Urea, methyl-

Other names: 1-Methylurea

CH3NHCONH2 Methylmocovina Methylurea

Monomethylurea N-Methylurea methyl carbamide urea, monomethyl-

InChl=1S/C2H6N2O/c1-4-2(3)5/h1H3,(H3,3,4,5)

InchiKey: XGEGHDBEHXKFPX-UHFFFAOYSA-N

Formula: C2H6N2O SMILES: CNC(N)=O Mol. weight [g/mol]: 74.08 CAS: 598-50-5

Physical Properties

Property code	Value	Unit	Source
chs	-1316.80 ± 1.40	kJ/mol	NIST Webbook
chs	-1311.74 ± 0.69	kJ/mol	NIST Webbook
gf	-7.12	kJ/mol	Joback Method
hf	-233.50 ± 1.00	kJ/mol	NIST Webbook
hf	-235.68 ± 0.85	kJ/mol	NIST Webbook
hfs	-327.80 ± 1.40	kJ/mol	NIST Webbook
hfs	-332.78 ± 0.75	kJ/mol	NIST Webbook
hfus	12.74	kJ/mol	Measurement of enthalpy curves of phase change materials via DSC and T-History: When are both methods needed to estimate the behaviour of the bulk material in applications?
hsub	97.10 ± 0.40	kJ/mol	NIST Webbook
hsub	95.50 ± 0.50	kJ/mol	NIST Webbook
hsub	97.10 ± 0.40	kJ/mol	NIST Webbook
hvap	43.87	kJ/mol	Joback Method
ie	9.73 ± 0.05	eV	NIST Webbook
ie	9.66	eV	NIST Webbook

log10ws	1.13		Aqueous Solubility Prediction Method
logp	-0.715		Crippen Method
mcvol	60.570	ml/mol	McGowan Method
рс	6132.23	kPa	Joback Method
SS	138.02	J/mol×K	NIST Webbook
tb	421.73	K	Joback Method
tc	624.80	K	Joback Method
tf	375.30 ± 0.10	K	NIST Webbook
tf	373.80 ± 0.50	K	NIST Webbook
tt	378.00 ± 0.00	K	NIST Webbook
tt	375.00 ± 0.20	K	NIST Webbook
VC	0.217	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	115.61	J/mol×K	421.73	Joback Method
cpg	127.47	J/mol×K	489.42	Joback Method
cpg	132.99	J/mol×K	523.27	Joback Method
cpg	138.23	J/mol×K	557.11	Joback Method
cpg	143.20	J/mol×K	590.96	Joback Method
cpg	147.92	J/mol×K	624.80	Joback Method
cpg	121.68	J/mol×K	455.58	Joback Method
cps	114.74	J/mol×K	298.15	NIST Webbook
hfust	15.75	kJ/mol	373.80	NIST Webbook
hfust	14.06	kJ/mol	378.10	NIST Webbook
hfust	16.60	kJ/mol	375.00	NIST Webbook
hfust	12.50	kJ/mol	372.00	NIST Webbook
hsubt	94.40 ± 0.84	kJ/mol	343.00	NIST Webbook
hsubt	99.30 ± 0.70	kJ/mol	337.00	NIST Webbook
hsubt	87.30	kJ/mol	348.00	NIST Webbook
hsubt	94.38 ± 0.85	kJ/mol	343.00	NIST Webbook
hsubt	94.40 ± 0.80	kJ/mol	350.00	NIST Webbook
hsubt	93.30 ± 1.20	kJ/mol	355.00	NIST Webbook
hsubt	96.80 ± 1.20	kJ/mol	346.50	NIST Webbook
hsubt	96.90 ± 1.20	kJ/mol	346.50	NIST Webbook
hsubt	94.90 ± 0.60	kJ/mol	337.00	NIST Webbook
hsubt	95.73	kJ/mol	343.00	NIST Webbook

psub	1.92e-03	kPa	349.20	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	8.15e-03	kPa	365.70	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	8.03e-03	kPa	365.70	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	6.12e-03	kPa	362.70	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	

psub	3.56e-03	kPa	356.20	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	2.52e-03	kPa	352.20	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	1.40e-03	kPa	346.10	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	1.00e-03	kPa	342.70	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	

psub	6.40e-04	kPa	338.10	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	4.00e-04	kPa	333.10	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	4.74e-03	kPa	359.60	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
sfust	42.10	J/mol×K	373.80	NIST Webbook	

Sources

Measurement and Prediction of https://www.doi.org/10.1021/je050230z Thermochemical Properties: Improved Properties: Im https://www.doi.org/10.1016/j.jct.2012.11.007 Fharage 3-94 on pinging an and its separation of the second of the secon https://www.doi.org/10.1016/j.tca.2014.09.022 needed to estimate the behaviour of the build material in applications?:

http://link.springer.com/article/10.1007/BF02311772 https://en.wikipedia.org/wiki/Joback_method

Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l

NIST Webbook: http://webbook.nist.gov/cgi/cbook.cgi?ID=C598505&Units=SI

Solubility and thermodynamic properties of NH3 in choline chloride-based deep eutectic solvents:

https://www.doi.org/10.1016/j.jct.2019.01.031

Legend

chs: Standard solid enthalpy of combustion

cpg: Ideal gas heat capacitycps: Solid phase heat capacity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditions

hfs: Solid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions
hfust: Enthalpy of fusion at a given temperature

hsub: Enthalpy of sublimation at standard conditionshsubt: Enthalpy of sublimation at a given temperaturehvap: Enthalpy of vaporization at standard conditions

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/l logp: Octanol/Water partition coefficient mcvol: McGowan's characteristic volume

pc: Critical Pressure

psub: Sublimation pressure

sfust: Entropy of fusion at a given temperature

ss: Solid phase molar entropy at standard conditions

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/54-692-4/Urea-methyl.pdf

Generated by Cheméo on 2025-12-24 08:59:45.57417667 +0000 UTC m=+6314983.104217324.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.