aluminium

Other names: Aluminum Inchi: InChI=1S/AI

InchiKey: XAGFODPZIPBFFR-UHFFFAOYSA-N

Formula: Al SMILES: [Al] Mol. weight [g/mol]: 26.98 CAS: 7429-90-5

Physical Properties

Property code	Value	Unit	Source
ea	0.43 ± 0.00	eV	NIST Webbook
ea	0.44 ± 0.01	eV	NIST Webbook
hf	330.00 ± 4.00	kJ/mol	NIST Webbook
ie	5.99	eV	NIST Webbook
ie	5.99	eV	NIST Webbook
ie	6.00 ± 0.30	eV	NIST Webbook
ie	5.99	eV	NIST Webbook
ie	6.00	eV	NIST Webbook
ie	6.00 ± 1.00	eV	NIST Webbook
ie	6.60 ± 0.60	eV	NIST Webbook
ie	6.00 ± 0.20	eV	NIST Webbook
ie	5.99 ± 0.00	eV	NIST Webbook
ie	6.00 ± 0.30	eV	NIST Webbook
ie	5.99	eV	NIST Webbook
sgb	164.55 ± 0.00	J/mol×K	NIST Webbook
SS	28.30 ± 0.10	J/mol×K	NIST Webbook
tb	2793.00 ± 4.00	K	NIST Webbook
tf	933.45 ± 0.20	K	NIST Webbook
tf	935.15	К	Thermal behavior of Al/Zr/KCIO 4 pyrotechnic compositions at high temperature
tt	933.25 ± 0.20	K	NIST Webbook

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cps	10.51	J/mol×K	84.53	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.04	J/mol×K	10.24	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.04	J/mol×K	10.71	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.05	J/mol×K	11.19	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.05	J/mol×K	11.69	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.06	J/mol×K	12.21	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.07	J/mol×K	12.75	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.07	J/mol×K	13.31	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.08	J/mol×K	13.90	Low-temperature heat capacity measurements on insulating powders sealed under pressure

cps	0.09	J/mol×K	14.52	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.10	J/mol×K	15.16	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.11	J/mol×K	15.66	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.14	J/mol×K	17.12	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.18	J/mol×K	18.70	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.24	J/mol×K	20.44	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.32	J/mol×K	22.34	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.42	J/mol×K	24.42	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.57	J/mol×K	26.67	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.76	J/mol×K	29.14	Low-temperature heat capacity measurements on insulating powders sealed under pressure

cps	1.02	J/mol×K	31.85	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	1.36	J/mol×K	34.81	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	1.78	J/mol×K	38.05	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	2.32	J/mol×K	41.58	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	2.97	J/mol×K	45.44	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	3.73	J/mol×K	49.66	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	4.62	J/mol×K	54.27	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	5.61	J/mol×K	59.31	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	6.72	J/mol×K	64.81	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	7.91	J/mol×K	70.81	Low-temperature heat capacity measurements on insulating powders sealed under pressure

cps	9.17	J/mol×K	77.38	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	24.14	J/mol×K	299.40	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation
cps	11.83	J/mol×K	92.37	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	13.12	J/mol×K	100.93	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	14.49	J/mol×K	111.01	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	15.74	J/mol×K	121.10	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	16.79	J/mol×K	131.22	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	17.72	J/mol×K	141.30	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	18.54	J/mol×K	151.36	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	19.25	J/mol×K	161.49	Low-temperature heat capacity measurements on insulating powders sealed under pressure

cps	19.88	J/mol×K	171.61	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	20.47	J/mol×K	181.69	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	21.01	J/mol×K	191.79	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	21.48	J/mol × K	201.89	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	21.89	J/mol × K	211.98	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	22.24	J/mol×K	222.08	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	22.58	J/mol×K	232.18	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	22.91	J/mol×K	242.28	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	23.16	J/mol×K	252.36	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	23.41	J/mol×K	262.46	Low-temperature heat capacity measurements on insulating powders sealed under pressure

cps	23.64	J/mol×K	272.56	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	23.88	J/mol×K	282.64	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	24.08	J/mol×K	292.73	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	24.25	J/mol×K	302.81	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.09	J/mol×K	14.08	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation
cps	0.18	J/mol × K	18.45	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation
cps	0.34	J/mol×K	22.82	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation
cps	0.60	J/mol×K	27.12	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation
cps	0.99	J/mol×K	31.49	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation
cps	1.53	J/mol×K	35.83	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation

cps	2.15	J/mol×K	40.18	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	2.84	J/mol×K	44.52	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	3.64	J/mol×K	48.85	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	4.45	J/mol×K	53.19	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	5.32	J/mol×K	57.52	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	6.18	J/mol×K	61.85	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	7.05	J/mol×K	66.18	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	7.92	J/mol×K	70.51	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	8.77	J/mol×K	74.83	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	9.58	J/mol×K	79.16	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	

cps	10.38	J/mol×K	83.49	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	11.08	J/mol×K	87.82	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	11.77	J/mol×K	92.15	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	12.46	J/mol × K	96.47	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	13.15	J/mol×K	100.70	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	13.74	J/mol×K	105.10	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	14.29	J/mol×K	109.40	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	14.88	J/mol×K	113.70	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	15.37	J/mol×K	118.00	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	15.87	J/mol×K	122.40	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	

cps	16.34	J/mol×K	126.70	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	16.78	J/mol×K	131.00	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	17.22	J/mol×K	135.30	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	17.63	J/mol×K	139.70	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	17.97	J/mol×K	144.00	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	18.36	J/mol×K	148.30	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	18.61	J/mol×K	152.60	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	18.93	J/mol×K	156.90	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	19.21	J/mol×K	161.20	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	19.46	J/mol×K	165.60	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	

cps	19.74	J/mol×K	169.90	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	20.03	J/mol×K	174.20	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	20.29	J/mol×K	178.50	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	20.49	J/mol×K	182.80	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	20.74	J/mol×K	187.10	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	20.96	J/mol×K	191.40	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	21.15	J/mol×K	195.70	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	21.31	J/mol×K	200.10	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	21.47	J/mol×K	204.40	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	21.66	J/mol×K	208.70	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	

cps	21.83	J/mol×K	213.00	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	22.01	J/mol×K	217.30	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	22.20	J/mol×K	221.70	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	22.34	J/mol×K	226.00	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	22.46	J/mol×K	230.30	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	22.58	J/mol×K	234.60	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	22.73	J/mol×K	238.90	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	22.82	J/mol×K	243.30	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	22.99	J/mol×K	247.60	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	23.05	J/mol×K	251.90	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	

cps	23.21	J/mol×K	256.20	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	23.34	J/mol×K	260.50	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	23.48	J/mol×K	264.90	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	23.61	J/mol×K	269.20	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	23.70	J/mol × K	273.50	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	23.73	J/mol×K	277.80	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	23.82	J/mol×K	282.10	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	23.93	J/mol×K	286.40	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	24.02	J/mol×K	290.80	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	24.12	J/molxK	295.10	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	

cps	24.21	J/mol×K	303.80	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
rhos	2656.00	kg/m3	298.00	Investigation of thermophysical properties of thin-layered paint	

Correlations

Information Value

Property code	pvap		
Equation	ln(Pvp) = A + B/(T + C)		
Coeff. A	1.69600e+01		
Coeff. B	-3.34448e+04		
Coeff. C	-8.09000e+01		
Temperature range (K), min.	1482.15		
Temperature range (K), max.	2790.81		

Sources

Thermal conductivity and interfacial energy of solid Bi solution in the galorzmetricemesymments of liquid (Al + Li + Zn) alloys: KDB:

Aluminum dihydrogen tripolyphosphate: Thermodynamic Ther Agueri standbook of Vapor Pressure: Thermal conductivities of solid and

Thermal conductivities of solid and liquid phases for pure AI, pure Sn and fair interior allows of AINd2: Heat capacity; Standard Gibbs Energy of Pariations of thermal conductivity with temperature and composition of Zn in the Bernard Pariation of En in the Bernard Pariation of English Pariati

Thermal behavior of Al/Zr/KCIO 4 pyrotechnic compositions at high temperature:

https://www.doi.org/10.1016/j.fluid.2010.02.029 https://www.doi.org/10.1016/j.jct.2015.09.008

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1945

https://www.doi.org/10.1016/j.jct.2017.03.017

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.doi.org/10.1016/j.fluid.2010.07.015

https://www.doi.org/10.1016/j.tca.2011.08.025

https://www.doi.org/10.1016/j.tca.2012.07.033

https://www.doi.org/10.1016/j.jct.2019.05.009

https://www.doi.org/10.1016/j.tca.2018.01.022

http://webbook.nist.gov/cgi/cbook.cgi?ID=C7429905&Units=SI

https://www.doi.org/10.1016/j.tca.2017.11.006

Legend

cps: Solid phase heat capacity

ea: Electron affinity

hf: Enthalpy of formation at standard conditions

ie: Ionization energypvap: Vapor pressurerhos: Solid Density

sgb: Molar entropy at standard conditions (1 bar)

ss: Solid phase molar entropy at standard conditions

tb: Normal Boiling Point Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

Latest version available from:

https://www.chemeo.com/cid/56-441-0/aluminium.pdf

Generated by Cheméo on 2024-03-13 06:02:12.050631576 +0000 UTC m=+12598980.971208887.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.