aluminium

Other names:	Aluminum
Inchi:	InChI=1S/AI
InchiKey:	XAGFODPZIPBFFR-UHFFFAOYSA-N
Formula:	AI
SMILES:	[AI]
Mol. weight [g/mol]:	26.98
CAS:	7429-90-5

Physical Properties

Property code	Value	Unit	Source
ea	0.43 ± 0.00	eV	NIST Webbook
ea	0.44 ± 0.01	eV	NIST Webbook
hf	330.00 ± 4.00	kJ/mol	NIST Webbook
ie	6.00 ± 0.30	eV	NIST Webbook
ie	5.99	eV	NIST Webbook
ie	6.60 ± 0.60	eV	NIST Webbook
ie	6.00 ± 1.00	eV	NIST Webbook
ie	6.00	eV	NIST Webbook
ie	6.00 ± 0.30	eV	NIST Webbook
ie	5.99	eV	NIST Webbook
ie	5.99	eV	NIST Webbook
ie	5.99	eV	NIST Webbook
ie	6.00 ± 0.20	eV	NIST Webbook
ie	5.99 ± 0.00	eV	NIST Webbook
sgb	164.55 ± 0.00	J/mol×K	NIST Webbook
SS	28.30 ± 0.10	J/mol×K	NIST Webbook
tb	2793.00 ± 4.00	К	NIST Webbook
tf	933.45 ± 0.20	К	NIST Webbook
tf	935.15	К	Thermal behavior of Al/Zr/KCIO 4 pyrotechnic compositions at high temperature
tt	933.25 ± 0.20	К	NIST Webbook

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cps	10.51	J/mol×K	84.53	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.04	J/mol×K	10.24	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.04	J/mol×K	10.71	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.05	J/mol×K	11.19	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.05	J/mol×K	11.69	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.06	J/mol×K	12.21	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.07	J/mol×K	12.75	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.07	J/mol×K	13.31	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.08	J/mol×K	13.90	Low-temperature heat capacity measurements on insulating powders sealed under pressure

cps	0.09	J/mol×K	14.52	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.10	J/mol×K	15.16	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.11	J/mol×K	15.66	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.14	J/mol×K	17.12	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.18	J/mol×K	18.70	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.24	J/mol×K	20.44	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.32	J/mol×K	22.34	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.42	J/mol×K	24.42	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.57	J/mol×K	26.67	Low-temperature heat capacity measurements on insulating powders sealed under pressure
cps	0.76	J/mol×K	29.14	Low-temperature heat capacity measurements on insulating powders sealed under pressure

cps	1.02	J/mol×K	31.85	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	1.36	J/mol×K	34.81	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	1.78	J/mol×K	38.05	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	2.32	J/mol×K	41.58	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	2.97	J/mol×K	45.44	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	3.73	J/mol×K	49.66	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	4.62	J/mol×K	54.27	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	5.61	J/mol×K	59.31	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	6.72	J/mol×K	64.81	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	7.91	J/mol×K	70.81	Low-temperature heat capacity measurements on insulating powders sealed under pressure	

cps	9.17	J/mol×K	77.38	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	24.14	J/mol×K	299.40	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	11.83	J/mol×K	92.37	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	13.12	J/mol×K	100.93	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	14.49	J/mol×K	111.01	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	15.74	J/mol×K	121.10	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	16.79	J/mol×K	131.22	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	17.72	J/mol×K	141.30	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	18.54	J/mol×K	151.36	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	19.25	J/mol×K	161.49	Low-temperature heat capacity measurements on insulating powders sealed under pressure	

cps	19.88	J/mol×K	171.61	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	20.47	J/mol×K	181.69	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	21.01	J/mol×K	191.79	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	21.48	J/mol×K	201.89	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	21.89	J/mol×K	211.98	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	22.24	J/mol×K	222.08	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	22.58	J/mol×K	232.18	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	22.91	J/mol×K	242.28	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	23.16	J/mol×K	252.36	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	23.41	J/mol×K	262.46	Low-temperature heat capacity measurements on insulating powders sealed under pressure	

cps	23.64	J/mol×K	272.56	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	23.88	J/mol×K	282.64	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	24.08	J/mol×K	292.73	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	24.25	J/mol×K	302.81	Low-temperature heat capacity measurements on insulating powders sealed under pressure	
cps	0.09	J/mol×K	14.08	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	0.18	J/mol×K	18.45	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	0.34	J/mol×K	22.82	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	0.60	J/mol×K	27.12	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	0.99	J/mol×K	31.49	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	1.53	J/mol×K	35.83	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	

cps	2.15	J/mol×K	40.18	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	2.84	J/mol×K	44.52	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	3.64	J/mol×K	48.85	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	4.45	J/mol×K	53.19	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	5.32	J/mol×K	57.52	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	6.18	J/mol×K	61.85	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	7.05	J/mol×K	66.18	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	7.92	J/mol×K	70.51	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	8.77	J/mol×K	74.83	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	9.58	J/mol×K	79.16	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	

cps	10.38	J/mol×K	83.49	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	11.08	J/mol×K	87.82	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	11.77	J/mol×K	92.15	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	12.46	J/mol×K	96.47	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	13.15	J/mol×K	100.70	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	13.74	J/mol×K	105.10	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	14.29	J/mol×K	109.40	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	14.88	J/mol×K	113.70	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	15.37	J/mol×K	118.00	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	15.87	J/mol×K	122.40	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	

cps	16.34	J/mol×K	126.70	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	16.78	J/mol×K	131.00	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	17.22	J/mol×K	135.30	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	17.63	J/mol×K	139.70	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	17.97	J/mol×K	144.00	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	18.36	J/mol×K	148.30	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	18.61	J/mol×K	152.60	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	18.93	J/mol×K	156.90	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	19.21	J/mol×K	161.20	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	19.46	J/mol×K	165.60	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	

cps	19.74	J/mol×K	169.90	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	20.03	J/mol×K	174.20	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	20.29	J/mol×K	178.50	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	20.49	J/mol×K	182.80	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	20.74	J/mol×K	187.10	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	20.96	J/mol×K	191.40	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	21.15	J/mol×K	195.70	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	21.31	J/mol×K	200.10	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	21.47	J/mol×K	204.40	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	21.66	J/mol×K	208.70	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	

cps	21.83	J/mol×K	213.00	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	22.01	J/mol×K	217.30	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	22.20	J/mol×K	221.70	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	22.34	J/mol×K	226.00	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	22.46	J/mol×K	230.30	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	22.58	J/mol×K	234.60	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	22.73	J/mol×K	238.90	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	22.82	J/mol×K	243.30	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	22.99	J/mol×K	247.60	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	23.05	J/mol×K	251.90	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	

cps	23.21	J/mol×K	256.20	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	23.34	J/mol×K	260.50	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	23.48	J/mol×K	264.90	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	23.61	J/mol×K	269.20	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	23.70	J/mol×K	273.50	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	23.73	J/mol×K	277.80	Calorimetric Study of AINd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	23.82	J/mol×K	282.10	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	23.93	J/mol×K	286.40	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	24.02	J/mol×K	290.80	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
cps	24.12	J/mol×K	295.10	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	

cps	24.21	J/mol×K	303.80	Calorimetric Study of AlNd2: Heat capacity; Standard Gibbs Energy of Formation	
rhos	2656.00	kg/m3	298.00	Investigation of thermophysical properties of thin-layered paint	

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.69600e+01
Coeff. B	-3.34448e+04
Coeff. C	-8.09000e+01
Temperature range (K), min.	1482.15
Temperature range (K), max.	2790.81

Sources

Thermal behavior of Al/Zr/KCIO 4 pyrotechnic compositions at high temperatrie:Study of AlNd2: Heat capacity; Standard Gibbs Energy of Komation:

Aluminum dihydrogen tripolyphosphate: Thermodynamic braraetenestatyre heat capacity measurements on insulating powders Schrömstrier (AI + Li + Zn) alloys: NIST Webbook:

The Yaws Handbook of Vapor Pressure: Thermal conductivities of solid and

Thermal conductivities of solid and liquid phases for pure AI, pure Sn and thermal annalystivity and interfacial energy of solid Bi solution in the Baratzone return solid Bi solution in the Baratzone return solid Bi solution of Zn in the solu

https://www.doi.org/10.1016/j.tca.2017.11.006 https://www.doi.org/10.1016/j.tca.2011.08.025 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1945 https://www.doi.org/10.1016/j.jct.2017.03.017 https://www.doi.org/10.1016/j.jct.2019.05.009 https://www.doi.org/10.1016/j.jct.2015.09.008 http://webbook.nist.gov/cgi/cbook.cgi?ID=C7429905&Units=SI https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure https://www.doi.org/10.1016/j.fluid.2010.07.015 https://www.doi.org/10.1016/j.fluid.2010.02.029 https://www.doi.org/10.1016/j.tca.2012.07.033 https://www.doi.org/10.1016/j.tca.2018.01.022

Legend

cps:	Solid phase heat capacity
ea:	Electron affinity
hf:	Enthalpy of formation at standard conditions
ie:	Ionization energy
pvap:	Vapor pressure
rhos:	Solid Density
sgb:	Molar entropy at standard conditions (1 bar)
SS:	Solid phase molar entropy at standard conditions
tb:	Normal Boiling Point Temperature
tf:	Normal melting (fusion) point
tt:	Triple Point Temperature

Latest version available from:

https://www.chemeo.com/cid/56-441-0/aluminium.pdf

Generated by Cheméo on 2024-04-25 17:05:15.508614884 +0000 UTC m=+16353964.429192199.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.