2-Propanol, 1-butoxy-

Other names: 1,2-Propylene glycol 1-monobutyl ether

1-Butoxy-2-propanol 1-butoxypropan-2-ol

2-Hydroxy-3-butoxypropane

NSC 2211

Propasol solvent B

Propylene glycol monobutyl ether Propylene glycol n-butyl ether

n-Butoxypropanol

propane, 1-butoxy-2-hydroxypropyleneglycol, 1-butyl ether

InChl=1S/C7H16O2/c1-3-4-5-9-6-7(2)8/h7-8H,3-6H2,1-2H3

InchiKey: RWNUSVWFHDHRCJ-UHFFFAOYSA-N

Formula: C7H16O2

SMILES: CCCCOCC(C)O

Mol. weight [g/mol]: 132.20 CAS: 5131-66-8

Physical Properties

Property code	Value	Unit	Source
gf	-236.20	kJ/mol	Joback Method
hf	-477.54	kJ/mol	Joback Method
hfus	15.64	kJ/mol	Joback Method
hvap	49.88	kJ/mol	Joback Method
log10ws	-1.22		Crippen Method
logp	1.184		Crippen Method
mcvol	121.230	ml/mol	McGowan Method
рс	3062.55	kPa	Joback Method
rinpol	947.00		NIST Webbook
rinpol	923.00		NIST Webbook
rinpol	941.00		NIST Webbook
rinpol	936.00		NIST Webbook
rinpol	948.00		NIST Webbook
rinpol	936.20		NIST Webbook
rinpol	936.70		NIST Webbook
rinpol	928.00		NIST Webbook
rinpol	941.00		NIST Webbook

rinpol	945.00		NIST Webbook
rinpol	936.20		NIST Webbook
ripol	1363.50		NIST Webbook
tb	443.35	K	NIST Webbook
tc	637.45	K	Joback Method
tf	236.70	K	Joback Method
VC	0.459	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	271.52	J/mol×K	473.72	Joback Method
cpg	282.22	J/mol×K	501.01	Joback Method
cpg	292.56	J/mol×K	528.30	Joback Method
cpg	302.54	J/mol×K	555.59	Joback Method
cpg	312.18	J/mol×K	582.87	Joback Method
cpg	321.47	J/mol×K	610.16	Joback Method
cpg	330.41	J/mol×K	637.45	Joback Method
cpl	307.60	J/mol×K	284.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.
cpl	309.30	J/mol×K	287.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.
cpl	310.20	J/mol×K	288.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.
cpl	311.00	J/mol×K	290.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.

cpl	311.90	J/mol×K	291.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	312.70	J/mol×K	293.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	313.50	J/mol×K	294.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	314.40	J/mol×K	296.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	315.20	J/mol×K	297.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	315.50	J/mol×K	298.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	316.00	J/mol×K	299.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	316.80	J/mol×K	300.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	317.60	J/mol×K	302.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	

cpl 318.40 J/mol×K 303.65 Heat capacit downsols wing a temperaturange of (275)	
to 339.15) Measureme and prediction	5.15 K. nts
cpl 319.20 J/mol×K 305.15 Heat capacit dowanols wi a temperatu range of (275 to 339.15) Measureme and prediction	hin ire 5.15 K. nts
cpl 320.00 J/mol×K 306.65 Heat capacit dowanols wi a temperatu range of (275 to 339.15) Measureme and predicti	thin tre 5.15 K. nts
cpl 320.70 J/mol×K 308.15 Heat capacit dowanols wi a temperatu range of (275 to 339.15) Measureme and predicti	hin ire 5.15 K. nts
cpl 321.50 J/mol×K 309.65 Heat capacit dowanols wi a temperatu range of (275 to 339.15) Measureme and predicti	thin tre 5.15 K. nts
cpl 322.30 J/mol×K 311.15 Heat capacit downols wi a temperaturange of (275 to 339.15) Measureme and prediction	hin ire 5.15 K. nts
cpl 323.00 J/mol×K 312.65 Heat capacit downols wing a temperaturange of (275 to 339.15) Measureme and prediction	Íhin Ire 5.15 K. nts
cpl 323.80 J/mol×K 314.15 Heat capacit dowanols wi a temperatu range of (275 to 339.15) Measureme and prediction	hin ire 5.15 K. nts

cpl	324.50	J/mol×K	315.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	325.30	J/mol×K	317.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	326.00	J/mol×K	318.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	326.80	J/mol×K	320.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	327.50	J/mol×K	321.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	328.20	J/mol×K	323.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	328.90	J/mol×K	324.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	329.60	J/mol×K	326.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	330.30	J/mol×K	327.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	

cpl	331.00	J/mol×K	329.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	331.70	J/mol×K	330.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	332.40	J/mol×K	332.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	333.10	J/mol×K	333.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	333.80	J/mol×K	335.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	334.40	J/mol×K	336.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	335.10	J/mol×K	338.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	308.50	J/mol×K	285.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	

срІ	306.80	J/mol×K	282.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	305.90	J/mol×K	281.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	305.00	J/mol×K	279.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	304.10	J/mol×K	278.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	303.20	J/mol×K	276.65	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	335.50	J/mol×K	339.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
cpl	302.30	J/mol×K	275.15	Heat capacity of dowanols within a temperature range of (275.15 to 339.15) K. Measurements and prediction.	
dvisc	0.0030786	Paxs	315.71	Joback Method	
dvisc	0.0011285	Paxs	355.21	Joback Method	
dvisc	0.0005057	Paxs	394.71	Joback Method	
dvisc	0.0625947	Paxs	236.70	Joback Method	
dvisc	0.0001517	Paxs	473.72	Joback Method	
dvisc	0.0111917	Paxs	276.20	Joback Method	
dvisc	0.0002622	Paxs	434.22	Joback Method	

rhol	879.03	kg/m3	293.15	Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach
rhol	874.63	kg/m3	298.15	Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach
rhol	870.20	kg/m3	303.15	Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach
rhol	861.24	kg/m3	313.15	Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach
rhol	865.74	kg/m3	308.15	Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach

speedsl	1297.59	m/s	288.15	Densities and Speeds of Sound of Binary Liquid Mixtures of Some n-Alkoxypropanols with Methyl Acetate, Ethyl Acetate, and n-Butyl Acetate at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K	
speedsl	1243.85	m/s	303.15	Densities and Speeds of Sound of Binary Liquid Mixtures of Some n-Alkoxypropanols with Methyl Acetate, Ethyl Acetate, and n-Butyl Acetate at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K	
speedsl	1225.83	m/s	308.15	Densities and Speeds of Sound of Binary Liquid Mixtures of Some n-Alkoxypropanols with Methyl Acetate, Ethyl Acetate, and n-Butyl Acetate at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K	
speedsl	1207.02	m/s	313.15	Thermodynamic and spectral studies of molecular interactions in binary liquid mixtures of 1-butoxy-2-propanol with 1-alcohols	
speedsl	1224.91	m/s	308.15	Thermodynamic and spectral studies of molecular interactions in binary liquid mixtures of 1-butoxy-2-propanol with 1-alcohols	

speedsl	1242.94	m/s	303.15	Thermodynamic and spectral studies of molecular interactions in binary liquid mixtures of 1-butoxy-2-propanol with 1-alcohols	
speedsl	1260.90	m/s	298.15	Thermodynamic and spectral studies of molecular interactions in binary liquid mixtures of 1-butoxy-2-propanol with 1-alcohols	
speedsl	1278.98	m/s	293.15	Thermodynamic and spectral studies of molecular interactions in binary liquid mixtures of 1-butoxy-2-propanol with 1-alcohols	
speedsl	1261.87	m/s	298.15	Densities and Speeds of Sound of Binary Liquid Mixtures of Some n-Alkoxypropanols with Methyl Acetate, Ethyl Acetate, and n-Butyl Acetate at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K	
speedsl	1279.95	m/s	293.15	Densities and Speeds of Sound of Binary Liquid Mixtures of Some n-Alkoxypropanols with Methyl Acetate, Ethyl Acetate, and n-Butyl Acetate at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K	

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.64361e+01
Coeff. B	-4.47407e+03
Coeff. C	-6.47630e+01
Temperature range (K), min.	341.82
Temperature range (K), max.	466.94

Sources

The Yaws Handbook of Vapor

Pressure: Crippen Method:

Densities and Speeds of Sound of Binary Liquid Mixtures of Some Acetate, Ethyl Acetate, and n-Butyl Acetate at 91 9 (288.15, 293.15, 298.15,

10315appdi308f15) Wanols within a temperature range of (275.15 to 339.15)
Muthad Shahbitts and Longer Civinical
Solution Temperature for Water +
Chermony Method by 2-2-propanol with

https://www.doi.org/10.1021/je049635u

https://www.doi.org/10.1021/je049635u

https://www.doi.org/10.1021/je049635u

https://www.doi.org/10.1021/je049635u

https://www.doi.org/10.1021/je049635u

https://www.doi.org/10.1021/je049635u

https://www.doi.org/10.1021/je049635u

https://www.doi.org/10.1021/je049635u

https://www.doi.org/10.1021/je049635u

1-alcohols: Molecular interactions in binary mixtures of 1-butoxy-2-propanol with thermophysical and spectroscopic approach:

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.chemeo.com/doc/models/crippen_log10ws

https://www.doi.org/10.1021/je300789a

https://en.wikipedia.org/wiki/Joback_method

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1016/j.fluid.2016.09.002

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1016/j.jct.2014.07.019

http://webbook.nist.gov/cgi/cbook.cgi?ID=C5131668&Units=SI

Legend

Ideal gas heat capacity cpg: cpl: Liquid phase heat capacity

dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: McGowan's characteristic volume mcvol:

Critical Pressure pc: Vapor pressure pvap: rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

speedsl: Speed of sound in fluid

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/57-818-1/2-Propanol-1-butoxy.pdf

Generated by Cheméo on 2024-04-09 04:03:25.869523564 +0000 UTC m=+14924654.790100879.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.