3	363.15	Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K	
rhol	1040.54	kg/m3	353.14	Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K	

rhol	1050.62	kg/m3	343.14	Volumetric	
		gs		properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K	
rhol	1060.68	kg/m3	333.15	Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K	
rhol	1070.73	kg/m3	323.14	Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K	
rhol	1080.77	kg/m3	313.14	Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K	
rhol	1090.81	kg/m3	303.15	Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K	
rhol	1100.87	kg/m3	293.14	Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K	
rhol	1060.03	kg/m3	333.15 trit	Apparent molar volumes and compressibilities of lanthanum, gadolinium and lutetium fluoromethanesulfona in dimethylsulfoxide	ates

rhol	1070.07	kg/m3	323.15 t	Apparent molar volumes and compressibilities of lanthanum, gadolinium and lutetium rifluoromethanesulfonates in dimethylsulfoxide
rhol	1080.12	kg/m3	313.15 t	Apparent molar volumes and compressibilities of lanthanum, gadolinium and lutetium rifluoromethanesulfonates in dimethylsulfoxide
rhol	1090.16	kg/m3	303.15 t	Apparent molar volumes and compressibilities of lanthanum, gadolinium and lutetium rifluoromethanesulfonates in dimethylsulfoxide
rhol	1095.19	kg/m3	298.15 t	Apparent molar volumes and compressibilities of lanthanum, gadolinium and lutetium rifluoromethanesulfonates in dimethylsulfoxide
rhol	1100.22	kg/m3	293.15 t	Apparent molar volumes and compressibilities of lanthanum, gadolinium and lutetium rifluoromethanesulfonates in dimethylsulfoxide
rhol	1095.32	kg/m3	298.15	Excess molar enthalpies of binary systems containing 2-octanone, hexanoic acid, or octanoic acid at T = 298.15 K
rhol	1095.37	kg/m3	298.15	Excess molar volumes and ultrasonic studies of dimethylsulphoxide with ketones at T = 303.15 K

rhol	1095.27	kg/m3	298.15 Volumetric and compressibility behaviour of ionic liquid, 1-n-butyl-3-methylimidazolium hexafluorophosphate and tetrabutylammonium hexafluorophosphate in organic solvents at T = 298.15 K
rhol	1100.40	kg/m3	Volumetric properties of binary mixtures of (water + organic solvents) at temperatures between T = 288.15 K and T = 303.15 K at p = 0.1 MPa
rhol	1065.26	kg/m3	328.15 Apparent molar volumes and isentropic compressions of benzylalkylammonium ionic liquids in dimethylsulfoxide from 293.15 K to 328.15 K
rhol	1070.29	kg/m3	323.15 Apparent molar volumes and isentropic compressions of benzylalkylammonium ionic liquids in dimethylsulfoxide from 293.15 K to 328.15 K
rhol	1029.90	kg/m3	363.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate
rhol	1040.20	kg/m3	353.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate

rhol	1050.20	kg/m3	343.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate
rhol	1060.30	kg/m3	333.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate
rhol	1070.20	kg/m3	323.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate
rhol	1080.40	kg/m3	313.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate
rhol	1090.20	kg/m3	303.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate

rhol	1100.20	kg/m3	293.15 Density and Melting Points for the Binary Mixtures Dimethyl Sulfoxide (DMSO) + 1-Ethyl-3-methylimidazolium Acetate and DMSO + Choline Acetate
rhol	1095.27	kg/m3	298.15 Volumetric Properties of the Ionic Liquid, 1-Butyl-3-methylimidazolium Tetrafluoroborate, in Organic Solvents at T = 298.15 K
rhol	1095.40	kg/m3	298.15 Isobaric Vapor-Liquid Equilibrium for Binary and Ternary Systems of 2-Methoxyethanol, Ethylbenzene, and Dimethyl Sulfoxide at 100.00 kPa
rhol	1021.40	kg/m3	373.15 Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with 1-Ethyl-3-methylimidazolium Diethylphosphate [EtMeIm]+[Et2PO4]- at Atmospheric Pressure
rhol	1031.30	kg/m3	363.15 Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with 1-Ethyl-3-methylimidazolium Diethylphosphate [EtMelm]+[Et2PO4]- at Atmospheric Pressure

rhol	1041.10	kg/m3	353.15 Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with 1-Ethyl-3-methylimidazolium Diethylphosphate [EtMeIm]+[Et2PO4]- at Atmospheric Pressure
rhol	1051.30	kg/m3	343.15 Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with 1-Ethyl-3-methylimidazolium Diethylphosphate [EtMeIm]+[Et2PO4]- at Atmospheric Pressure
rhol	1061.20	kg/m3	333.15 Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with 1-Ethyl-3-methylimidazolium Diethylphosphate [EtMeIm]+[Et2PO4]- at Atmospheric Pressure
rhol	1075.31	kg/m3	318.15 Apparent molar volumes and isentropic compressions of benzylalkylammonium ionic liquids in dimethylsulfoxide from 293.15 K to 328.15 K
rhol	1080.33	kg/m3	313.15 Apparent molar volumes and isentropic compressions of benzylalkylammonium ionic liquids in dimethylsulfoxide from 293.15 K to 328.15 K
rhol	1085.35	kg/m3	308.15 Apparent molar volumes and isentropic compressions of benzylalkylammonium ionic liquids in dimethylsulfoxide from 293.15 K to 328.15 K

rhol	1090.37	kg/m3	303.15	Apparent molar volumes and isentropic compressions of benzylalkylammonium ionic liquids in dimethylsulfoxide from 293.15 K to 328.15 K
rhol	1060.34	kg/m3	333.15	Effect of organic solvents on lowering the viscosity of 1-hexyl-3- methylimidazolium chloride
rhol	1100.41	kg/m3	293.15	Apparent molar volumes and isentropic compressions of benzylalkylammonium ionic liquids in dimethylsulfoxide from 293.15 K to 328.15 K
rhol	1100.42	kg/m3	293.15	Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium-Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar
sdco	0.00	m2/s	298.29	Viscous Calibration Liquids for Self-diffusion Measurements
sdco	0.00	m2/s	298.26	Viscous Calibration Liquids for Self-diffusion Measurements
sdco	0.00	m2/s	293.09	Viscous Calibration Liquids for Self-diffusion Measurements
sdco	0.00	m2/s	363.71	Viscous Calibration Liquids for Self-diffusion Measurements
sdco	0.00	m2/s	348.17	Viscous Calibration Liquids for Self-diffusion Measurements

sdco	0.00	m2/s	338.12 Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	318.03 Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	328.10 Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	308.10 Viscous Calibration Liquids for Self-diffusion Measurements	
sfust	49.26	J/mol×K	291.67 NIST Webbook	
speedsl	1484.12	m/s	298.15 Adiabatic Compressibilities of Divalent Transition-Metal Perchlorates and Chlorides in N,N-Dimethylacetamide and Dimethylsulfoxide	
speedsl	1519.12	m/s	288.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K	
speedsl	1502.19	m/s	293.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K	

speedsl	1485.21	m/s	298.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
speedsl	1468.32	m/s	303.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
speedsl	1451.47	m/s	308.15 Volumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K
srf	0.04	N/m	303.15 Surface and bulk behavior of (dialkylsulfoxides + carbon tetrachloride) mixtures
srf	0.04	N/m	298.15 Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols

srf	0.04	N/m	308.15	Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols	
srf	0.04	N/m	318.15	Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols	
srf	0.04	N/m	328.15	Surface Tension and Refractive Index of Dialkylsulfoxide + Water Mixtures at Several Temperatures	
srf	0.04	N/m	328.15	Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols	
srf	0.04	N/m	303.15	Surface Tension and Refractive Index of Dialkylsulfoxide + Water Mixtures at Several Temperatures	
srf	0.04	N/m	308.15	Surface Tension and Refractive Index of Dialkylsulfoxide + Water Mixtures at Several Temperatures	
srf	0.04	N/m	313.15	Surface Tension and Refractive Index of Dialkylsulfoxide + Water Mixtures at Several Temperatures	

srf	0.04	N/m	318.15	Surface Tension and Refractive Index of Dialkylsulfoxide + Water Mixtures at Several Temperatures	
srf	0.04	N/m	298.15	Surface and bulk behavior of (dialkylsulfoxides + carbon tetrachloride) mixtures	
srf	0.04	N/m	323.15	Surface Tension and Refractive Index of Dialkylsulfoxide + Water Mixtures at Several Temperatures	
srf	0.04	N/m	308.15	Surface and bulk behavior of (dialkylsulfoxides + carbon tetrachloride) mixtures	
srf	0.04	N/m	313.15	Surface and bulk behavior of (dialkylsulfoxides + carbon tetrachloride) mixtures	
srf	0.04	N/m	293.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	
srf	0.04	N/m	298.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	
srf	0.04	N/m	303.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	

srf	0.04	N/m	308.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	
srf	0.04	N/m	313.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	
srf	0.04	N/m	288.15	Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures	
srf	0.04	N/m	298.15	Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures	
srf	0.04	N/m	308.15	Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures	
srf	0.04	N/m	318.15	Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures	

srf	0.04	N/m	328.15	Study of surface tension and surface properties of binary systems of DMSO with long chain alcohols at various temperatures	
srf	0.04	N/m	298.15	Equilibrium surface tension and the interaction energy of DMSO with tert-butyl alcohol or iso-amyl alcohol at various temperatures	
srf	0.04	N/m	308.15	Equilibrium surface tension and the interaction energy of DMSO with tert-butyl alcohol or iso-amyl alcohol at various temperatures	
srf	0.04	N/m	318.15	Equilibrium surface tension and the interaction energy of DMSO with tert-butyl alcohol or iso-amyl alcohol at various temperatures	
srf	0.04	N/m	328.15	Equilibrium surface tension and the interaction energy of DMSO with tert-butyl alcohol or iso-amyl alcohol at various temperatures	
srf	0.04	N/m	298.15	Surface Tension and Refractive Index of Dialkylsulfoxide + Water Mixtures at Several Temperatures	

tcondl	0.18	W/m×K	339.35	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	
tcondl	0.18	W/m×K	334.49	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	
tcondl	0.18	W/m×K	329.31	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	
tcondl	0.18	W/m×K	324.37	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	
tcondl	0.18	W/m×K	314.33	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	
tcondl	0.18	W/m×K	309.47	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	

tcondl	0.18	W/m×K	304.64	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	
tcondl	0.19	W/m×K	299.84	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	
tcondl	0.19	W/m×K	294.83	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	
tcondl	0.18	W/m×K	319.33	Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbp	462.19	К	95.30	Excess enthalpies of dimethylsulfoxide with substituted benzenes at 298.15K

tbp 461.55 K 96.60

Low cost apparatus for rapid boiling point determination of small air sensitive samples under inert atmosphere

Correlations

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	4.67806e+01
Coeff. B	-7.52281e+03
Coeff. C	-4.21562e+00
Coeff. D	-2.45086e-07
Temperature range (K), min.	291.67
Temperature range (K), max.	519.15

Datasets

Viscosity, Pa*s

Pressure, kPa - Liquid	Temperature, K - Liquid	Viscosity, Pa*s - Liquid
101.00	303.15	0.0018030
Reference		https://www.doi.org/10.1016/j.jct.2006.04.005

Refractive index (Na D-line)

Pressure, kPa - Liquid	Temperature, K - Liquid	Refractive index (Na D-line) - Liquid
85.90	298.15	1.4762

Pressure, kPa	Temperature, K	Refractive index (Na D-line)
81.50	298.15	1.4767

Reference

https://www.doi.org/10.1021/je700645p

Mass density, kg/m3

Pressure, kPa - Liquid Temperature, K - Liquid Mass density, kg/m3 - Liquid

85.90 298.15 1095.29

Reference

https://www.doi.org/10.1016/j.fluid.2013.05.001

Sources

organic solvents: Experimental measurement and thermodynamic

modelling:

Determination of density, viscosity and https://www.doi.org/10.1016/j.jct.2018.04.014 vapor pressures of mixtures of https://www.doi.org/10.1016/j.jct.2012.09.003 Bhysinspandfolyamistry of an ionic irulidi is somo industrially insportant at sances medas substalias of binary systemeras industrial somo of binary systemeras industrial somo of the some negative repair somo of the some https://www.doi.org/10.1016/j.jct.2011.07.018 https://www.doi.org/10.1021/je1010720
sq.colvent mixtures of statistic and statistic a https://www.doi.org/10.1021/je101072d https://www.doi.org/10.1021/acs.jced.5b00033 https://www.doi.org/10.1016/j.fluid.2013.05.001 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1859 # 15 watemperatisies in Metal Ions in Methanol and Dimethylsulfoxide: https://www.doi.org/10.1021/je060133l Solubilities of Luteolin in Organic
Solubilities of Luteolin in Organic
Solubility a minimal word of the fatures:
Acetamiprid in Thirteen Pure Solvents
YARY Chiawid Solubility of the Armary
System Acetonitrile + 1-Propanol +
The modern minimal Solubility and Mixing https://www.doi.org/10.1021/acs.jced.9b00294 https://www.doi.org/10.1021/je100033s Dhaemodyเลยเอ่เลออยหม่ให่yeand Mixing https://www.doi.org/10.1021/acs.jced.9b00844 Expression of Dremfory by steins Pair 101.3

Self of the state of the https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1859 https://www.doi.org/10.1016/j.jct.2018.09.017

```
Experimental isobaric vapor-liquid
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.fluid.2015.07.029
     Experimental isobatic vapor-liquid equilibrium for the ternary system of Solvanian action and information of the ternary system of Solvanian action and the solvents: basemala to the solvent action and the solvent action and the solvent action and the solvent action at the solvent action of the solvent action a
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/acs.jced.9b00258
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.fluid.2008.09.010
thtps://www.doi.org/10.1021/acs.jced.8b00326
bttps://www.doi.org/10.1021/acs.jced.8b00326
bttps://www.doi.org/10.1021/acs.jced.8b00326
bttps://www.doi.org/10.1021/acs.jced.8b00326
bttps://www.doi.org/10.1021/acs.jced.8b00326
bttps://www.doi.org/10.1021/acs.jced.8b00326
bttps://www.doi.org/10.1021/acs.jced.8b00326
bttps://www.doi.org/10.1021/acs.jced.8b00326
bttps://www.doi.org/10.1016/j.jct.2019.04.001
bttps://www.doi.org/10.1016/j.jct.2019.04.001
bttps://www.doi.org/10.1016/j.jct.2019.04.001
bttps://www.doi.org/10.1016/j.jct.2019.04.001
bttps://www.doi.org/10.1016/j.jct.2019.04.001
bttps://www.doi.org/10.1016/j.jct.2019.04.001
bttps://www.doi.org/10.1016/j.jct.2019.04.001
bttps://www.doi.org/10.1016/j.jct.2019.04.001
bttps://www.doi.org/10.1016/j.jct.2019.04.001
bttps://www.doi.org/10.1016/j.jct.2019.04.004
bttps://www.doi.org/10.1016/j.jct.2019.05.005
bttps://www.doi.org/10.1016/j.jct.2019.05.005
bttps://www.doi.org/10.1016/j.jct.2019.05.005
bttps://www.doi.org/10.1016/j.
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/acs.jced.8b00326
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/acs.jced.5b00655
         Menavioano ristores Sagrelation of the
                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2015.08.014
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.fluid.2010.01.002
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.fluid.2016.08.033
                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.fluid.2018.05.029
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.fluid.2007.07.070
     Mixtures no leganous Langue and the leganous Langue and the leganous Langue and the leganous langue and leganous langue and leganous langue and leganous langue and leganous of langue and leganous langue and
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/je030115t
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/je500696p
                                                                                                                                                                                                                                                                                             http://webbook.nist.gov/cgi/cbook.cgi?ID=C67685&Units=SI
      Bis(trifluoromethylsulfonyl)imide with
Bis(trifluoromethylsulfonyl)imide with
Bis(trifluoromethylsulfes for Binary
Withing of mamide
LBase ប៉ូរមានពីទាំងងាន់នៅរៀសlar Heat
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/je101206u
  Exerce Martininal lead who lar Heat Coparition Densitional Measure of Superide Martininal lead of Superide Martine Measure of Superide Measure of Mea
                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/je050444g
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/je100030j
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/acs.jced.8b00225
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/acs.jced.8b00684
                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.jct.2019.05.007
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2019.06.025
                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1007/s10765-008-0395-z
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2005.07.012
                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2006.10.016
                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/acs.jced.6b00660
      B28 repklene Glycol Monomethyl Ether
```

+ Dimethyl Sulfoxide System:

```
FT-IR spectroscopic study of
  FT-IR spectroscopic study of Hamming Conglement of the Social and Committee Social and Commit
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2012.06.020
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/je300316a
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/je6005357
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.jct.2018.03.007
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/acs.jced.7b00241
                                                                                                                                                                                                                                                                                                                                                 https://www.chemeo.com/doc/models/crippen_log10ws
     Dimethyl Sulfoxide at 101.3 kPa:
Volumetric, ultrasonic and viscometric
                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.jct.2006.04.005
  volumetric, ultrasonic and viscometric studies of binary mixtures of dimethyl stiffertoxide what sulfoxide was a sulfation of the sulfation of
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.jct.2016.06.004
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.jct.2005.03.015
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2015.06.047
                                                                                                                                                                                                                                                                                                                                                  https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1859
    glycol + dimethyl sulfoxide:
Surface Tension and Refractive Index
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je7001013
  of Dialkylsulfoxide + Water Mixtures at Severapire Pairwing leteractions of Isomers of 2,4-pentanediol and
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.tca.2012.02.004
     Prohing medica ular interaction confidence
                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.tca.2013.02.022
  P.5-herg neelegular interactions of conicionic liquid in incluss rial boar gortant solvents by wheth soft derivation manuscriptions of the problem of the pr
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.jct.2018.05.011
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/je800138b
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/acs.jced.9b00396
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/je034007i
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/acs.jced.7b01108
The straining Different https://www.doi.org/10.1021/je5004466
1,1'-[1,2-Ethanediylbis(oxy-1,2-ethanediyl)]bis-[3-methyl-1H-imidazolium-1-yl]

Different https://www.doi.org/10.1021/je030122h

Different https://www.doi.org/10.1021/je030122h

Different https://www.doi.org/10.1021/je030122h

Different https://www.doi.org/10.1016/j.jct.2019.03

Different https://www.doi.org/10.1021/je2002607

Different https://www.doi.org/10.1021/je2002607

Different https://www.doi.org/10.1021/je2002607

Different https://www.doi.org/10.1021/je2002607

Different https://www.doi.org/10.1021/je2002607

Different https://www.doi.org/10.1016/j.jct.2019.03

Different https://www.doi.or
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2019.03.004
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.5b00246
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.jct.2013.02.021
    [BMIm][NTf2] or [EMIm][NTf2] binary solvenies of letary avalant in Various Experimental in Various Constitution of the Constitutio
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.6b00009
https://www.doi.org/10.1016/j.jct.2011.05.034

https://www.doi.org/10.1016/j.jct.2011.05.034

https://www.doi.org/10.1016/j.jct.2011.05.034

https://www.doi.org/10.1021/je800991v

https://www.doi.org/10.1021/je800991v

https://www.doi.org/10.1021/je3007474

https://www.doi.org/10.1016/j.jct.2019.105882

https://www.doi.org/10.1016/j.jct.2019.105882

https://www.doi.org/10.1016/j.jct.2010.03.009

ht
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2011.05.034
 Figure 30 of the sent of the property of the p
                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je4010678
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je900022k
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je600557n
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/je100089s
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.jct.2004.07.024
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.fluid.2012.02.013
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/acs.jced.7b00429
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.7b00316
                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/acs.jced.8b01126
```

https://www.doi.org/10.1016/j.tca.2014.11.010

Conductometric, refractometric and

299 PET 15 S2 19 PET 16 P = 0.1 MPa:

Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, aingethylswiphoxica) bingeranixtures: Selybility Pata for Hollumilast and Maraviroc in Various Solvents between Faces Bridge Solvents between traces of dimethylsulphoxide with Remailies of dimethylsulphoxide with Remailies of Some Acetate Salts in Binary Manneride Religious Adultibries (1997) Mormesidane Rahubilisuina Agwepus
Nearly entalvisus es of 13.15, and 323.15)
November al visus es of 13.15, and 323.15)
November al visus es of 13.15, and 323.15)
November al visus entalpes entalpoic
Visar entalpe al visus entalpes entalpoic
Visar entalpes entalpes entalpoic
Visar entalpes entalpes entalpes entalpes
Behaviores entalpes entalpes
Behaviores enta pormer en bitter of selectes:
eigetor de hallen de son de la company
Systems Sulfide + Octane + Solvents at
bitter de la consellation of the solubility of 4,4'-oxydianiline in behavior of nonaqueous tertalnythodican i aim displacemente, disperence and control of the control of th Equilibriture-Solvenitumenteregenem in Briteremenentertered Ritery Spanents: British Charles Ritery Spanents: British Charles Ritery British Charles Woodel Conventer Ritery Rite solvation of adenine in solvent The most of addition in Solvent in the most of the mos Carbazochrome in Solvent Mixtures of Equiphrium, sol halith definition in a construction of the constructi Modeling, and Solvent Effect Analysis:

https://www.doi.org/10.1021/acs.jced.6b00833 And by dentity and be seast yief (water + https://www.doi.org/10.1016/j.jct.2006.12.012 https://www.doi.org/10.1021/acs.jced.9b00710 https://www.doi.org/10.1016/j.jct.2007.08.006 https://www.doi.org/10.1021/je060113j https://www.doi.org/10.1021/acs.jced.9b00216 https://www.doi.org/10.1007/s10765-009-0648-5 https://www.doi.org/10.1021/acs.jced.8b00043 https://www.doi.org/10.1016/j.jct.2005.07.018 https://www.doi.org/10.1016/j.jct.2016.05.003 https://www.doi.org/10.1016/j.fluid.2011.02.002 https://www.doi.org/10.1016/j.tca.2011.08.013 BANDETIFITY IN SIZE PROJUDIES SOLUTIONS AT https://www.doi.org/10.1016/j.jct.2010.07.003 https://www.doi.org/10.1021/je800340v https://www.doi.org/10.1016/j.fluid.2013.07.010 https://www.doi.org/10.1016/j.jct.2013.04.022 https://www.doi.org/10.1016/j.jct.2007.06.010 https://www.doi.org/10.1016/j.fluid.2007.07.020 https://www.doi.org/10.1021/acs.jced.5b00981 https://www.doi.org/10.1021/je7006956 https://www.doi.org/10.1016/j.jct.2013.03.018 https://www.doi.org/10.1016/j.jct.2008.05.012 https://www.doi.org/10.1016/j.jct.2006.01.007 https://www.doi.org/10.1021/je300017m https://www.doi.org/10.1016/j.jct.2019.01.013 https://www.doi.org/10.1021/acs.jced.8b01051 https://www.doi.org/10.1021/acs.jced.5b00201 https://www.doi.org/10.1021/je500787x https://www.doi.org/10.1016/j.jct.2009.06.021 https://www.doi.org/10.1021/je101353r https://www.doi.org/10.1021/acs.jced.9b00229 **Equility Caterin in the most in the properties and preferential solvents and preferential solv https://www.doi.org/10.1016/j.jct.2012.10.022 https://www.doi.org/10.1021/acs.jced.7b00982 https://www.doi.org/10.1016/j.jct.2018.12.045 https://www.doi.org/10.1021/acs.jced.9b00659 https://www.doi.org/10.1021/acs.jced.9b00320

The Dependence of Temperature and Composition on the Equilibrium bolicy and Titurid equilibrium stories https://www.doi.org/10.1016/j.fluid.2014.04.025 https://www.doi.org/10.1016/j.fluid.2014.04.025 https://www.doi.org/10.1016/j.tca.2013.02.002 https://www.doi.org/10.1016/j.tca.2013.02.002 https://www.doi.org/10.1021/je8003673 https://www.doi.org/10.1007/s10765-005-8102-9 https://www.doi.org/10.1007/s1076 WRASHIED SON AND THE Properties of Binary Mixtures of Dimethylsulphoxide (SMSD) twen 1-Alkanols (C4, C6, C7) at a special properties of Dimethylsulphoxide (SMSD) twen 1-Alkanols (C4, C6, C7) at a special properties of Dimethylsulphoxide (C4, C6, C7) at a special properties of ដែកមិនចំពេញ for binary mixtures of មិនម៉ាងកំណើង binary mixtures of មិនម៉ាងកំណើង binary mixtures of មិនម៉ាងកំណើង binary mixtures of មិនម៉ាងកំណើង binary mixtures of levamisole មិនម៉ាងម៉ាងកំណើង binary binar Transition-Metal Perchlorates and vigorations and barrantian minutes of Divalent Transition-Metal Perchlorates and vigoration-Metal Perchlorat twere Negles in a parties of dimethyl sulfoxide + seven in a parties of dimethyl sulfoxide + seven in a parties of dimethyl sulfoxide + seven in a parties i sulfoxide + seven in a parties i sulfoxide binary system negles i sulfoxide a parties point is in a parties of the maintly and interposity sulfoxide is in a parties of the sulfoxide in a parties of the sulfoxide with surface in the sulfoxide with surfaces from a parties of dimethyl sulfoxide with surfaces from a parties of dimethyl sulfoxide + Three hother the sulfoxide + Th Densities, viscosities and Retractive foolided the Definethyl Sulfoxide + Three A.A.H.(Riconame ละ3งเหมืองเครื่องเทา idinium) ครั้งเครื่องครั้งเหมืองเครื่องครั้งเหมืองเกมีบริเทศ เกมีบริเทศ เกม เกมีบริเทศ เกม understand the nature of molecular intermediansania swidening factor niter actions and structural factor pawels from the same and interpretations of the pawels for the first of the factor of the fa With light which say which strains and in selected pure spaint should be selected pure solvent MAGDIMANTO PRIA mide + Water from (301.4 to 373.7) K: Thermodynamic properties of binary mixtures of the ionic liquid [emim][BF4] with acetone and dimethylsulphoxide:

https://www.doi.org/10.1021/acs.jced.8b00732 https://www.doi.org/10.1007/s10765-005-8102-9 https://www.doi.org/10.1016/j.fluid.2017.12.035 https://www.doi.org/10.1021/acs.jced.9b00560 https://www.doi.org/10.1016/j.jct.2018.11.026 https://www.doi.org/10.1016/j.jct.2017.02.009 https://www.doi.org/10.1016/j.tca.2019.178375 https://www.doi.org/10.1021/je301171y https://www.doi.org/10.1016/j.jct.2016.09.023 https://www.doi.org/10.1021/acs.jced.8b01014 https://www.doi.org/10.1016/j.jct.2017.04.019 https://www.doi.org/10.1021/acs.jced.9b00065 https://www.doi.org/10.1016/j.tca.2006.10.025 https://www.doi.org/10.1016/j.fluid.2015.09.039 https://www.doi.org/10.1021/acs.jced.7b00788 https://www.doi.org/10.1021/je900386p https://www.doi.org/10.1021/acs.jced.7b00002 https://www.doi.org/10.1021/acs.jced.5b00627 https://www.doi.org/10.1016/j.jct.2017.06.008 https://www.doi.org/10.1016/j.jct.2018.06.006 https://www.doi.org/10.1016/j.fluid.2017.12.034 https://www.doi.org/10.1016/j.jct.2013.04.009 https://www.doi.org/10.1016/j.fluid.2015.01.012 https://www.doi.org/10.1021/je100369a https://www.doi.org/10.1016/j.fluid.2013.09.026 https://www.doi.org/10.1021/je049577c http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1016/j.jct.2013.01.010

Thermophysical properties of dimethyl https://www.doi.org/10.1016/j.tca.2006.05.010 sulfoxide + cyclic and linear ethers at two substitutions and substitution https://www.doi.org/10.1021/je4006739 https://www.doi.org/10.1016/j.tca.2007.08.008 https://www.doi.org/10.1016/j.jct.2014.12.014 Hig win or lighted heg will be in 150 (benzene + cyclohexane + dimethyl sulfoxide)

Excess Enthalizies of (6/13/0/15/) (CN, n

Experimentalizies of (6/13/0/ Militures of with the land with a sociation constitute in the second of the constitution of the constituti Tompiessions of being particular in the provided in the provid https://www.doi.org/10.1016/j.tca.2017.05.005 https://www.doi.org/10.1016/j.jct.2009.03.005 Methanol, Ethanol, and Dimethyl Sqltbility:in Different Solvents, Correlation, and Solvent Effect in the Sqlvibility:in Different Solvents, Correlation, and Solvent Effect in the Sqlvibility staffaction process dense interestion energy of DMSO with the state of the square process of DMSO with the state of the square process of t https://www.doi.org/10.1021/acs.jced.8b01101 https://www.doi.org/10.1016/j.jct.2014.06.005 https://www.doi.org/10.1021/je400199m https://www.doi.org/10.1021/acs.jced.5b00209 https://www.doi.org/10.1016/j.jct.2018.02.002 https://www.doi.org/10.1016/j.jct.2017.07.016 https://www.doi.org/10.1021/acs.jced.9b00275 https://www.doi.org/10.1021/acs.jced.8b01265 https://www.doi.org/10.1021/acs.jced.9b00432 https://www.doi.org/10.1016/j.jct.2012.11.014

Legend

affp: Proton affinity **basg:** Gas basicity

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacitycpl: Liquid phase heat capacity

dvisc: Dynamic viscosity
ea: Electron affinity

econd: Electrical conductivity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating
nfpah: NFPA Health Rating
pc: Critical Pressure
pvap: Vapor pressure
rfi: Refractive Index
rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices sdco: Self diffusion coefficient

sfust: Entropy of fusion at a given temperature

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

tb: Normal Boiling Point Temperaturetbp: Boiling point at given pressure

tc: Critical Temperature

tcondl: Liquid thermal conductivitytf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/53-580-9/Dimethyl-Sulfoxide.pdf

Generated by Cheméo on 2025-12-23 18:13:10.180006901 +0000 UTC m=+6261787.710047556.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.	