Methyl methacrylate

Other names: 2-(Methoxycarbonyl)-1-propene

2-Methyl-2-propenoic acid methyl ester

2-Methylacrylic acid, methyl ester

2-Methylacrylic, methyl ester

2-Propenoic acid, 2-methyl-, methyl ester 2-methylpropenoic acid, methyl ester

Acryester M

Acrylic acid, 2-methyl-, methyl ester

CH2=C(CH3)COOCH3

Diakon MMA

Metakrylan metylu

Methacrylate de methyle

Methacrylic acid methyl ester Methacrylsaeuremethyl ester Methyl 2-methyl-2-propenoate Methyl 2-methylpropenoate

Methyl ester of 2-methyl-2-propenoic acid

Methyl methacrylate monomer

Methyl methylacrylate

Methyl «alpha»-methylacrylate Methyl «alpha»-methylacrylate

Methyl-methacrylat

Methyl-«alpha»-methacrylate Methyl-«alpha»-methacrylate Methylester kyseliny methakrylove

Methylmethacrylaat Metil metacrilato

Monocite methacrylate monomer

NCI-C50680 NSC 4769 Paladon Pegalan

Rcra waste number U162

TEB 3K

methacrylic acid, methyl ester

Inchi: InChl=1S/C5H8O2/c1-4(2)5(6)7-3/h1H2,2-3H3

InchiKey: VVQNEPGJFQJSBK-UHFFFAOYSA-N

Formula: C5H8O2

SMILES: C=C(C)C(=O)OC

Mol. weight [g/mol]: 100.12 CAS: 80-62-6

Physical Properties

Property code	Value	Unit	Source
affp	831.40	kJ/mol	NIST Webbook
basg	800.50	kJ/mol	NIST Webbook
chl	-2724.60 ± 4.00	kJ/mol	NIST Webbook
gf	-163.41	kJ/mol	Joback Method
hf	-331.00	kJ/mol	NIST Webbook
hf	-348.70	kJ/mol	NIST Webbook
hf	-342.30	kJ/mol	NIST Webbook
hfl	-382.40	kJ/mol	NIST Webbook
hfl	-388.80 ± 4.00	kJ/mol	NIST Webbook
hfus	8.90	kJ/mol	Joback Method
hvap	40.10	kJ/mol	NIST Webbook
ie	10.28	eV	NIST Webbook
ie	10.06	eV	NIST Webbook
ie	9.70	eV	NIST Webbook
log10ws	-0.80		Aqueous Solubility Prediction Method
logp	0.735		Crippen Method
mcvol	84.450	ml/mol	McGowan Method
pc	3881.95	kPa	Joback Method
rinpol	677.00		NIST Webbook
rinpol	716.28		NIST Webbook
rinpol	713.44		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	700.00		NIST Webbook
rinpol	694.00		NIST Webbook
rinpol	666.00		NIST Webbook
rinpol	670.00		NIST Webbook
rinpol	717.33		NIST Webbook
rinpol	677.00		NIST Webbook
rinpol	677.00		NIST Webbook
rinpol	677.00		NIST Webbook
rinpol	714.30		NIST Webbook
rinpol	732.00		NIST Webbook
rinpol	710.40		NIST Webbook
rinpol	723.00		NIST Webbook

rinpol	672.00		NIST Webbook
rinpol	710.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	714.00		NIST Webbook
rinpol	699.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	699.00		NIST Webbook
rinpol	677.00		NIST Webbook
rinpol	699.00		NIST Webbook
rinpol	677.00		NIST Webbook
rinpol	732.00		NIST Webbook
rinpol	699.00		NIST Webbook
ripol	1002.00		NIST Webbook
ripol	1002.00		NIST Webbook
ripol	1010.00		NIST Webbook
ripol	1008.00		NIST Webbook
ripol	1008.00		NIST Webbook
sl	266.20	J/mol×K	NIST Webbook
tb	386.65	K	Joback Method
tc	572.77	K	Joback Method
tf	225.26	K	Aqueous Solubility Prediction Method
tf	225.60	K	NIST Webbook
tf	225.15 ± 0.40	K	NIST Webbook
tf	225.00	K	NIST Webbook
tf	225.60 ± 0.20	K	NIST Webbook
tf	225.50 ± 0.20	K	NIST Webbook
tf	225.60	K	NIST Webbook
tt	225.59 ± 0.02	K	NIST Webbook
VC	0.322	m3/kmol	Joback Method

Temperature Dependent Properties

Property code Value Unit Temperature [K] Source
cpg 192.58 J/mol×K 572.77 Joback Method
cpg 164.83 J/molxK 448.69 Joback Method
cpg 157.23 J/molxK 417.67 Joback Method
cpg 149.36 J/molxK 386.65 Joback Method
cpg 172.17 J/molxK 479.71 Joback Method
cpg 186.04 J/molxK 541.75 Joback Method

cpg	179.24	J/mol×K	510.73	Joback Method	
cpl	215.30	J/mol×K	298.15	NIST Webbook	
cpl	210.55	J/mol×K	298.15	NIST Webbook	
cpl	188.49	J/mol×K	293.00	NIST Webbook	
cpl	192.40	J/mol×K	300.00	NIST Webbook	
cpl	215.30	J/mol×K	298.15	NIST Webbook	
cpl	191.09	J/mol×K	298.15	NIST Webbook	
cps	150.20	J/mol×K	210.00	NIST Webbook	
dvisc	0.0005540	Paxs		Density, Excess Molar Volume, and Viscosity for the Methyl Methacrylate + utyl-3-methylimidazoli Hexafluorophosphate Ionic Liquid Binary System at Atmospheric Pressure	um
dvisc	0.0004497	Pa×s	318.15	Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K	
dvisc	0.0004294	Paxs	323.15	Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K	
dvisc	0.0004100	Paxs	328.15	Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K	
dvisc	0.0004719	Paxs	313.15	Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K	

dvisc	0.0006808	Paxs	283.15 Density, Excess Molar Volume, and Viscosity for the Methyl Methacrylate + 1-Butyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid Binary System at Atmospheric Pressure
dvisc	0.0006337	Paxs	288.15 Density, Excess Molar Volume, and Viscosity for the Methyl Methacrylate + 1-Butyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid Binary System at Atmospheric Pressure
dvisc	0.0005899	Paxs	293.15 Density, Excess Molar Volume, and Viscosity for the Methyl Methacrylate + 1-Butyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid Binary System at Atmospheric Pressure
dvisc	0.0004956	Paxs	308.15 Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K
dvisc	0.0005248	Paxs	303.15 Density, Excess Molar Volume, and Viscosity for the Methyl Methacrylate + 1-Butyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid Binary System at Atmospheric Pressure

dvisc	0.0004956	Pa×s	308.15 Density, Excess Molar Volume, and Viscosity for the Methyl Methacrylate + 1-Butyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid Binary System at Atmospheric Pressure
dvisc	0.0004719	Paxs	313.15 Density, Excess Molar Volume, and Viscosity for the Methyl Methacrylate + 1-Butyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid Binary System at Atmospheric Pressure
dvisc	0.0004497	Paxs	318.15 Density, Excess Molar Volume, and Viscosity for the Methyl Methacrylate + 1-Butyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid Binary System at Atmospheric Pressure
dvisc	0.0005248	Paxs	303.15 Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K
dvisc	0.0004100	Paxs	328.15 Density, Excess Molar Volume, and Viscosity for the Methyl Methacrylate + 1-Butyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid Binary System at Atmospheric Pressure

dvisc	0.0003938	Paxs	333.15 Density, Excess Molar Volume, and Viscosity for the Methyl Methacrylate + 1-Butyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid Binary System at Atmospheric Pressure
dvisc	0.0003636	Pa×s	343.15 Density, Excess Molar Volume, and Viscosity for the Methyl Methacrylate + 1-Butyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid Binary System at Atmospheric Pressure
dvisc	0.0003398	Paxs	353.15 Density, Excess Molar Volume, and Viscosity for the Methyl Methacrylate + 1-Butyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid Binary System at Atmospheric Pressure
dvisc	0.0005540	Pa×s	298.15 Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K
dvisc	0.0005899	Paxs	293.15 Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K
dvisc	0.0006337	Paxs	288.15 Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K

dvisc	0.0004294	Paxs	323.15 1-B	Density, Excess Molar Volume, and Viscosity for the Methyl Methacrylate + utyl-3-methylimidazo Hexafluorophosphate Ionic Liquid Binary System at Atmospheric Pressure	lium)
dvisc	0.0003938	Paxs	333.15	Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K	
dvisc	0.0006808	Paxs	283.15	Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K	
hfust	13.45	kJ/mol	225.50	NIST Webbook	
hfust	14.44	kJ/mol	225.59	NIST Webbook	
hfust	12.24	kJ/mol	225.00	NIST Webbook	
hfust	12.24	kJ/mol	225.00	NIST Webbook	
hsubt	60.70	kJ/mol	208.50	NIST Webbook	
hvapt	38.80 ± 0.10	kJ/mol	340.50	NIST Webbook	
hvapt	36.30 ± 0.20	kJ/mol	340.50	NIST Webbook	
hvapt	33.30 ± 0.40	kJ/mol	340.50	NIST Webbook	
hvapt	37.90	kJ/mol	333.00	NIST Webbook	
hvapt	38.00	kJ/mol	339.00	NIST Webbook	
hvapt	37.70	kJ/mol	333.00	NIST Webbook	
hvapt	39.00	kJ/mol	337.00	NIST Webbook	
rhol	914.67	kg/m3	318.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	

rhol	926.16	kg/m3	308.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	
rhol	931.90	kg/m3	303.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	
rhol	937.64	kg/m3	298.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	
rhol	920.42	kg/m3	313.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	
rhol	943.38	kg/m3	293.15	Densities, ultrasonic speeds, excess and partial molar properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 293.15 K to 318.15 K	

rhol	937.63	kg/m3	298.15	Volumetric Properties of 3-Methylbutyl Ethanoate with Ethyl Acrylate, Butyl Acrylate, Methyl Methacrylate, and Styrene at 25 C
rhol	937.65	kg/m3	298.15	Densities and volumes of mixing of the ternary system toluene + butyl acrylate + methyl methacrylate and its binaries at 298.15 K
rhol	949.10	kg/m3	288.15	Densities, ultrasonic speeds, viscosities and excess properties of binary mixtures of methyl methacrylate with N,N-dimethylformamide and N,N-dimethylacetamide at different temperatures
rhol	943.37	kg/m3	293.15	Densities, ultrasonic speeds, viscosities and excess properties of binary mixtures of methyl methacrylate with N,N-dimethylformamide and N,N-dimethylacetamide at different temperatures
rhol	937.63	kg/m3	298.15	Densities, ultrasonic speeds, viscosities and excess properties of binary mixtures of methyl methacrylate with N,N-dimethylformamide and N,N-dimethylacetamide at different temperatures

rhol	931.89	kg/m3	303.15	Densities, ultrasonic speeds, viscosities and excess properties of binary mixtures of methyl methacrylate with N,N-dimethylformamide and N,N-dimethylacetamide at different temperatures
rhol	914.66	kg/m3	318.15	Densities, ultrasonic speeds, viscosities and excess properties of binary mixtures of methyl methacrylate with N,N-dimethylformamide and N,N-dimethylacetamide at different temperatures
rhol	920.41	kg/m3	313.15	Densities, ultrasonic speeds, viscosities and excess properties of binary mixtures of methyl methacrylate with N,N-dimethylformamide and N,N-dimethylacetamide at different temperatures
rhol	926.15	kg/m3	308.15	Densities, ultrasonic speeds, viscosities and excess properties of binary mixtures of methyl methacrylate with N,N-dimethylformamide and N,N-dimethylacetamide at different temperatures
sfust	59.65	J/mol×K	225.50	NIST Webbook
sfust	64.00	J/mol×K	225.59	NIST Webbook

speedsl	1153.00	m/s	308.15	Densities, Excess Molar Volumes at T = (298.15 to 313.15) K, Speeds of Sound, Excess Isentropic Compressibilities, Relative Permittivities and Deviations in Molar Polarizations at T = (298.15 and 308.15) K for Methyl Methacrylate + 2-Butoxyethanol or + Dibutyl Ether + Benzene, + Toluene and + p-Xylene	
speedsl	1182.00	m/s	298.15	Densities, Speeds of Sound, Excess Molar Volumes, and Excess Isentropic Compressibilities at T = (298.15 and 308.15) K for Methyl Methacrylate + 1-Alkanols (1-Butanol, 1-Pentanol, and 1-Heptanol) + Cyclohexane, + Benzene, + Toluene, + p-Xylene, and + Ethylbenzene	
speedsl	1152.00	m/s	308.15	Densities, Speeds of Sound, Excess Molar Volumes, and Excess Isentropic Compressibilities at T = (298.15 and 308.15) K for Methyl Methacrylate + 1-Alkanols (1-Butanol, 1-Pentanol, and 1-Heptanol) + Cyclohexane, + Benzene, + Toluene, + p-Xylene, and + Ethylbenzene	

speedsl	1181.00	m/s	298.15	Densities,
эросиы	1101.00	111/3	200.10	Excess Molar
				Volumes at T =
				(298.15 to
				313.15) K,
				Speeds of
				Sound, Excess
				Isentropic
				Compressibilities,
				Relative
				Permittivities and
				Deviations in
				Molar
				Polarizations at T
				= (298.15 and
				308.15) K for
				Methyl
				Methacrylate +
				2-Butoxyethanol
				or + Dibutyl Ether
				+ Benzene, +
				Toluene and +
				p-Xylene

Correlations

Information Value

Property code	pvap		
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$		
Coeff. A	1.28053e+02		
Coeff. B	-8.95480e+03		
Coeff. C	-1.71457e+01		
Coeff. D	1.47176e-05		
Temperature range (K), min.	224.95		
Temperature range (K), max.	564.00		

Sources

KDB Vapor Pressure Data: https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1171

http://webbook.nist.gov/cgi/cbook.cgi?ID=C80626&Units=SI **NIST Webbook:**

Liquid-Liquid Equilibria for the Ternary https://www.doi.org/10.1021/je700118q Liquid-Liquid Equilibria for the Ternary Systems Water + 2-Propanol + Methyl Metwactyiate Graptifys Methyl Liquid Equilibria for the Ternary Systems Water + 2-Propanol + Methyl Metwactyiate Graptifys Methyl Liquid Equilibria for the Ternary Metwactyiate Graptifys Methyl Liquid Equilibria for the Ternary Metwactyiate Graptifys Methyl Liquid Equilibria for the Ternary Methyl Liquid Equilibria for the Ternary Methyl Methyl Methyl Liquid Equilibria for the Ternary Methyl Methyl Methyl Liquid Equilibria for the Ternary Methyl Methyl Liquid Equilibria for the binary mixtures of methyl methacrylate with N,N-dimethylformamide and

N,N-dimethylacetamide at different

temperatures:

Methyl Methacrylate + Carbon Dioxide Phase Equilibria at High Pressures: Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methiaclightid ซาหมีการบุรณะคบระชากร of พระกร เอฮรเลกรูโ x methyl anthranilate ลงระดงเลิโรยหลัยใช้แก่ชะมีเวเกด Method:

https://www.doi.org/10.1021/je800164w https://www.doi.org/10.1016/j.fluid.2011.07.008

https://www.doi.org/10.1021/je049639z

Densities and volumes of mixing of the https://www.doi.org/10.1016/j.jct.2006.05.012 Densities and volumes of mixing of the ternary system toluene + butyl acrylate Linkin ij inkie raikijinie and the ternary system toluene + butyl acrylate Linkin ij inkie raikijinie and the ternary system toluene + butyl acrylate system; water + 1-propanol + methyl hensice i and the ternary system toluene + butyl acrylate system; water + 1-propanol + methyl hensice i and the ternary system toluene + butyl acrylate system; water + 1-propanol + methyl hensice i and the ternary system toluene + butyl acrylate system; www.doi.org/10.1016/j.jct.2018.12.031 https://www.doi.org/10.1021/je3010535 https://www.doi.org/10.1021/je3010535 https://www.doi.org/10.1021/je7002572 https://www.doi.org/10.1021/je7002572 https://www.doi.org/10.1021/je700272y https://www.doi.org/10.1021/je900091b https://www.doi.org/10.1021/je900091b https://www.doi.org/10.1021/je900091b https://www.doi.org/10.1021/je900091b https://www.doi.org/10.1021/je900091b https://www.doi.org/10.1021/je900091b

https://www.doi.org/10.1016/j.fluid.2007.05.018

http://link.springer.com/article/10.1007/BF02311772

Hexafluorophosphate Ionic Liquid Binary System at Atmospheric

https://www.cheric.org/files/research/kdb/mol/mol1171.mol

Pressure:

https://en.wikipedia.org/wiki/Joback_method

Densities, Excess Molar Volumes at T = https://www.doi.org/10.1021/je034022n Densities, Excess Molar Volumes at 1 = (298.15 to 313.15) K. Speeds of Sound, Excess refrects of appreciation, speeds of Sound, Excess refrects of appreciation of the property of the propert

https://www.doi.org/10.1016/j.jct.2011.11.020

https://www.doi.org/10.1021/je100652b

Ethylbenzene:

affp: Proton affinity Gas basicity basg:

chl: Standard liquid enthalpy of combustion

Ideal gas heat capacity cpg: Liquid phase heat capacity cpl: cps: Solid phase heat capacity

dvisc: Dynamic viscosity

Standard Gibbs free energy of formation gf: hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions Enthalpy of fusion at a given temperature hfust:

hsubt: Enthalpy of sublimation at a given temperature hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: mcvol: McGowan's characteristic volume

Critical Pressure pc: Vapor pressure pvap:

rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/57-301-4/Methyl-methacrylate.pdf

Generated by Cheméo on 2025-12-05 23:03:16.489193653 +0000 UTC m=+4723994.019234307.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.