Acetic acid, methyl ester

Other names: Acetate de methyle

CH3COOCH3
DEVOTON

Ethyl ester of monoacetic acid METHYL ACETIC ESTER METHYL ETHANOATE

Methyl acetate

Methyl ester of acetic acid

Methylacetaat Methylacetat

Methyle (acetate de)

Methylester kiseliny octove

Metile (acetato di)

NSC 405071

Tereton UN 1231

ethanoic acid, methyl ester

Inchi: InChI=1S/C3H6O2/c1-3(4)5-2/h1-2H3
InchiKey: KXKVLQRXCPHEJC-UHFFFAOYSA-N

Formula: C3H6O2SMILES: COC(C)=O

Mol. weight [g/mol]: 74.08 CAS: 79-20-9

Physical Properties

Property code	Value	Unit	Source
af	0.3260		KDB
affp	821.60	kJ/mol	NIST Webbook
aigt	774.82	K	KDB
basg	790.70	kJ/mol	NIST Webbook
chl	-1592.20 ± 0.67	kJ/mol	NIST Webbook
chl	-1583.00	kJ/mol	NIST Webbook
dm	1.70	debye	KDB

dvisc	0.0003711	Paxs	Densities and Viscosities of Binary Liquid Mixtures of Trichloroethylene and Tetrachloroethylene with Some Polar and Nonpolar Solvents
dvisc	0.0004000	Pa×s	Densities and Viscosities of 1-Butyl-3-methylimidazolium Tetrafluoroborate + Molecular Solvent Binary Mixtures
dvisc	0.0003800	Paxs	Densities and Viscosities of Ternary Mixtures of Cyclohexane + Cyclohexanone + Some Alkyl Acetates at 298.15 K
fII	3.10	% in Air	KDB
flu	16.00	% in Air	KDB
fpc	267.59	K	KDB
fpo	263.15	K	KDB
gf	-259.54	kJ/mol	Joback Method
gyrad	2.8620		KDB
hf	-410.00	kJ/mol	NIST Webbook
hf	-409.70	kJ/mol	KDB
hfl	-445.89	kJ/mol	NIST Webbook
hfus	6.31	kJ/mol	Joback Method
hvap	31.43	kJ/mol	Joback Method
ie	10.59	eV	NIST Webbook
ie	10.25 ± 0.02	eV	NIST Webbook
ie	11.00	eV	NIST Webbook
ie	10.50	eV	NIST Webbook
ie	10.33	eV	NIST Webbook
ie	10.25 ± 0.05	eV	NIST Webbook
ie	10.25	eV	NIST Webbook
ie	10.20	eV	NIST Webbook
ie	10.25	eV	NIST Webbook
ie	10.27 ± 0.02	eV	NIST Webbook
log10ws	0.46		Estimated Solubility Method
log10ws	0.52		Aqueous Solubility Prediction Method
logp	0.179		Crippen Method
mcvol	60.570	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=1)		KDB
рс	4694.30 ± 40.00	kPa	NIST Webbook
рс	4750.00	kPa	KDB
рс	4750.00 ± 4.74	kPa	NIST Webbook
pc	5840.00 ± 607.95	kPa	NIST Webbook

pc	4694.00 ± 81.06	kPa	NIST Webbook
рс	4817.00 ± 101.32	kPa	NIST Webbook
rhoc	325.50 ± 3.70	kg/m3	NIST Webbook
rhoc	320.02 ± 5.93	kg/m3	NIST Webbook
rinpol	510.00		NIST Webbook
rinpol	530.00		NIST Webbook
rinpol	525.70		NIST Webbook
rinpol	522.40		NIST Webbook
rinpol	505.00		NIST Webbook
rinpol	505.00		NIST Webbook
rinpol	505.00		NIST Webbook
rinpol	509.00		NIST Webbook
rinpol	505.00		NIST Webbook
rinpol	529.00		NIST Webbook
rinpol	560.00		NIST Webbook
rinpol	525.90		NIST Webbook
rinpol	509.00		NIST Webbook
rinpol	509.00		NIST Webbook
rinpol	505.00		NIST Webbook
rinpol	506.00		NIST Webbook
rinpol	523.70		NIST Webbook
rinpol	531.00		NIST Webbook
rinpol	509.00		NIST Webbook
rinpol	522.00		NIST Webbook
rinpol	531.00		
rinpol	517.20		NIST Webbook
rinpol	526.30		NIST Webbook
rinpol	506.00		NIST Webbook
rinpol	511.00		NIST Webbook
rinpol	511.00		NIST Webbook
rinpol	521.30		NIST Webbook
rinpol	516.70		NIST Webbook
rinpol	536.00		NIST Webbook
rinpol	515.00		NIST Webbook
rinpol	559.00		NIST Webbook
rinpol	512.00		NIST Webbook
rinpol	513.00		NIST Webbook
rinpol	513.00		NIST Webbook
rinpol	510.00		NIST Webbook
rinpol	511.00		NIST Webbook
rinpol	507.00		NIST Webbook
rinpol	512.00		NIST Webbook
rinpol	515.00		NIST Webbook
rinpol	524.00		NIST Webbook
IIIPOI	02 1.00		

rinnal	E4E 20	NIST Webbook
rinpol	515.30 525.00	NIST Webbook NIST Webbook
•	511.00	NIST Webbook NIST Webbook
rinpol	511.00	
rinpol		NIST Webbook
rinpol	513.00	NIST Webbook
rinpol	519.00	NIST Webbook
rinpol	509.00	NIST Webbook
rinpol	531.00	NIST Webbook
rinpol	528.00	NIST Webbook
rinpol	509.00	NIST Webbook
rinpol	509.00	NIST Webbook
rinpol	525.00	NIST Webbook
rinpol	509.00	NIST Webbook
rinpol	559.00	NIST Webbook
rinpol	523.00	NIST Webbook
rinpol	513.00	NIST Webbook
rinpol	525.70	NIST Webbook
rinpol	530.00	NIST Webbook
rinpol	512.00	NIST Webbook
rinpol	510.00	NIST Webbook
rinpol	507.00	NIST Webbook
rinpol	512.00	NIST Webbook
rinpol	529.70	NIST Webbook
rinpol	524.00	NIST Webbook
rinpol	508.00	NIST Webbook
rinpol	508.00	NIST Webbook
rinpol	519.00	NIST Webbook
rinpol	513.00	NIST Webbook
rinpol	511.50	NIST Webbook
rinpol	513.80	NIST Webbook
rinpol	515.70	NIST Webbook
rinpol	521.30	NIST Webbook
rinpol	526.20	NIST Webbook
rinpol	521.00	NIST Webbook
rinpol	520.60	NIST Webbook
rinpol	522.17	NIST Webbook
rinpol	501.15	NIST Webbook
rinpol	513.00	NIST Webbook
rinpol	509.00	NIST Webbook
ripol	784.00	NIST Webbook
ripol	796.00	NIST Webbook
ripol	827.00	NIST Webbook
ripol	841.00	NIST Webbook
ripol	841.00	NIST Webbook
- IIpol	311.00	THO I WOODOOK

win al	024.00	NICT Wahhaala
ripol	834.00 813.00	NIST Webbook NIST Webbook
ripol	834.00	NIST Webbook
ripol		
ripol	834.00	NIST Webbook
ripol	839.00	NIST Webbook
ripol	804.00	NIST Webbook
ripol	834.00	NIST Webbook
ripol	813.00	NIST Webbook
ripol	827.00	NIST Webbook
ripol	826.00	NIST Webbook
ripol	844.00	NIST Webbook
ripol	877.00	NIST Webbook
ripol	823.00	NIST Webbook
ripol	854.00	NIST Webbook
ripol	850.00	NIST Webbook
ripol	836.00	NIST Webbook
ripol	832.00	NIST Webbook
ripol	810.00	NIST Webbook
ripol	827.00	NIST Webbook
ripol	828.00	NIST Webbook
ripol	798.00	NIST Webbook
ripol	839.00	NIST Webbook
ripol	826.00	NIST Webbook
ripol	834.00	NIST Webbook
ripol	832.80	NIST Webbook
ripol	801.00	NIST Webbook
ripol	834.00	NIST Webbook
ripol	825.00	NIST Webbook
ripol	829.00	NIST Webbook
ripol	827.00	NIST Webbook
ripol	817.00	NIST Webbook
ripol	825.00	NIST Webbook
ripol	828.00	NIST Webbook
ripol	825.00	NIST Webbook
ripol	848.00	NIST Webbook
ripol	818.00	NIST Webbook
ripol	843.00	NIST Webbook
ripol	828.00	NIST Webbook
ripol	813.00	NIST Webbook
ripol	832.00	NIST Webbook
ripol	828.00	NIST Webbook
ripol	826.00	NIST Webbook
ripol	782.00	NIST Webbook
ripol	856.00	NIST Webbook
1,60	333.33	

ripol	822.00		NIST Webbook
ripol	782.00		NIST Webbook
ripol	782.00		NIST Webbook
ripol	825.00		NIST Webbook
ripol	827.00		NIST Webbook
ripol	837.00		NIST Webbook
ripol	845.00		NIST Webbook
ripol	825.00		NIST Webbook
ripol	825.00		NIST Webbook
ripol	828.00		NIST Webbook
ripol	864.00		NIST Webbook
tb	329.85	К	Isobaric Vapor-Liquid Equilibria and Excess Properties for the Binary Systems of Methyl Esters + Heptane
tb	329.95	К	Experimental Measurements of Vapor Liquid Equilibrium Data for the Binary Systems of Methanol + 2-Butyl Acetate, 2-Butyl Alcohol + 2-Butyl Acetate, and Methyl Acetate + 2-Butyl Acetate at 101.33 kPa
tb	330.04	К	Volumetric property for carbon dioxide + methyl acetate system at 313.15K
tb	330.05	К	Multiphase equilibria for mixtures containing water, acetic acid, propionic acid, methyl acetate and methyl propionate
tb	330.95	K	Isobaric vapor-liquid equilibrium data for the binary system methyl acetate + isopropyl acetate and the quaternary system methyl acetate + methanol + isopropanol + isopropyl acetate at 101.3 kPa
tb	330.40	K	Isobaric vapor-liquid equilibria of the binary mixtures propylene glycol methyl ether + propylene glycol methyl ether acetate, methyl acetate + propylene glycol methyl ether and methanol + propylene glycol methyl ether acetate at 101.3 kPa

tb	330.02	К	Experimental isobaric vapor-liquid equilibrium for the binary and ternary systems with methanol, methyl acetate and dimethyl sulfoxide at 101.3 kPa
tb	329.97	К	Vapor-Liquid Equilibrium and Liquid-Liquid Equilibrium of Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Acetate
tb	330.05	К	Isobaric vapor-liquid equilibrium for methanol + methyl acetate with ionic liquids [OMMIM][Tf2N] and [OMIM][Tf2N] as entrainers at 101.3 kPa
tb	330.02	K	KDB
tb	330.20	К	Isobaric Vapor-Liquid Equilibrium Measurements for Separation of Azeotrope (Methanol + Methyl Acetate)
tc	506.55	K	KDB
tf	175.00	K	KDB
tf	175.15 ± 0.30	K	NIST Webbook
tf	175.10 ± 0.20	K	NIST Webbook
tt	174.90 ± 0.01	K	NIST Webbook
VC	0.228	m3/kmol	KDB
ZC	0.2571400		KDB
zra	0.26		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	92.58	J/mol×K	335.00	NIST Webbook	
cpg	95.46	J/mol×K	350.00	NIST Webbook	
cpg	100.39	J/mol×K	375.00	NIST Webbook	
cpg	105.31	J/mol×K	400.00	NIST Webbook	
cpg	109.98	J/mol×K	425.00	NIST Webbook	
cpg	114.63	J/mol×K	450.00	NIST Webbook	
cpl	123.70	J/mol×K	297.00	NIST Webbook	
cpl	140.56	J/mol×K	298.15	NIST Webbook	
cpl	141.34	J/mol×K	298.15	NIST Webbook	
cpl	140.20	J/mol×K	288.58	NIST Webbook	
cpl	140.60	J/mol×K	298.15	NIST Webbook	

dvisc	0.0003480	Paxs	303.15	Dynamic Viscosities, Densities, and Speed of Sound and Derived Properties of the Binary Systems Acetic Acid with Water, Methanol, Ethanol, Ethyl Acetate and Methyl Acetate at T = (293.15, 298.15, and 303.15) K at Atmospheric Pressure	
dvisc	0.0003860	Paxs	293.15	Dynamic Viscosities, Densities, and Speed of Sound and Derived Properties of the Binary Systems Acetic Acid with Water, Methanol, Ethanol, Ethyl Acetate and Methyl Acetate at T = (293.15, 298.15, and 303.15) K at Atmospheric Pressure	
dvisc	0.0003510	Paxs	308.15	Densities, Excess Molar Volumes, Viscosities, Speeds of Sound, Excess Isentropic Compressibilities, and Relative Permittivities for Alkyl (Methyl, Ethyl, Butyl, and Isoamyl) Acetates + Glycols at Different Temperatures	

dvisc	0.0003840	Paxs	298.15	Densities, Excess Molar Volumes, Viscosities, Speeds of Sound, Excess Isentropic Compressibilities, and Relative Permittivities for Alkyl (Methyl, Ethyl, Butyl, and Isoamyl) Acetates + Glycols at Different Temperatures	
dvisc	0.0003480	Paxs	303.15	Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K	
dvisc	0.0003670	Paxs	298.15	Dynamic Viscosities, Densities, and Speed of Sound and Derived Properties of the Binary Systems Acetic Acid with Water, Methanol, Ethanol, Ethyl Acetate and Methyl Acetate at T = (293.15, 298.15, and 303.15) K at Atmospheric Pressure	
dvisc	0.0003860	Paxs	293.15	Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K	

dvisc	0.0003670	Paxs	298.15	Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K	
hfust	7.49	kJ/mol	174.90	NIST Webbook	
hfust	7.49	kJ/mol	174.90	NIST Webbook	
hfust	7.49	kJ/mol	174.90	NIST Webbook	
hvapt	30.20	kJ/mol	330.00	NIST Webbook	
hvapt	34.50	kJ/mol	295.50	NIST Webbook	
hvapt	30.50 ± 0.10	kJ/mol	328.00	NIST Webbook	
hvapt	30.30 ± 0.10	kJ/mol	331.00	NIST Webbook	
hvapt	32.50	kJ/mol	295.00	NIST Webbook	
hvapt	31.60 ± 0.10	kJ/mol	313.00	NIST Webbook	
hvapt	32.20 ± 0.10	kJ/mol	304.00	NIST Webbook	
hvapt	29.50 ± 0.10	kJ/mol	343.00	NIST Webbook	
hvapt	33.40	kJ/mol	301.50	NIST Webbook	
hvapt	34.10	kJ/mol	305.50	NIST Webbook	
hvapt	30.32	kJ/mol	330.10	NIST Webbook	
hvapt	31.80	kJ/mol	323.00	NIST Webbook	
pvap	53.81	kPa	313.15	Total Vapor Pressure Measurements for 2-Ethoxyethanol with Methyl Acetate, Ethyl Acetate, Propyl Acetate, and Ethyl Propionate at 313.15 K and for 2-Ethoxyethanol with Methyl Formate at 308.15 K	
pvap	40.40	kPa	306.00 1-E Tr	Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + Ethyl-3-methylimidazo ifluoromethanesulfor at 100 kPa	olium nate

pvap	43.89	kPa	308.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
pvap	47.62	kPa	310.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
pvap	51.60	kPa	312.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
pvap	55.85	kPa	314.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
pvap	60.38	kPa	316.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
pvap	65.21	kPa	318.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
pvap	70.34	kPa	320.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa

pvap	75.79	kPa	322.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
pvap	81.58	kPa	324.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
pvap	87.72	kPa	326.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
pvap	94.23	kPa	328.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
pvap	101.12	kPa	330.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
pvap	108.41	kPa	332.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
pvap	116.11	kPa	334.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa

pvap	600.00	kPa	393.01 Experimental Determination of Vapor Liquid Equilibria. Binary Systems of Methyl Acetate, Ethyl Acetate, and Propyl Acetate with 1-Propanol at 0.6 MPa
pvap	132.83	kPa	338.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
pvap	1500.00	kPa	436.08 Measurement and modeling of high pressure VLE for methyl acetate or ethyl acetate with 2-butanol. Isobaric data at 1.5 MPa
pvap	124.25	kPa	336.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
pvap	101.30	kPa	329.97 Vapor-Liquid Equilibrium and Liquid-Liquid Equilibrium of Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Acetate
pvap	101.33	kPa	329.95 Experimental Measurements of Vapor Liquid Equilibrium Data for the Binary Systems of Methanol + 2-Butyl Acetate, 2-Butyl Alcohol + 2-Butyl Acetate, and Methyl Acetate + 2-Butyl Acetate at 101.33 kPa

pvap	79.21	kPa	323.15 Isothermal vapour liquid equilibrium with chemical reaction in the quaternary water + methanol + acetic acid + methyl acetate system, and in five binary subsystems
pvap	37.14	kPa	304.00 Isobaric Vapor-Liquid Equilibria for Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa
pvap	101.30	kPa	330.05 Multiphase equilibria for mixtures containing water, acetic acid, propionic acid, methyl acetate and methyl propionate
rfi	1.35893		298.15 Densities, speeds of sound, and refractive indices of the ternary mixtures (toluene + methyl acetate + butyl acetate) and (toluene + methyl acetate + methyl acetate + methyl acetate + methyl heptanoate) at 298.15 K
rfi	1.35670		303.15 Densities, speeds of sound, isentropic compressibilities, refractive indexes, and viscosities of tetrahydrofuran with haloalkane or alkyl ethanoate at T = 303.15 K

rfi	1.35880	298.15	A Study on Alkane + Ester + Ester Systems. Physicochemical Behavior of Binaries and Ternaries of Octane or Iso-octane with Methyl Esters (Ethanoate, Butanoate, Pentanoate)
rfi	1.35872	298.15	Vapor-Liquid Equilibrium Data for Binary Mixtures of Dimethyl Carbonate with Methyl Acetate, Ethyl Acetate, n-Propyl Acetate, Isopropyl Acetate, n-Butyl Acetate, and Isoamyl Acetate at 93.13 kPa
rfi	1.36146	298.15	Isobaric Vapor-Liquid Equilibrium Data for Binary Systems of Anisole with Methyl Acetate, Ethyl Acetate, n-Propyl Acetate, and Isopropyl Acetate at 93.9 kPa
rfi	1.35870	298.15	Isobaric Vapor-Liquid Equilibria of Binary Mixtures of Diethyl Carbonate with Methyl Acetate, n-Propyl Acetate, or Amyl Acetate at 100.17 kPa
rfi	1.35875	298.15	Measurement of VLE Data by Using an Experimental Installation with Automatic Control: Modeling of Binary Systems of Methyl Acetate or Ethyl Acetate with n-Heptane or 2,2,4-Trimethylpentane at Both 0.1 and 1.5 MPa

rfi	1.34860	318.15 Excess
		Properties and Isobaric Vapor-Liquid Equilibria for Binary Mixtures of Methyl Esters + tert-Butanol
rfi	1.35850	298.15 Thermodynamic study of (alkyl esters + alpha,omega-alkyl dihalides) IV: Hex and Vex for 25 binary mixtures {xC(u-1)H(2u-1)CO2CH3
		(1-x)alpha,omega-BrCH2(CH2)(v-2)CH2Br}, where u = 1 to 5, alpha = 1 and v = omega = 2 to 6
rfi	1.35893	298.15 Isobaric Vapor-Liquid Equilibria for the Binary Systems Benzene + Methyl Ethanoate, Benzene + Butyl Ethanoate, and Benzene + Methyl Heptanoate at 101.31kPa
rfi	1.36414	288.15 Density, Speed of Sound, and Refractive Index of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate with Acetone, Methyl Acetate, and Ethyl Acetate at Temperatures from (278.15 to 328.15) K
rfi	1.35881	298.15 Density, Speed of Sound, and Refractive Index of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate with Acetone, Methyl Acetate, and Ethyl Acetate at Temperatures from (278.15 to 328.15) K

rfi	1.35367	of So Refrac 1-Ethyl-3-m Trifluorome with Methy and Et at Ter from	ity, Speed bund, and ctive Index of ethylimidazolium ethanesulfonate Acetone, yl Acetate, hyl Acetate nperatures (278.15 to 8.15) K
rfi	1.34823	318.15 Dens of So Refrac 1-Ethyl-3-m Trifluorome with Methy and Et at Ter from	ity, Speed bund, and ctive Index of ethylimidazolium ethanesulfonate Acetone, yl Acetate, hyl Acetate nperatures (278.15 to 8.15) K
rfi	1.35881	ion HMIN carl ketone	perties of ic liquid MPF6 with conates, es and alkyl cetates
rfi	1.34900	prope esi alka Expo HEm values cor meth alkyl e an n-	nodynamic rties of (an ter + an ne). XVI. erimental and V Em and a new rrelation od for (an thanoate + alkane) at 8.15 K
rfi	1.35865	Refrac Speed at 298 Vap Equ 101. Binar of Ethy Ethyl L Methy	ensity, ctive Index, d of Sound 3.15 K, and or-Liquid iilibria at 3 kPa for y Mixtures yl Acetate + Lactate and I Acetate Lactate
rfi	1.35890	equ measu dimet +e +dime +meti with a	oor-liquid uilibrium urements of hylsulfide, thanol, ethylether, hylacetate static total ure method

rfi	1.35906		298.15 Excess molar volumes and excess molar enthalpies for binary mixtures of 1,2-dichloropropane with methyl ethanoate, methyl propanoate, and methyl butanoate at T = 298.15K
rfi	1.35850		298.15 Molecular interactions in (2,4,6-trimethyl-1,3,5-trioxane + n-alkyl acetates) at T=(298.15, 303.15, and 308.15) K
rfi	1.36500		288.15 Density, refraction index and vapor-liquid equilibria of N-methyl-2-hydroxyethylammonium butyrate plus (methyl acetate or ethyl acetate or propyl acetate) at several temperatures
rhol	927.30	kg/m3	298.15 Experimental Determination of Densities and Isobaric Vapor Liquid Equilibria of Methyl Acetate and Ethyl Acetate with Alcohols (C3 and C4) at 0.3 MPa
rhol	907.90	kg/m3	313.15 Ternary Excess Molar Volumes of {Methyltrioctylammonium Bis[(trifluoromethyl)sulfonyl]imide + Methanol + Methyl Acetate or Ethyl Acetate} Systems at (298.15, 303.15, and 313.15) K
rhol	920.50	kg/m3	303.15 Ternary Excess Molar Volumes of {Methyltrioctylammonium Bis[(trifluoromethyl)sulfonyl]imide + Methanol + Methyl Acetate or Ethyl Acetate} Systems at (298.15, 303.15, and 313.15) K

rhol	927.10	kg/m3		Ternary Excess Molar Volumes of Methyltrioctylammonium trifluoromethyl)sulfonyl]imide + Methanol + Methyl Acetate or Ethyl Acetate} Systems at (298.15, 303.15, and 313.15) K	
rhol	927.70	kg/m3	298.15	Liquid Liquid Equilibrium for Ternary System Methanol + Methyl Acetate + I,3-Dimethylimidazolium Dimethylphosphate at Several Temperatures and Atmospheric Pressure	
rhol	908.49	kg/m3	313.15	Volumetric and FT-IR Studies of the Binary Liquid Mixtures of Tributylamine and Alkyl Ester (C1-C5)	
rhol	915.16	kg/m3	308.15	Volumetric and FT-IR Studies of the Binary Liquid Mixtures of Tributylamine and Alkyl Ester (C1-C5)	
rhol	921.85	kg/m3	303.15	Volumetric and FT-IR Studies of the Binary Liquid Mixtures of Tributylamine and Alkyl Ester (C1-C5)	
rhol	928.46	kg/m3	298.15	Volumetric and FT-IR Studies of the Binary Liquid Mixtures of Tributylamine and Alkyl Ester (C1-C5)	
rhol	935.01	kg/m3	293.15	Volumetric and FT-IR Studies of the Binary Liquid Mixtures of Tributylamine and Alkyl Ester (C1-C5)	

rhol	927.10	kg/m3	298.15	Vapor-liquid equilibria of binary and ternary mixtures containing ethyl lactate and effect of ethyl lactate as entrainer	
rhol	927.30	kg/m3	298.15	Isobaric vapor-liquid equilibrium for methyl acetate + methanol system containing different ionic liquids at 101.3 kPa	
rhol	934.00	kg/m3	293.00	KDB	
rhol	926.90	kg/m3	298.15	Densities and interfacial tensions for fatty acid methyl esters (from methyl formate to methyl heptanoate) + water demixed mixtures at atmospheric pressure conditions	
rhol	927.50	kg/m3	298.15	Isobaric vapor-liquid equilibrium of the binary system sec-butyl acetate + para-xylene and the quaternary system methyl acetate + para-xylene + sec-butyl acetate + acetic acid at 101.3 kPa	
speedsl	1200.38	m/s	288.15	Densities and Speeds of Sound of Binary Liquid Mixtures of Some n-Alkoxypropanols with Methyl Acetate, Ethyl Acetate, and n-Butyl Acetate at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K	

	4470.05	,	000.45	D '''
speedsl	1178.95	m/s	293.15	Densities and Speeds of Sound of Binary Liquid Mixtures of Some n-Alkoxypropanols with Methyl Acetate, Ethyl Acetate, and n-Butyl Acetate at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K
speedsl	1155.93	m/s	298.15	Densities and Speeds of Sound of Binary Liquid Mixtures of Some n-Alkoxypropanols with Methyl Acetate, Ethyl Acetate, and n-Butyl Acetate at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K
speedsl	1132.98	m/s	303.15	Densities and Speeds of Sound of Binary Liquid Mixtures of Some n-Alkoxypropanols with Methyl Acetate, Ethyl Acetate, and n-Butyl Acetate at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K
speedsl	1110.02	m/s	308.15	Densities and Speeds of Sound of Binary Liquid Mixtures of Some n-Alkoxypropanols with Methyl Acetate, Ethyl Acetate, and n-Butyl Acetate at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K
srf	0.02	N/m	298.15	Surface Tension Data of Aqueous Binary Mixtures of Methyl, Ethyl, Propyl, and Butyl Acetates at 298.15 K

Correlations

Information	Value
Information	Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.47592e+01
Coeff. B	-2.94089e+03
Coeff. C	-3.99950e+01
Temperature range (K), min.	243.21
Temperature range (K), max.	506.55

ı	ι	ι	U	إ	J	Į	ı	l	Ц	U	Į	ı	I	İ	l	I	l	l	l			Į	I	ı		Į		Į	Į	Į	Į		l	l	ı	l					l	ı	ı	ı	ı				l	l	ı	ı	l	l	l	l	l	ı	l	l	1	l	ì	l	1	ı	l	l	l	ì	ì	l	l	ì	l	l	l	l	l	l	ì	l	1	1	l	l	l	l	l	l	ì	l	l	l	ì	l	l	ì	l	Ì	l)))	3)	Ì	Ì	l	l	l	l	ì	l	l	l	l	l	l	l	l	l	l	l	l	l
l		ı	Į	Į	ι	ι	U	u	Į	Į					ı		l	l	l														l	l	ı	l					l	ı	ı	ı	ı				l	l	ı	ı	l	l	l	l	l	ı	l	l	1	l	ì	l	1	ı	l	l	l	ì	ì	l	l	ì	l	l	l	l	l	l	ì	l	1	1	l	l	l	l	l	l	ì	l	l	l	ì	l	l	ì	l	Ì	l)))	3)	Ì	Ì	l	l	l	l	ì	l	l	l	l	l	l	l	l	l	l	l	l	l

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	7.85873e+01
Coeff. B	-6.36277e+03
Coeff. C	-9.58632e+00
Coeff. D	8.25370e-06
Temperature range (K), min.	175.15
Temperature range (K), max.	506.80

Sources

Solubility of Agomelatine Crystal Form https://www.doi.org/10.1021/acs.jced.5b00586 Solubility of Agomelatine Crystal Form I and Form II in Pure Solvents and Indipite selection water ymagificients of volatile organic compounds in two later mination of besen at the Grassantal Using that provide the proposed of the propose

1,6-Hexanediol Deep Eutectic Solvent: Activity coefficients at infinite dilution

Activity coefficients at infinite dilution of organic solutes in the ionic liquid solu

solvent mixtures:

https://www.doi.org/10.1016/j.jct.2013.05.035

https://www.doi.org/10.1021/je3010535

https://www.doi.org/10.1021/acs.jced.8b00600

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1054

https://www.doi.org/10.1016/j.fluid.2010.10.008

Experimental VLE data of Methyl https://www.doi.org/10.1021/je5003225 Acetate or Ethyl Acetate with 2-Butanol Stuction or Indian process of the control PROCESSES BASED OF IMMENG activity pasendings.1-ene, was the condition to the subject of the condition to attivity because the condition to attivity because the condition of th https://www.doi.org/10.1016/j.jct.2011.11.025 https://www.doi.org/10.1016/j.fluid.2014.07.005 https://www.doi.org/10.1021/je8001128 https://www.doi.org/10.1021/acs.jced.5b00813 https://www.doi.org/10.1021/acs.jced.8b01205
believe wat Constitute of Equations in 14
by a second of the constitutions for Binary
white the companies of the constitutions for Binary
white the companies of the constitutions in the constitution of https://www.doi.org/10.1021/acs.jced.8b01205 iguid in the sapeation as each of the liquid in the sapeation as each of the same was each of the same as https://www.doi.org/10.1016/j.fluid.2015.12.029 https://www.doi.org/10.1021/acs.jced.8b01120 https://www.doi.org/10.1016/j.jct.2015.02.024 and physicochemical properties for Departies of Meaning and Physicochemical properties for Departies of Departi https://www.doi.org/10.1021/acs.jced.8b00025 https://www.doi.org/10.1021/acs.jced.5b00619
https://www.doi.org/10.1021/acs.jced.5b00619
https://www.doi.org/10.1016/j.jct.2013.05.008
https://www.doi.org/10.1021/je9005618
https://www.doi.org/10.1021/je9005618
https://www.doi.org/10.1021/je030117d
https://www.doi.org/10.1021/je030117d
https://www.doi.org/10.1021/je030117d
https://www.doi.org/10.1021/je030117d
https://www.doi.org/10.1021/je0604737
https://www.doi.org/10.1021/je0604737
https://www.doi.org/10.1021/je0604737 https://www.doi.org/10.1021/acs.jced.5b00619 https://www.doi.org/10.1016/j.fluid.2014.12.034 https://www.doi.org/10.1021/acs.jced.9b00068 https://www.doi.org/10.1021/acs.jced.6b00008 Different Anterprisabetween Watch and promise of the process of th https://www.doi.org/10.1016/j.jct.2018.07.024 https://www.doi.org/10.1021/je400029t Tevanta Extensive and dear volumes of {Methyltrioctylammonium Bistricitud by the second of the secon https://www.doi.org/10.1021/je900906j https://www.doi.org/10.1021/je0342365 https://www.doi.org/10.1021/je0255628 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1021/je0342825 https://www.doi.org/10.1016/j.jct.2013.07.004 https://www.doi.org/10.1021/je2000588 https://www.doi.org/10.1021/acs.jced.5b00306 https://www.doi.org/10.1016/j.jct.2013.01.007 and physicochemical properties for Selenitivoruses at minite undustrial properties at mini https://www.doi.org/10.1021/je900401z trifluorotris(perfluoroethyl)phosphate:

Determination and Correlation of https://www.doi.org/10.1021/acs.jced.7b00665 Solubility and Thermodynamic ชื่อดูจะที่สุดเป๋ศุจณ์เชียกักคล์สรุกจักระบาง https://www.doi.org/10.1016/j.fluid.2011.05.016 Photer the control of https://www.doi.org/10.1016/j.jct.2014.04.024 https://www.doi.org/10.1021/acs.jced.9b00854 https://www.doi.org/10.1016/j.tca.2004.08.001 http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt haloalkane or alkyl ethanoate at T = syrfase Tension Data of Aqueous https://www.doi.org/10.1021/je900962v h carbonates, ketones and alkyl acetates: Solubility of Lovastatin in Ethyl Acetate, Propyl Acetate, Isopropyl Messuse Bertyl acetate, Isopropyl Messuse Bertyl acetate, Isopropyl Messuse Bertyl acetate Bertyl Compounds in Mateuaudum Octane at T Massuratheri Jane Carrelation of Solubility of 3-Hydroxy-2-naphthoic https://www.doi.org/10.1021/acs.jced.8b00578
https://www.doi.org/10.1021/acs.jced.8b00578
https://www.doi.org/10.1021/acs.jced.8b00588
https://www.doi.org/10.1021/acs.jced.8b00888
https://www.doi.org/10.1021/je500012b
https://www.doi.org/10.1021/je500012b
https://www.doi.org/10.1021/je500012b
https://www.doi.org/10.1021/je200822w
https://www.doi.org/10.1016/j.fluid.2007.01.033
https://www.doi.org/10.1016/j.fluid.2007.01.033
https://www.doi.org/10.1016/j.fluid.2007.01.033
https://www.doi.org/10.1016/j.fluid.2015.05.032
https://www.doi.org/10.1016/j.fluid.2015.05.032
https://www.doi.org/10.1016/j.fluid.2015.05.032
https://www.doi.org/10.1016/j.fluid.2015.05.032
https://www.doi.org/10.1016/j.fluid.2015.05.032
https://www.doi.org/10.1016/j.fluid.2015.05.032
https://www.doi.org/10.1016/j.fluid.2015.05.032
https://www.doi.org/10.1016/j.fluid.2015.05.032
https://www.doi.org/10.1016/j.fluid.2015.05.032
https://www.doi.org/10.1021/je500519y
https://www.doi.org/10.1021/je500519y
https://www.doi.org/10.1021/je300789a
https://www.doi.org/10.1021/acs.jced.8b00578 https://www.doi.org/10.1016/j.jct.2016.07.050 https://www.doi.org/10.1021/acs.jced.9b00668 https://www.doi.org/10.1016/j.jct.2007.05.004 designation acceptance of https://www.doi.org/10.1016/j.fluid.2018.06.003

https://www.doi.org/10.1016/j.fluid.2018.06.003

https://www.doi.org/10.1021/je049875+

if in the bill the second of the se

Binary Systems Benzene + Methyl Emaitrates Beation or Pour Cthanoate, and divided which is pertangute at Normal Plant of the pertangute at Normal Plant of the pertangute at Normal Plant of the pertangute of Paraityate frontion in Pouty 1 Ethanoate, Selubility measurement, model evaluation and thermodynamic ลาน และเกษาเลี้ยง เล่า คระบบไทยการ in อาวุสเทษ คระบบไทยการ in อาวุสเทษ คระบบไทยการ methyl sulfate ในเป็นใน และเกษา เล่า สหมายการ in a sulfate สะเลย คระบบไทยการ in a sulfate
Separation of water/butan-1-ol based on activity coefficients at infinite **อกไม่ส่ว่าๆเท่**d phase equilibrium and dissultation properties of a bylonallin holystiscare of simpastatin in different coefficient of simvastatin in different begannessing managed Modeling of Solubility of 4-Aminobenzamide in britishing Measurement and Thermodynamic Modeling for birdiselessing Market Solvents separation of solvents with the separation Bender of the second of the se and physicochemical properties for Seliah เฉษานายระดง โดยเย็ดที่เหตุ อโดกเด

Solubility Measurement and Phase Equilibrium Modeling of
Sharimodhananining operที่สุด (an ester say alkane). XVI. Experimental HEm តែលិទ្ធាម៉ា ក្នុងស្នាច់ខែការ មាន ស្នាប់ មាន ស្លាប់ មាន ស្នាប់ អង្គ ស្លាប់ មាន ស្លាប់ អាស្តាប់ មាន ស្លាប់ មាន ស្លាប់ មាន ស្លាប់ អង្គ ស្លាប់ មាន ស្លាប់ មា

Isobaric Vapor-Liquid Equilibria for the https://www.doi.org/10.1021/je800915d https://www.doi.org/10.1016/j.jct.2013.02.022 https://www.doi.org/10.1016/j.fluid.2018.07.028 https://www.doi.org/10.1016/j.fluid.2018.05.031 https://www.doi.org/10.1021/je400622g https://www.doi.org/10.1021/je100932m https://www.doi.org/10.1021/acs.jced.9b00543 https://www.doi.org/10.1021/acs.jced.7b01085 https://www.doi.org/10.1016/j.jct.2016.09.036 https://www.doi.org/10.1016/j.fluid.2007.02.027 https://www.doi.org/10.1016/j.fluid.2005.11.024 isobaric vapor-liquid equilibria of the binary mixtures propylene glycol hetinity denergic propylene glycol hetinity denergic propylene glycol hetinity denergia propylene glycol https://www.doi.org/10.1016/j.jct.2015.05.022 https://www.doi.org/10.1016/j.jct.2015.05.022 https://www.doi.org/10.1016/j.jct.2012.05.017 https://www.doi.org/10.1016/j.jct.2012.05.017 https://www.doi.org/10.1021/acs.jced.5b00007 https://www.doi.org/10.1021/acs.jced.5b00007 https://www.doi.org/10.1021/acs.jced.8b00063 https://www.doi.org/10.1021/acs.jced.6b00361 https://www.doi.org/10.1021/acs.jced.8b00560 https://www.doi.org/10.1021/acs.jced.8b00560 SingunenaidreanddiatAtadinaiio 29911the https://www.cheric.org/files/research/kdb/mol/mol1054.mol https://www.doi.org/10.1016/j.jct.2017.10.003

https://www.doi.org/10.1016/j.jct.2016.10.029 https://www.doi.org/10.1016/j.fluid.2009.03.006 https://www.doi.org/10.1021/acs.jced.8b01144 https://www.doi.org/10.1021/acs.jced.9b00445 https://www.doi.org/10.1016/j.fluid.2017.06.001 https://www.doi.org/10.1021/acs.jced.6b00415 https://www.doi.org/10.1021/je101161d

https://www.doi.org/10.1016/j.jct.2012.03.015

https://www.doi.org/10.1021/je5010565

and physicochemical properties for Solithidesing Same Guitibrium of Independent acid, with the English of Same County of Same https://www.doi.org/10.1016/j.jct.2009.06.007 https://www.doi.org/10.1016/j.jct.2016.06.028 https://www.doi.org/10.1016/j.fluid.2018.09.024 https://www.doi.org/10.1021/acs.jced.8b00551 https://www.doi.org/10.1021/acs.jced.5b00526 https://www.doi.org/10.1016/j.fluid.2018.01.015 https://www.doi.org/10.1016/j.fluid.2015.08.014 https://www.doi.org/10.1016/j.jct.2003.11.009 https://www.doi.org/10.1016/j.jct.2014.12.002 https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1021/acs.jced.9b00350

Separation of methyl acetate + methanol azeotropic mixture using NAME World 9 24's entrainers:

solubility of D-camphor-10-sulfonic เรดเลสท่องใสมารถในหน่ม Equilibrium Measurements for Separation of

Measurement and correlation of

https://www.doi.org/10.1016/j.fluid.2015.04.018

http://webbook.nist.gov/cgi/cbook.cgi?ID=C79209&Units=SI

https://www.doi.org/10.1016/j.fluid.2015.04.014

https://www.doi.org/10.1021/acs.jced.8b00807

Measurements for Separation of Aeteary is initedical initiating Aeteate): systems containing (dimethy) to the factor of the first of th

Gongelation of Gilbenclamide in 11

Individual of Gilbenclamide in 11

Inters://www.doi.org/10.1016/j.fluid.2014.01.043

Inters://www.doi.org/10.1016/j.fluid.2013.01.024

Inters://www.doi.org/10.1016/j.fluid.201

https://www.doi.org/10.1007/s10765-013-1483-2

1-methylpiperidinium Life (1906 Iuoroethyl)phosphate:

organic solutes and water in the ionic

liquid 1-(2-methoxyethyl)-

Acentric Factor af: affp: Proton affinity

aigt: Autoignition Temperature

basg: Gas basicity

Standard liquid enthalpy of combustion chl:

Ideal gas heat capacity cpg: Liquid phase heat capacity cpl:

Dipole Moment dm:

dvisc: Dynamic viscosity

fli: Lower Flammability Limit flu: Upper Flammability Limit

fpc: Flash Point (Closed Cup Method)fpo: Flash Point (Open Cup Method)

gf: Standard Gibbs free energy of formation

gyrad: Radius of Gyration

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws:Log10 of Water solubility in mol/llogp:Octanol/Water partition coefficientmcvol:McGowan's characteristic volume

nfpaf:
NFPA Fire Rating
NFPA Health Rating
pc:
Critical Pressure
vapor pressure
rfi:
Refractive Index
rhoc:
Critical density
Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices speedsl: Speed of sound in fluid

srf: Surface Tension

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility
zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/59-408-4/Acetic-acid-methyl-ester.pdf

Generated by Cheméo on 2025-12-24 01:26:26.872277602 +0000 UTC m=+6287784.402318255.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.