Nonane, 2,2,4,4,6,8,8-heptamethyl-

Other names:	2,2,4,4,6,8,8-Heptamethylnonane			
	HMN			
	Permethyl 101A			
Inchi:	InChI=1S/C16H34/c1-13(10-14(2,3)4)11-16(8,9)12-15(5,6)7/h13H,10-12H2,1-9H3			
InchiKey:	VCLJODPNBNEBKW-UHFFFAOYSA-N			
Formula:	C16H34			
SMILES:	CC(CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)CC(C)(C)			
Mol. weight [g/mol]:	226.44			
CAS:	4390-04-9			

Physical Properties

Property code	Value	Unit	Source
gf	89.92	kJ/mol	Joback Method
hf	-405.10	kJ/mol	Joback Method
hfus	11.43	kJ/mol	Joback Method
hvap	46.93	kJ/mol	Joback Method
log10ws	-5.55		Crippen Method
logp	5.911		Crippen Method
mcvol	236.300	ml/mol	McGowan Method
рс	1570.00 ± 15.68	kPa	NIST Webbook
rinpol	1318.00		NIST Webbook
rinpol	1317.00		NIST Webbook
rinpol	1323.00		NIST Webbook
rinpol	1330.80		NIST Webbook
rinpol	1327.20		NIST Webbook
rinpol	1321.86		NIST Webbook
rinpol	1332.64		NIST Webbook
rinpol	1329.26		NIST Webbook
rinpol	1323.66		NIST Webbook
rinpol	1319.00		NIST Webbook
tb	513.20	К	NIST Webbook
tc	692.00 ± 2.00	К	NIST Webbook
tc	692.00 ± 4.00	К	NIST Webbook
tf	262.34	К	Joback Method
VC	0.892	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	618.96	J/mol×K	555.35	Joback Method	
cpg	641.86	J/mol×K	586.54	Joback Method	
cpg	683.81	J/mol×K	648.92	Joback Method	
cpg	703.00	J/mol×K	680.11	Joback Method	
cpg	721.11	J/mol×K	711.30	Joback Method	
cpg	738.20	J/mol×K	742.49	Joback Method	
cpg	663.45	J/mol×K	617.73	Joback Method	
cpl	458.80	J/mol×K	298.15	NIST Webbook	
cpl	458.80	J/mol×K	298.15	NIST Webbook	
dvisc	0.0042545	Paxs	311.17	Joback Method	
dvisc	0.0013838	Paxs	360.01	Joback Method	
dvisc	0.0005886	Paxs	408.84	Joback Method	
dvisc	0.0003005	Paxs	457.68	Joback Method	
dvisc	0.0001746	Paxs	506.51	Joback Method	
dvisc	0.0001116	Paxs	555.35	Joback Method	
dvisc	0.0198711	Paxs	262.34	Joback Method	
hvapt	52.40	kJ/mol	484.00	NIST Webbook	
rhol	743.80	kg/m3	353.15 2,2,4,6	Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 5,6-Pentamethylhepta or	ane
			2,2,4,4,	6,8,8-Heptamethylno	nane

rhol	770.99	kg/m3	313.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surfac Tensions, and Flash Points o Quaternary Mixtures of n-Dodecane (1 n-Butylcyclohexa (2), n-Butylbenzen (3), and 2,2,4,4,6,8,8-Heptameth (4) at 0.1 MPa a Potential Surrogate Mixtures for Military Jet Fue JP-5	e f ane e hylnonane as
rhol	764.36	kg/m3	323.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surfac Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1 n-Butylcyclohexa (2), n-Butylbenzen (3), and 2,2,4,4,6,8,8-Heptameth (4) at 0.1 MPa a Potential Surrogate Mixtures for Military Jet Fue JP-5	e I f ane e hylnonane as
rhol	764.27	kg/m3	323.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surfac Tensions, and Flash Points o Quaternary Mixtures of n-Dodecane (1 n-Butylcyclohexa (2), n-Butylbenzen (3), and 2,2,4,4,6,8,8-Heptameth (4) at 0.1 MPa a Potential Surrogate Mixtures for Military Jet Fue JP-5	e f f ane e hylnonane as

rhol	757.62	kg/m3	333.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5
rhol	757.53	kg/m3	333.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5
rhol	784.46	kg/m3	293.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,4,6,8,8-Heptamethylnonane

rhol	777.76	kg/m3	303.15 2,2,4	Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 4,6,6-Pentamethylheptane or
			2,2,4,	4,6,8,8-Heptamethylnonane
rhol	771.04	kg/m3	313.15 2,2,4	Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 4,6,6-Pentamethylheptane or
rhol	764 32	ka/m3	2,2,4,	
mor	704.32	Kg/113	2,2,4,	Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 4,6,6-Pentamethylheptane or 4,6,8,8-Heptamethylnonane
rhol	757.57	kg/m3	333.15 2,2,4 2,2,4,	Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 4,6,6-Pentamethylheptane or 4,6,8,8-Heptamethylnonane
rhol	750.70	kg/m3	343.15 2,2,4 2,2,4,	Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 4,6,6-Pentamethylheptane or 4,6,8,8-Heptamethylnonane

rhol	771.09	kg/m3	313.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5
rhol	736.80	kg/m3	363.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,4,6,8,8-Heptamethylnonane
rhol	729.90	kg/m3	373.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,4,6,8,8-Heptamethylnonane
rhol	784.48	kg/m3	293.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel

rhol	777.78	kg/m3	303.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	771.07	kg/m3	313.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	764.34	kg/m3	323.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel

rhol	757.59	kg/m3	333.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	750.83	kg/m3	343.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	743.90	kg/m3	353.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel

rhol	737.00	kg/m3	363.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	730.20	kg/m3	373.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	777.70	kg/m3	303.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5

rhol	777.80	kg/m3	303.15 E V So Moo Ter Flas Q N n-Do n-Buty n	Densities, iscosities, Speeds of bund, Bulk duli, Surface nsions, and sh Points of tuaternary fixtures of bdecane (1), ylcyclohexane (2), utylbenzene (3), and -Heptamethylr th 0.1 MPa as Potential Surrogate lixtures for ary Jet Fuel, JP-5	nonane
rhol	781.05	kg/m3	298.15 C V S Moo Ter Flas Q M n-Do n-Buty n-Buty 2,2,4,4,6,8,8 (4) a I S M Milita	Densities, iscosities, iscosities, peeds of bund, Bulk duli, Surface nsions, and sh Points of tuaternary fixtures of odecane (1), ylcyclohexane (2), utylbenzene (3), and -Heptamethylr t 0.1 MPa as Potential Surrogate lixtures for ary Jet Fuel, JP-5	nonane
rhol	781.15	kg/m3	298.15 E V S Moc Ter Flas Q N n-Dc n-Buty n-	Densities, iscosities, >peeds of ound, Bulk duli, Surface nsions, and sh Points of tuaternary fixtures of odecane (1), ylcyclohexane (2), utylbenzene (3), and -Heptamethylr t 0.1 MPa as Potential Surrogate lixtures for ary Jet Fuel, JP-5	nonane

rhol	784.40	kg/m3	293.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5
rhol	784.51	kg/m3	293.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5
rhol	787.76	kg/m3	288.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5

rhol	787.84	kg/m3	288.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5	
rhol	811.40	kg/m3	253.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5	
rhol	811.50	kg/m3	253.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5	

rhol	757.53	kg/m3	333.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa
rhol	764.27	kg/m3	323.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa
rhol	770.99	kg/m3	313.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa
rhol	777.73	kg/m3	303.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa

rhol	784.41	kg/m3	293.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa
rhol	787.76	kg/m3	288.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa
rhol	811.40	kg/m3	253.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa

Correlations

Information	Value
Property code	руар
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.51537e+01
Coeff. B	-4.57173e+03

Coeff. C	-8.55570e+01
Temperature range (K), min.	393.09
Temperature range (K), max.	550.06

Sources

Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Nish Wehk Of Binary Mixtures of n-Dodecane with 1944 of Pentamethyline pather or pressure as Heptamethyline pather or Joback Method. High-Pressure Viscosity and Density Measurements of the Ternary System Netwick Viscosity and Density Measurements of the Ternary System Netwick Viscosity and Density Measurements of the Ternary System Netwick Viscosity and Density Measurements of the Ternary System Netwick Viscosity and Density Measurements of the Ternary System Netwick Viscosity and Density Measurements of the Ternary System Netwick Viscosity and Density Measurements of the Ternary System Netwick Viscosity and Density Measurements of the Ternary System Netwick System Provision and Fisher Office States Provide States of 2,2,4,6,6-Pentamethylheptane (2) r Office States (3), and Nitron Son (1), Nitron States of Nitron States (3), and Nitron

https://www.doi.org/10.1021/je5000132

- http://webbook.nist.gov/cgi/cbook.cgi?ID=C4390049&Units=SI
- https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
- https://en.wikipedia.org/wiki/Joback_method
- https://www.doi.org/10.1021/je034067o
- https://www.doi.org/10.1021/je501141e
- http://pubs.acs.org/doi/abs/10.1021/ci990307I
- https://www.doi.org/10.1021/acs.jced.8b01233
- https://www.chemeo.com/doc/models/crippen_log10ws
 - http://link.springer.com/article/10.1007/BF02311772
- https://www.doi.org/10.1021/acs.jced.8b00387

cpg:	Ideal gas heat capacity
cpl:	Liquid phase heat capacity
dvisc:	Dynamic viscosity
gf:	Standard Gibbs free energy of formation
hf:	Enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hvap:	Enthalpy of vaporization at standard conditions
hvapt:	Enthalpy of vaporization at a given temperature
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
pc:	Critical Pressure
pvap:	Vapor pressure
rhol:	Liquid Density
rinpol:	Non-polar retention indices
tb:	Normal Boiling Point Temperature
tc:	Critical Temperature
tf:	Normal melting (fusion) point

Latest version available from:

https://www.chemeo.com/cid/59-416-5/Nonane-2-2-4-4-6-8-8-heptamethyl.pdf

Generated by Cheméo on 2024-05-02 21:22:43.044644011 +0000 UTC m=+16974211.965221327.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.