Ethyl acetate

Other names: 1-Acetoxyethane; Acetic acid, ethyl ester; Acetic ether; Acetidin; Acetoxyethane; Aethylacetat; CH3COOC2H5; Essigester; Ethyl acetic ester; Ethyl ester of acetic acid; Ethyl ethanoate; Ethylacetaat; Ethyle (acetate d'); Ethylester kyseliny octove; Etile (acetato di); NSC 70930; Rcra waste number U112; UN 1173; Vinegar naphtha; ac. acetic ethyl ester.

InChI: InChI=1S/C4H8O2/c1-3-6-4(2)5/h3H2,1-2H3

InChI Key: XEKOWRVHYACXOJ-UHFFFAOYSA-N

Formula: C4H8O2

SMILES: CCOC(C)=O

Molecular Weight: 88.11

CAS: 141-78-6

Physical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAff</td>
<td>835.70</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>BasG</td>
<td>804.70</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>BasG</td>
<td>799.90 ± 0.20</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta H^\circ_{\text{liquid}}$</td>
<td>-2238.54 ± 0.48</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta H^\circ_{\text{liquid}}$</td>
<td>-2235.40 ± 3.90</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta H^\circ_{\text{liquid}}$</td>
<td>-2256.00</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta H^\circ_{\text{liquid}}$</td>
<td>-2246.00</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>ΔG°</td>
<td>-251.12</td>
<td>kJ/mol</td>
<td>Joback Method</td>
</tr>
<tr>
<td>$\Delta H^\circ_{\text{gas}}$</td>
<td>-445.43 ± 0.84</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta H^\circ_{\text{gas}}$</td>
<td>-444.80 ± 0.40</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta H^\circ_{\text{gas}}$</td>
<td>-443.80</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta H^\circ_{\text{gas}}$</td>
<td>-446.90</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta H^\circ_{\text{liquid}}$</td>
<td>-480.57 ± 0.79</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta H^\circ_{\text{liquid}}$</td>
<td>-479.86 ± 0.46</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta H^\circ_{\text{liquid}}$</td>
<td>-478.82 ± 0.73</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta H^\circ_{\text{liquid}}$</td>
<td>-482.00 ± 4.00</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Unit</td>
<td>Source</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(\Delta_{\text{ fus}} H^\circ)</td>
<td>8.90</td>
<td>kJ/mol</td>
<td>Joback Method</td>
</tr>
<tr>
<td>(\Delta_{\text{ vap}} H^\circ)</td>
<td>35.69</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{\text{ vap}} H^\circ)</td>
<td>35.00</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{\text{ vap}} H^\circ)</td>
<td>35.10</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{\text{ vap}} H^\circ)</td>
<td>35.10 ± 0.20</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{\text{ vap}} H^\circ)</td>
<td>35.10</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{\text{ vap}} H^\circ)</td>
<td>35.60 ± 0.10</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{\text{ vap}} H^\circ)</td>
<td>35.10 ± 0.20</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{\text{ vap}} H^\circ)</td>
<td>35.10 ± 0.20</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\Delta_{\text{ vap}} H^\circ)</td>
<td>32.30 ± 0.42</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>10.01 ± 0.05</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>10.01 ± 0.05</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>10.00 ± 0.10</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>10.16</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>9.90 ± 0.05</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>10.24</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>10.11 ± 0.02</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>10.09 ± 0.02</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>10.45</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>IE</td>
<td>9.90</td>
<td>eV</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(\log P_{\text{ oct/wat}})</td>
<td>0.57</td>
<td></td>
<td>Crippen Method</td>
</tr>
<tr>
<td>(P_c)</td>
<td>3882.00 ± 3.87</td>
<td>kPa</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(P_c)</td>
<td>3830.00 ± 81.06</td>
<td>kPa</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(P_c)</td>
<td>3851.70 ± 40.00</td>
<td>kPa</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(P_c)</td>
<td>4018.00 ± 202.65</td>
<td>kPa</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(P_c)</td>
<td>4280.00 ± 405.30</td>
<td>kPa</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(S^\circ_{\text{ gas}})</td>
<td>362.75</td>
<td>J/mol×K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(S^\circ_{\text{ liquid}})</td>
<td>259.40</td>
<td>J/mol×K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Unit</td>
<td>Source</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.13 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.25 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>349.25 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.25 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.30 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.05 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.35</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.35</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.29 ± 0.15</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.15 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.25 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.25 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.25 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Unit</td>
<td>Source</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.65 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>349.65 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>352.15 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.25 ± 1.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.30 ± 1.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.30 ± 1.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>349.97 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>351.15 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.45 ± 1.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.25 ± 1.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.30 ± 0.40</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>349.15 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>349.65 ± 2.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.26 ± 0.06</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.30 ± 0.15</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.30 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.15 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>349.95 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.20 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.30 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.25 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.21 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>349.65 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.30 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.30 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.30 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>(T_{\text{boil}})</td>
<td>350.45 ± 0.60</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Unit</td>
<td>Source</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.30 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.25 ± 1.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.30 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.25 ± 1.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>349.90 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.30 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.30 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.30 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.30 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.20 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.10 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.70 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>350.65 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>346.65 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>347.45 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>347.45 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{c}</td>
<td>523.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{c}</td>
<td>523.30 ± 0.05</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{c}</td>
<td>523.30 ± 1.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{c}</td>
<td>523.30 ± 1.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{c}</td>
<td>548.90 ± 20.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{c}</td>
<td>522.70 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{c}</td>
<td>513.00 ± 6.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>189.55</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>189.18 ± 0.05</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>189.35 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>189.55 ± 0.10</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Unit</td>
<td>Source</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>189.77 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>190.77 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>190.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{triple}</td>
<td>189.30 ± 0.05</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{triple}</td>
<td>189.30 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>V_c</td>
<td>0.28</td>
<td>m³/kg-mol</td>
<td>Joback Method</td>
</tr>
</tbody>
</table>

Temperature Dependent Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
<th>Temperature (K)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{p,gas}$</td>
<td>125.82</td>
<td>J/mol×K</td>
<td>360.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,gas}$</td>
<td>131.06</td>
<td>J/mol×K</td>
<td>380.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,gas}$</td>
<td>136.22</td>
<td>J/mol×K</td>
<td>400.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,gas}$</td>
<td>142.80</td>
<td>J/mol×K</td>
<td>425.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,gas}$</td>
<td>149.47</td>
<td>J/mol×K</td>
<td>450.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,liquid}$</td>
<td>157.70</td>
<td>J/mol×K</td>
<td>290.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,liquid}$</td>
<td>169.20</td>
<td>J/mol×K</td>
<td>293.6</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,liquid}$</td>
<td>169.50</td>
<td>J/mol×K</td>
<td>298.1</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,liquid}$</td>
<td>168.94</td>
<td>J/mol×K</td>
<td>298.15</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,liquid}$</td>
<td>169.30</td>
<td>J/mol×K</td>
<td>298.15</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,liquid}$</td>
<td>169.06</td>
<td>J/mol×K</td>
<td>298.15</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,liquid}$</td>
<td>169.60</td>
<td>J/mol×K</td>
<td>298.15</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,liquid}$</td>
<td>169.60</td>
<td>J/mol×K</td>
<td>298.15</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,liquid}$</td>
<td>167.40</td>
<td>J/mol×K</td>
<td>298.15</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,liquid}$</td>
<td>170.59</td>
<td>J/mol×K</td>
<td>298.32</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p,liquid}$</td>
<td>168.82</td>
<td>J/mol×K</td>
<td>303.61</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>η</td>
<td>0.00</td>
<td>Pa×s</td>
<td>367.21</td>
<td>Joback Method</td>
</tr>
<tr>
<td>$\Delta_{fus}H$</td>
<td>10.48</td>
<td>kJ/mol</td>
<td>189.3</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Unit</td>
<td>Temperature (K)</td>
<td>Source</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}}H$</td>
<td>10.48</td>
<td>kJ/mol</td>
<td>189.3</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}}S$</td>
<td>55.27</td>
<td>J/mol×K</td>
<td>189.3</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>34.60 ± 0.10</td>
<td>kJ/mol</td>
<td>313.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>35.70</td>
<td>kJ/mol</td>
<td>319.5</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>34.00</td>
<td>kJ/mol</td>
<td>320.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>36.70</td>
<td>kJ/mol</td>
<td>322.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>33.80 ± 0.10</td>
<td>kJ/mol</td>
<td>326.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>33.40 ± 0.10</td>
<td>kJ/mol</td>
<td>331.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>31.40 ± 0.10</td>
<td>kJ/mol</td>
<td>343.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>32.40 ± 0.10</td>
<td>kJ/mol</td>
<td>344.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>34.10</td>
<td>kJ/mol</td>
<td>345.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>31.90</td>
<td>kJ/mol</td>
<td>350.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>31.94</td>
<td>kJ/mol</td>
<td>350.3</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>31.90 ± 0.10</td>
<td>kJ/mol</td>
<td>351.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>31.00 ± 0.10</td>
<td>kJ/mol</td>
<td>363.0</td>
<td>NIST Webbook</td>
</tr>
</tbody>
</table>

Sources

NIST Webbook: http://webbook.nist.gov/cgi/inchi/InChI=1S/C4H8O2/c1-3-6-4(2)5/h3H2,1-2H3

Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l

Legend

PAff: Proton affinity (kJ/mol).

BasG: Gas basicity (kJ/mol).

$\Delta_{\text{c}}H^o_{\text{liquid}}$: Standard liquid enthalpy of combustion (kJ/mol).

$C_{p,\text{gas}}$: Ideal gas heat capacity (J/mol×K).

$C_{p,\text{liquid}}$: Liquid phase heat capacity (J/mol×K).

η: Dynamic viscosity (Pa×s).

Δ_iG^o: Standard Gibbs free energy of formation (kJ/mol).
\(\Delta H^\circ_{\text{gas}} \): Enthalpy of formation at standard conditions (kJ/mol).

\(\Delta f^\circ_{\text{liquid}} \): Liquid phase enthalpy of formation at standard conditions (kJ/mol).

\(\Delta f_{\text{fus}}^\circ \): Enthalpy of fusion at standard conditions (kJ/mol).

\(\Delta f_{\text{fus}}^\circ \): Enthalpy of fusion at a given temperature (kJ/mol).

\(\Delta v_{\text{fus}}^\circ \): Enthalpy of vaporization at standard conditions (kJ/mol).

\(\Delta v_{\text{fus}}^\circ \): Enthalpy of vaporization at a given temperature (kJ/mol).

\(\text{IE} \): Ionization energy (eV).

\(\log P_{\text{oct/wat}} \): Octanol/Water partition coefficient.

\(P_c \): Critical Pressure (kPa).

\(\Delta f_{\text{fus}} S \): Entropy of fusion at a given temperature (J/mol×K).

\(S^\circ_{\text{gas}} \): Molar entropy at standard conditions (J/mol×K).

\(S^\circ_{\text{liquid}} \): Liquid phase molar entropy at standard conditions (J/mol×K).

\(T_{\text{boil}} \): Normal Boiling Point Temperature (K).

\(T_c \): Critical Temperature (K).

\(T_{\text{fus}} \): Normal melting (fusion) point (K).

\(T_{\text{fus}} \): Triple Point Temperature (K).

\(V_c \): Critical Volume (m\(^3\)/kg-mol).

Latest version available from:
https://www.chemeo.com/cid/57-231-2/Ethyl%20acetate

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.