Cyclohexanone

Other names: ANON

Anone

Cicloesanone Cyclohexanon Cyclohexyl ketone Cykloheksanon HEXANON

Ketohexamethylene

NADONE
NCI-C55005
NSC 5711
Pimelic ketone
Pimelin ketone

Rcra waste number U057

Sextone UN 1915

Hytrol O

Inchi: InChI=1S/C6H10O/c7-6-4-2-1-3-5-6/h1-5H2
InchiKey: JHIVVAPYMSGYDF-UHFFFAOYSA-N

Formula: C6H10O

SMILES: O=C1CCCC1

Mol. weight [g/mol]: 98.14 CAS: 108-94-1

Physical Properties

Property code	Value	Unit	Source
af	0.4420		KDB
affp	841.00	kJ/mol	NIST Webbook
aigt	693.15	K	KDB
basg	811.20	kJ/mol	NIST Webbook
chl	-3518.90 ± 1.00	kJ/mol	NIST Webbook
chl	-3517.60 ± 1.70	kJ/mol	NIST Webbook
chl	-3536.00 ± 2.00	kJ/mol	NIST Webbook
chl	-3499.00 ± 0.80	kJ/mol	NIST Webbook
dm	3.10	debye	KDB

dvisc	0.0020200	Paxs	Densities and Viscosities of Ternary Mixtures of Cyclohexane + Cyclohexanone + Some Alkyl Acetates at 298.15 K
ea	0.00	eV	NIST Webbook
fII	1.10	% in Air	KDB
fpc	327.04	K	KDB
fpo	317.04	K	KDB
gf	-90.81	kJ/mol	KDB
gyrad	3.4100		KDB
hf	-226.30	kJ/mol	NIST Webbook
hf	-225.70	kJ/mol	NIST Webbook
hf	-231.10 ± 0.88	kJ/mol	NIST Webbook
hf	-230.30	kJ/mol	KDB
hf	-227.70 ± 1.90	kJ/mol	NIST Webbook
hfl	-276.10 ± 0.84	kJ/mol	NIST Webbook
hfl	-272.60 ± 1.80	kJ/mol	NIST Webbook
hfl	-254.00 ± 2.00	kJ/mol	NIST Webbook
hfl	-271.40	kJ/mol NI	NIST Webbook
hfus	1.57	kJ/mol	Joback Method
hvap	33.94	kJ/mol	Joback Method
ie	9.18	eV	NIST Webbook
ie	9.16 ± 0.01	eV	NIST Webbook
ie	9.18	eV	NIST Webbook
ie	9.50 ± 0.20	eV	NIST Webbook
ie	9.14 ± 0.01	eV	NIST Webbook
ie	9.16 ± 0.02	eV	NIST Webbook
ie	9.28	eV	NIST Webbook
ie	9.14 ± 0.03	eV	NIST Webbook
ie	9.14 ± 0.02	eV	NIST Webbook
ie	9.29	eV	NIST Webbook
log10ws	-0.60		Estimated Solubility Method
log10ws	-0.60		Aqueous Solubility Prediction Method
logp	1.520		Crippen Method
mcvol	86.110	ml/mol	McGowan Method
nfpaf	%!d(float64=2)		KDB
nfpah	%!d(float64=1)		KDB
рс	4600.00 ± 100.00	kPa	NIST Webbook
рс	4000.00 ± 50.00	kPa	NIST Webbook
рс	3850.35 ± 202.65	kPa	NIST Webbook
рс	4000.00	kPa	KDB
rinpol	851.00		NIST Webbook
rinpol	854.10		NIST Webbook

rinpol	896.00	NIST Webbook
rinpol	869.00	NIST Webbook
	891.00	NIST Webbook
rinpol		NIST Webbook
rinpol	853.90	
rinpol	851.00	NIST Webbook
rinpol	854.10	NIST Webbook
rinpol	881.00	NIST Webbook
rinpol	883.00	NIST Webbook
rinpol	874.00	NIST Webbook
rinpol	877.00	NIST Webbook
rinpol	853.90	NIST Webbook
rinpol	861.00	NIST Webbook
rinpol	857.00	NIST Webbook
rinpol	895.00	NIST Webbook
rinpol	883.00	NIST Webbook
rinpol	867.00	NIST Webbook
rinpol	884.00	NIST Webbook
rinpol	886.00	NIST Webbook
rinpol	855.10	NIST Webbook
rinpol	888.00	NIST Webbook
rinpol	867.00	NIST Webbook
rinpol	886.00	NIST Webbook
rinpol	869.00	NIST Webbook
rinpol	872.00	NIST Webbook
rinpol	874.00	NIST Webbook
rinpol	875.00	NIST Webbook
rinpol	895.00	NIST Webbook
rinpol	851.70	NIST Webbook
rinpol	896.80	NIST Webbook
rinpol	894.00	NIST Webbook
rinpol	894.00	NIST Webbook
rinpol	891.00	NIST Webbook
rinpol	881.00	NIST Webbook
rinpol	896.00	NIST Webbook
rinpol	881.00	NIST Webbook
rinpol	876.00	NIST Webbook
rinpol	866.00	NIST Webbook
rinpol	871.00	NIST Webbook
rinpol	874.00	NIST Webbook
rinpol	882.00	NIST Webbook
rinpol	890.00	NIST Webbook
rinpol	867.00	NIST Webbook
rinpol	879.00	NIST Webbook
rinpol	862.00	NIST Webbook
IIIIpor	002.00	THE T WODDOOK

rinnal	864.00	NIST Webbook
rinpol	895.00	NIST Webbook
rinpol	866.00	
rinpol	860.00	NIST Webbook NIST Webbook
rinpol		
rinpol	862.00	NIST Webbook
rinpol	862.00	NIST Webbook
rinpol	894.00	NIST Webbook
rinpol	896.00	NIST Webbook
rinpol	897.00	NIST Webbook
rinpol	864.00	NIST Webbook
rinpol	903.00	NIST Webbook
rinpol	854.00	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	867.00	NIST Webbook
rinpol	871.00	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	894.00	NIST Webbook
rinpol	854.00	NIST Webbook
rinpol	858.00	NIST Webbook
rinpol	875.00	NIST Webbook
rinpol	894.00	NIST Webbook
rinpol	895.00	NIST Webbook
rinpol	871.00	NIST Webbook
rinpol	875.00	NIST Webbook
rinpol	898.00	NIST Webbook
rinpol	878.00	NIST Webbook
rinpol	862.00	NIST Webbook
rinpol	878.00	NIST Webbook
rinpol	875.00	NIST Webbook
rinpol	857.00	NIST Webbook
rinpol	875.00	NIST Webbook
rinpol	900.00	NIST Webbook
rinpol	855.00	NIST Webbook
rinpol	139.80	NIST Webbook
rinpol	139.80	NIST Webbook
rinpol	865.00	NIST Webbook
ripol	1291.00	NIST Webbook
ripol	1301.00	NIST Webbook
ripol	1310.00	NIST Webbook
ripol	1287.00	NIST Webbook
ripol	1282.00	NIST Webbook
ripol	1280.00	NIST Webbook
ripol	1282.00	NIST Webbook
ripol	1296.00	NIST Webbook
		1 10 10 0 10 11

ripol	1280.00		NIST Webbook	
ripol	1291.00		NIST Webbook	
ripol	1289.00		NIST Webbook	
ripol	1285.00		NIST Webbook	
ripol	1302.00		NIST Webbook	
ripol	1273.00		NIST Webbook	
ripol	1291.00		NIST Webbook	
ripol	1281.00		NIST Webbook	
ripol	1301.00		NIST Webbook	
ripol	1275.00		NIST Webbook	
ripol	1306.00		NIST Webbook	
ripol	1289.00		NIST Webbook	
ripol	1306.00		NIST Webbook	
ripol	1306.00		NIST Webbook	
ripol	1314.00		NIST Webbook	
ripol	1311.00		NIST Webbook	
ripol	1285.00		NIST Webbook	
ripol	1273.00		NIST Webbook	
ripol	1299.00		NIST Webbook	
ripol	1285.00		NIST Webbook	
ripol	1320.00	NIST Webbook		
ripol	1281.00		NIST Webbook	
ripol	1281.00		NIST Webbook	
ripol	1302.00		NIST Webbook	
ripol	1282.00		NIST Webbook	
ripol	1333.00		NIST Webbook	
ripol	1296.00		NIST Webbook	
ripol	1291.00		NIST Webbook	
ripol	1314.00		NIST Webbook	
ripol	1314.00		NIST Webbook	
ripol	1315.00		NIST Webbook	
ripol	1280.00		NIST Webbook	
ripol	1280.00		NIST Webbook	
ripol	1311.00		NIST Webbook	
ripol	1275.00		NIST Webbook	
ripol	1281.00		NIST Webbook	
sg	335.53	J/mol×K	NIST Webbook	
sl	229.03	J/mol×K	NIST Webbook	
tb	428.69	K	(Liquid + liquid) equilibria of (water + propionic acid + cyclohexanone) at several temperatures	

tb	428.84	К	Excess enthalpies and (vapour + liquid) equilibrium data for the binary mixtures of dimethylsulphoxide with ketones
tb	428.57	К	Measurement and Correlation of Vapor-Liquid Equilibrium for Binary Systems of Dimethyl Carbonate with Butyl Butyrate, o-Xylene, and Cyclohexanone at 101.3 kPa
tb	428.58	K	KDB
tc	664.30 ± 3.00	K	NIST Webbook
tc	629.15 ± 1.50	K	NIST Webbook
tc	653.00 ± 3.00	K	NIST Webbook
tc	653.00	K	KDB
tf	242.00	K	KDB
tf	245.90	К	Vapour liquid equilibria, azeotropic data, excess enthalpies, activity coefficients at infinite dilution and solid liquid equilibria for binary alcohol ketone systems
tt	245.21 ± 0.01	K	NIST Webbook
tt	242.40 ± 0.50	K	NIST Webbook
VC	0.312	m3/kmol	Joback Method
zra	0.25		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	168.98	J/mol×K	420.00	NIST Webbook
cpg	161.07	J/mol×K	400.00	NIST Webbook
cpg	155.20	J/mol×K	385.00	NIST Webbook
cpg	190.18	J/mol×K	480.00	NIST Webbook
cpg	183.65	J/mol×K	460.00	NIST Webbook
cpg	175.81	J/mol×K	440.00	NIST Webbook
cpl	177.80	J/mol×K	290.00	NIST Webbook
cpl	200.40	J/mol×K	304.20	NIST Webbook
cpl	177.20	J/mol×K	300.00	NIST Webbook

dvisc	0.0025990	Paxs	288.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	
dvisc	0.0018170	Paxs	303.15	Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K	
dvisc	0.0020190	Paxs	298.15	Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K	
dvisc	0.0016310	Paxs	308.15	Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K	
dvisc	0.0016940	Paxs	308.15	Densities and Viscosities of Binary Mixtures of Cyclohexanone and 2-Alkanols	
dvisc	0.0015460	Paxs	313.15	Densities and Viscosities of Binary Mixtures of Cyclohexanone and 2-Alkanols	
dvisc	0.0020570	Paxs	298.15	Densities and Viscosities of Binary Mixtures of Cyclohexanone and 2-Alkanols	

dvisc	0.0014760	Paxs	313.15	Density and Viscosity of Binary Mixtures of n-Butyl Acetate with Ketones at (298.15, 303.15, 308.15, and 313.15) K	
dvisc	0.0018470	Paxs	303.15	Densities and Viscosities of Binary Mixtures of Cyclohexanone and 2-Alkanols	
dvisc	0.0020212	Paxs	298.15	Thermophysical Properties of Binary Mixtures of Cyclohexane + Nitrobenzene, Cyclohexanone + Nitrobenzene, and Cyclohexane + Cyclohexanone at (298.15, 303.15, and 308.15) K	
dvisc	0.0015842	Paxs	313.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	
dvisc	0.0017338	Paxs	308.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	
dvisc	0.0019045	Paxs	303.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	

dvisc	0.0015849	Paxs	308.15	Thermophysical Properties of Binary Mixtures of Cyclohexane + Nitrobenzene, Cyclohexanone + Nitrobenzene, and Cyclohexane + Cyclohexanone at (298.15, 303.15, and 308.15) K	
dvisc	0.0015420	Paxs	313.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Diethyl Oxalate with Some Ketones at (303.15, 308.15, and 313.15) K	
dvisc	0.0016570	Paxs	308.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Diethyl Oxalate with Some Ketones at (303.15, 308.15, and 313.15) K	
dvisc	0.0018160	Paxs	303.15	Densities, Viscosities, and Refractive Indices of Binary Mixtures of Diethyl Oxalate with Some Ketones at (303.15, 308.15, and 313.15) K	
dvisc	0.0013730	Paxs	318.15	Excess Molar Volumes and Viscosities for Binary Mixtures of Cyclohexanone with Methacrylic Acid, Benzyl Methacrylate, and 2-Hydroxyethyl Methacrylate at (298.15, 308.15, and 318.15) K	

dvisc	0.0016320	Paxs	308.15	Excess Molar Volumes and Viscosities for Binary Mixtures of Cyclohexanone with Methacrylic Acid, Benzyl Methacrylate, and 2-Hydroxyethyl Methacrylate at (298.15, 308.15, and 318.15) K	
dvisc	0.0019740	Paxs	298.15	Excess Molar Volumes and Viscosities for Binary Mixtures of Cyclohexanone with Methacrylic Acid, Benzyl Methacrylate, and 2-Hydroxyethyl Methacrylate at (298.15, 308.15, and 318.15) K	
dvisc	0.0023318	Paxs	293.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	
dvisc	0.0018057	Paxs	303.15	Thermophysical Properties of Binary Mixtures of Cyclohexane + Nitrobenzene, Cyclohexanone + Nitrobenzene, and Cyclohexane + Cyclohexanone at (298.15, 303.15, and 308.15) K	
dvisc	0.0021016	Pa×s	298.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	
hfust	1.25	kJ/mol	242.60	NIST Webbook	
hfust	8.66	kJ/mol	220.80	NIST Webbook	
hfust	1.33	kJ/mol	245.20	NIST Webbook	

hfust	8.51	kJ/mol	221.00	NIST Webbook
hfust	1.33	kJ/mol	245.20	NIST Webbook
hsubt	49.30	kJ/mol	254.00	NIST Webbook
hvapt	39.75	kJ/mol	428.20	KDB
hvapt	40.30	kJ/mol	285.50	NIST Webbook
hvapt	40.40	kJ/mol	410.50	NIST Webbook
hvapt	41.50	kJ/mol	400.50	NIST Webbook
hvapt	42.20	kJ/mol	401.50	NIST Webbook
hvapt	41.40 ± 0.10	kJ/mol	348.00	NIST Webbook
hvapt	41.80 ± 0.10	kJ/mol	343.00	NIST Webbook
hvapt	42.20 ± 0.10	kJ/mol	338.00	NIST Webbook
hvapt	43.40 ± 0.10	kJ/mol	323.00	NIST Webbook
hvapt	43.10 ± 0.10	kJ/mol	328.00	NIST Webbook
hvapt	44.40 ± 0.10	kJ/mol	308.00	NIST Webbook
hvapt	45.13	kJ/mol	428.80	NIST Webbook
hvapt	44.00	kJ/mol	373.00	NIST Webbook
hvapt	44.00 ± 0.10	kJ/mol	313.00	NIST Webbook
hvapt	43.10	kJ/mol	385.00	NIST Webbook
pvap	101.30	kPa	428.57	Measurement and Correlation of Vapor-Liquid Equilibrium for Binary Systems of Dimethyl Carbonate with Butyl Butyrate, o-Xylene, and Cyclohexanone at 101.3 kPa
pvap	99.00	kPa	428.01	Vapor-Liquid Equilibria of Cyclohexanone + 2-Cyclohexen-1-one and Cyclohexanol + 2-Cyclohexen-1-one, Validated in a Packed Column Distillation.
pvap	95.30	kPa	426.25	Excess Molar Enthalpies and Vapor-Liquid Equilibrium for N-Methyl-2-pyrrolidone with Ketones

pvap	1.92	kPa	318.15	(Vapour + liquid)
				equilibria and excess Gibbs free energies of (cyclohexanone + 1- chlorobutane
				and + 1,1,1-trichloroethane) binary mixtures at temperatures from (298.15 to 318.15) K
pvap	0.64	kPa	298.15	(Vapour + liquid) equilibria and excess Gibbs free energies of (cyclohexanone + 1- chlorobutane and + 1,1,1-trichloroethane) binary mixtures at temperatures from (298.15 to 318.15) K
pvap	1.16	kPa	308.15	(Vapour + liquid) equilibria and excess Gibbs free energies of (cyclohexanone + 1- chlorobutane and + 1,1,1-trichloroethane) binary mixtures at temperatures from (298.15 to 318.15) K
rfi	1.44810		298.15	Isothermal (vapour + liquid) equilibria for the binary (cyclopentanone or cyclohexanone with 1,1,2,2-tetrachloroethane) systems at temperatures of (343.15, 353.15, and 363.15) K
rfi	1.45030		298.20	Tie-line data for the aqueous solutions of phenol with organic solvents at T = 298.2 K

rfi	1.44860	298.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Ethyl Chloroacetate + Cyclohexanone, + Chlorobenzene, or + Benzyl Alcohol at (298.15, 303.15, and 308.15) K	
rfi	1.44610	303.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Ethyl Chloroacetate + Cyclohexanone, + Chlorobenzene, or + Benzyl Alcohol at (298.15, 303.15, and 308.15) K	
rfi	1.44980	298.15	Solubility of a-Carotene in Binary Solvents Formed by Some Hydrocarbons with 2,5,8-Trioxanonane, 2-Propanone, and Cyclohexanone	,
rfi	1.45100	298.15	Bubble temperature measurements on the binary mixtures formed by decane with a variety of compounds at 95.8 kPa	
rfi	1.45070	293.15	Effect of temperature on the volumetric properties of (cyclohexanone + an aromatic hydrocarbon)	

rfi	1.45070		293.10	Volumetric properties of (cyclohexanone + a xylene) at temperature between (293.15 and 353.15) K	
rfi	1.44820		298.15	Vapour pressure and excess Gibbs energy of binary 1,2-dichloroethane + cyclohexanone, chloroform + cyclopentanone and chloroform + cyclohexanone mixtures at temperatures from 298.15 to 318.15 K	
rfi	1.45100		293.15	Activity coefficients in binary mixtures formed by cyclohexanone with a variety of compounds at 94.7 kPa	
rfi	1.44400		308.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Ethyl Chloroacetate + Cyclohexanone, + Chlorobenzene, or + Benzyl Alcohol at (298.15, 303.15, and 308.15) K	
rfi	1.45010		298.15	Excess molar volumes and ultrasonic studies of N-methyl-2-pyrrolidon with ketones at T = 303.15 K	e
rhol	941.10	kg/m3	298.15	Isobaric Vapor-Liquid Phase Equilibrium Measurements, Correlation, and Prediction for Separation of the Mixtures of Cyclohexanone and Alcohols	

rhol	933.19	kg/m3	308.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones	
rhol	938.07	kg/m3	303.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones	
rhol	942.92	kg/m3	298.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones	
rhol	947.38	kg/m3	293.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones	
rhol	928.79	kg/m3	313.15	Volumetric properties of binary liquid mixtures of ketones with chloroalkanes at different temperatures and atmospheric pressure	
rhol	948.80	kg/m3	293.15	Correlation Studies of Cyclohexanone/(C5-C10) Alkan-1-ol Binary Mixtures: PC-SAFT Model and Free Volume Theory	
rhol	937.77	kg/m3	303.15	Volumetric properties of binary liquid mixtures of ketones with chloroalkanes at different temperatures and atmospheric pressure	

rhol	946.71	kg/m3	293.15	Volumetric properties of binary liquid mixtures of ketones with chloroalkanes at different temperatures and atmospheric pressure	
rhol	938.20	kg/m3	303.15	Correlation Studies of Cyclohexanone/(C5-C10 Alkan-1-ol Binary Mixtures: PC-SAFT Model and Free Volume Theory	0)
rhol	942.24	kg/m3	298.15	Volumetric properties of binary liquid mixtures of ketones with chloroalkanes at different temperatures and atmospheric pressure	
rhol	942.20	kg/m3	298.15	Excess molar enthalpies for binary mixtures of cyclopentanone, cyclohexanone, or cycloheptanone with n-nonane at T = 298.15 K and atmospheric pressure	
rhol	933.50	kg/m3	308.15	Correlation Studies of Cyclohexanone/(C5-C10 Alkan-1-ol Binary Mixtures: PC-SAFT Model and Free Volume Theory	0)
rhol	951.00	kg/m3	288.00	KDB	
rhol	928.80	kg/m3	313.15	Correlation Studies of Cyclohexanone/(C5-C10 Alkan-1-ol Binary Mixtures: PC-SAFT Model and Free Volume Theory	0)

rhol	924.40	kg/m3	318.15	Correlation Studies of Cyclohexanone/(C5-C10) Alkan-1-ol Binary Mixtures: PC-SAFT Model and Free Volume Theory
rhol	920.70	kg/m3	323.15	Correlation Studies of Cyclohexanone/(C5-C10) Alkan-1-ol Binary Mixtures: PC-SAFT Model and Free Volume Theory
rhol	947.60	kg/m3	293.10	Vapor-Liquid Equilibrium for Binary Systems of Cyclohexane + Cyclohexanone and + Cyclohexanol at Temperatures from (414.0 to 433.7) K
rhol	951.69	kg/m3	288.15	Densities and Excess Molar Volumes of the Binary Mixtures of Cyclohexanone with Chloroalkanes at Temperatures between (288.15 and 318.15) K
rhol	937.55	kg/m3	303.15	Excess molar volumes and ultrasonic studies of dimethylsulphoxide with ketones at T = 303.15 K
rhol	943.10	kg/m3	298.15	Correlation Studies of Cyclohexanone/(C5-C10) Alkan-1-ol Binary Mixtures: PC-SAFT Model and Free Volume Theory
rhol	942.76	kg/m3	298.15	Densities and Excess Molar Volumes of the Binary Mixtures of Cyclohexanone with Chloroalkanes at Temperatures between (288.15 and 318.15) K

rhol	933.80	kg/m3	308.15	Densities and Excess Molar Volumes of the Binary Mixtures of Cyclohexanone with Chloroalkanes at Temperatures between (288.15 and 318.15) K	
rhol	933.28	kg/m3	308.15	Volumetric properties of binary liquid mixtures of ketones with chloroalkanes at different temperatures and atmospheric pressure	
rhol	951.18	kg/m3	288.15	Volumetric properties of binary liquid mixtures of ketones with chloroalkanes at different temperatures and atmospheric pressure	
rhol	924.82	kg/m3	318.15	Densities and Excess Molar Volumes of the Binary Mixtures of Cyclohexanone with Chloroalkanes at Temperatures between (288.15 and 318.15) K	
sfust	39.22	J/mol×K	220.80	NIST Webbook	
sfust	5.42	J/mol×K	245.20	NIST Webbook	
sfust	38.50	J/mol×K	221.00	NIST Webbook	
sfust	5.20	J/mol×K	242.60	NIST Webbook	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbrp	320.20	K	2.00	NIST Webbook

Correlations

Information	Value
-------------	-------

Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.55797e+01
Coeff. B	-4.36137e+03
Coeff. C	-3.01140e+01
Temperature range (K), min.	315.32
Temperature range (K), max.	454.86

Information	Value
Information	Valu

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	1.05154e+02
Coeff. B	-8.84188e+03
Coeff. C	-1.35148e+01
Coeff. D	1.08668e-05
Temperature range (K), min.	242.00
Temperature range (K), max.	629.15

Sources

Vapour pressure and excess Gibbs vapour pressure and excess Globs energy of binary 1,2-dichloroethane + Weashesmanh and some him of the control of the control

mixtures (dimethyl sulfoxide p water)
WAPNINI HINEM HOW HISTIA OF WATERS
GIRLE TO WATERS
GIRLE

1.1.1-trichloroethane) binary mixtures and the strickloroethane) binary mixtures and the strickloroethane binary mixtures and the strickloroethane binary mixtures of January Mixtures of Diethyl okalakenati Paratike and Binary Mixtures of Diethyl okalakenati Paratike and Binary Mixtures of Diethyl okalakenati Paratike and Strickloroethane and Strickloroethane and Strickloroethane and the strick

308.15, and 313.15) K: KDB Pure (Korean Thermophysical Properties Databank): Thermodynamic Properties for

2-(1'-Hydroxycyclohexyl)cyclohexanone தன்கு விறியால் முற்று விறியாக விறியாக விறியாக விறியாக்கு விறியாக்கு விறியாக்கில் வி

Sindidities of Successive Acta and Sindidities of Capp Successive Acta and Successive at 298.15 K:

https://www.doi.org/10.1016/j.fluid.2008.02.018

https://www.doi.org/10.1021/je500099u

https://www.doi.org/10.1016/j.fluid.2017.12.035

http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt

https://www.doi.org/10.1016/j.jct.2009.04.006

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1021/je9006585

-imidazolium-1-yl) https://www.doi.org/10.1021/je100715x

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1227

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1227

https://www.doi.org/10.1021/je0501078

https://www.doi.org/10.1016/j.jct.2007.08.006

https://www.doi.org/10.1021/acs.jced.7b00660

https://www.doi.org/10.1016/j.fluid.2014.08.034

https://www.doi.org/10.1021/je8007217

Solvation parameter model and https://www.doi.org/10.1016/j.jct.2014.12.023 thermodynamic parameters in a Thermodynamic parameters in a discativity constitution of the parameters of the para Hedeling of binor thy of the body of the b https://www.doi.org/10.1016/j.jct.2011.02.010 https://www.doi.org/10.1021/acs.jced.9b00059 **Equilibrium of trans-Aconitic Acid:** Activity coefficients in binary mixtures formed by cyclohexanone with a Salubijity Manageratiand? kPa: https://www.doi.org/10.1016/j.fluid.2005.06.022 https://www.doi.org/10.1021/acs.jced.6b00230 Thermodynamic Modeling of Salubijity Manageratical Common of Salu https://www.doi.org/10.1016/j.fluid.2005.06.022 Solution in the control of the contr Byolofiexanoneilaniween water and switchielangeractions hetwork กากละ amino acids and cyclohexanone in ฟฐษิปไดยชอดหอกs at 298.15K: https://www.doi.org/10.1016/j.tca.2006.07.009 http://webbook.nist.gov/cgi/cbook.cgi?ID=C108941&Units=SI Solubility of
1,1'-(Butane-1,4-diyl)-bis(3-methyl-1H-imidazolium-1-yl)
Dinesiting and present with the superior of the control https://www.doi.org/10.1021/je900826p https://www.doi.org/10.1016/j.jct.2009.01.006 https://www.doi.org/10.1021/acs.jced.6b00177 https://www.doi.org/10.1016/j.jct.2018.05.012 https://www.doi.org/10.1021/acs.jced.7b00255 https://www.doi.org/10.1016/j.fluid.2008.02.021 **Aguréra են երիլի իր itrediction shathadi**d http://onschallenge.wikispaces.com/file/view/AqueousDataset002.xlsx/351826032/AqueousDa liquid equilibria for binary alcohol Research and Products of Cyclohexane Oxidation in Compagate 10 price aqueous solutions of phenol with organic solvents at T = https://www.doi.org/10.1021/je800109s https://www.doi.org/10.1016/j.jct.2012.10.028 2982ck Method: https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1021/je7002463 Solubility of Cyclotrimethylenetrinitramine (RDX) in Microsuppose from Corestation for the Solubility of Adipic Acid and Succinic Acid in Equiposity of Acid and Succinic Acid and Succinic Acid in Equiposity of Acid and Succinic A https://www.doi.org/10.1021/acs.jced.7b00468

Experimental Determination and https://www.doi.org/10.1021/acs.jced.7b00266 Correlation of Liquid Liquid Equilibria श्विषेश्वरहा में प्रवृद्ध हो से अव्यक्ति के स्टूटिंग के स्टूटिंं https://www.doi.org/10.1021/je200682t Red Waven Ette to the state of the tics of vents https://www.doi.org/10.1016/j.fluid.2018.11.011 https://www.doi.org/10.1016/j.jct.2012.05.005 https://www.doi.org/10.1021/je100474b https://www.doi.org/10.1021/je900549r https://www.doi.org/10.1021/acs.jced.9b00286 https://www.doi.org/10.1016/j.fluid.2004.10.027 https://www.doi.org/10.1016/j.jct.2017.04.013 https://www.doi.org/10.1016/j.jct.2015.02.018
https://www.doi.org/10.1016/j.jct.2015.02.018
https://www.doi.org/10.1016/j.jct.2015.02.018
https://www.doi.org/10.1021/acs.jced.6b00606
https://www.doi.org/10.1021/acs.jced.6b00807
https://www.doi.org/10.1021/acs.jced.6b00877
https://www.doi.org/10.1021/acs.jced.6b00877
https://www.doi.org/10.1021/acs.jced.6b00877
https://www.doi.org/10.1021/acs.jced.6b00877
https://www.doi.org/10.1021/acs.jced.6b00825
https://www.doi.org/10.1021/acs.jced.6b00825
https://www.doi.org/10.1016/j.jct.2011.11.001
https://www.doi.org/10.1016/j.jct.2011.11.001
https://www.doi.org/10.1016/j.jct.2011.11.001
https://www.doi.org/10.1016/j.jct.2004.03.013
https://www.doi.org/10.1021/acs.jced.6b00800
https://www.doi.org/10.1016/j.jct.2011.11.001
https://www.doi.org/10.1016/j.jct.2004.03.013
https://www.doi.org/10.1016/j.jct.2004.03.013
https://www.doi.org/10.1016/j.jct.2004.03.013
https://www.doi.org/10.1016/j.jct.2004.03.013
https://www.doi.org/10.1016/j.jct.2011.01016/j.jct.2004.03.013
https://www.doi.org/10.1016/j.jct.2011.01016/j.jct.2011.0010
https://www.doi.org/10.1016/j.jct.2011.01016/j.jct.2004.03.013
https://www.doi.org/10.1016/j.jct.2011.01016/j.jct.2004.03.013
https://www.doi.org/10.1016/j.jct.2004.03.013
https://www.doi.org/10.1016/j.jct.2004.03.013 https://www.doi.org/10.1016/j.jct.2015.02.018 https://www.doi.org/10.1021/acs.jced.6b00606 https://www.doi.org/10.1016/j.fluid.2013.10.003 https://www.doi.org/10.1021/acs.jced.6b00877 https://www.doi.org/10.1021/acs.jced.6b00325 https://www.doi.org/10.1021/acs.jced.6b00800 https://www.cheric.org/files/research/kdb/mol/mol1227.mol MPBifferent temperatures and atmospheric pressure: Excess molar enthalpies for binary https://www.doi.org/10.1016/j.jct.2014.03.007 Excess molar enthalpies for binary mixtures of cyclopentanone, Excesse Marian Molar objects and Maragarities for Binary Marian Mixtures of 20x (b) Mercanone Maragarities for Binary Maragarities for Binary for Maragarities for M https://www.doi.org/10.1021/je0502389 https://www.doi.org/10.1021/acs.jced.9b00414 https://www.doi.org/10.1021/acs.jced.9b00445 http://link.springer.com/article/10.1007/BF02311772 https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure Pressure: Isobaric Vapor-Liquid Phase https://www.doi.org/10.1021/acs.jced.8b00033 Equilibrium Measurements, https://www.doi.org/10.1021/je0201828 Densitativis conitor Refractive Index, sad fraged of Round in the Binary by the History Indian the History In Consitations consiter entractive Index, Newwww.atipyreondGaerolaticketontes Solubilities of Succinic Acid in https://www.doi.org/10.1021/acs.jced.7b00956 Solubilities of Succinic Acid in Bolubility and Actoragene in Binary and Cotton Wildless none, Entry Make the Wildless none, Entry Make the Wildless none, Entry Make the Wildless none, Cyclohexanone/(C5-C10) Alkan-1-ol Ekcass in Wildless of the binary mixtures of the Wildless of the

Solvents:

Legend

af: Acentric Factor affp: Proton affinity

aigt: Autoignition Temperature

basg: Gas basicity

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacitycpl: Liquid phase heat capacity

dm: Dipole Momentdvisc: Dynamic viscosityea: Electron affinity

fll: Lower Flammability Limit

fpc: Flash Point (Closed Cup Method)fpo: Flash Point (Open Cup Method)

gf: Standard Gibbs free energy of formation

gyrad: Radius of Gyration

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsubt: Enthalpy of sublimation at a given temperaturehvap: Enthalpy of vaporization at standard conditionshvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating
nfpah: NFPA Health Rating
pc: Critical Pressure
pvap: Vapor pressure
rfi: Refractive Index
rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature **sg:** Molar entropy at standard conditions

sl: Liquid phase molar entropy at standard conditions

tb: Normal Boiling Point Temperaturetbrp: Boiling point at reduced pressure

tc: Critical Temperature

tf: Normal melting (fusion) point

tt: Triple Point Temperature

vc: Critical Volume zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/55-446-6/Cyclohexanone.pdf

Generated by Cheméo on 2025-12-21 21:26:57.790621546 +0000 UTC m=+6100615.320662209.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.