Nonane, 2,2,4,4,6,8,8-heptamethyl-

Other names: 2,2,4,4,6,8,8-Heptamethylnonane

HMN

Permethyl 101A

InChi=1S/C16H34/c1-13(10-14(2,3)4)11-16(8,9)12-15(5,6)7/h13H,10-12H2,1-9H3

InchiKey: VCLJODPNBNEBKW-UHFFFAOYSA-N

Formula: C16H34

SMILES: CC(CC(C)(C)C)CC(C)(C)CC(C)(C)C

Mol. weight [g/mol]: 226.44 CAS: 4390-04-9

Physical Properties

Property code	Value	Unit	Source
gf	89.92	kJ/mol	Joback Method
hf	-405.10	kJ/mol	Joback Method
hfus	11.43	kJ/mol	Joback Method
hvap	46.93	kJ/mol	Joback Method
log10ws	-5.55		Crippen Method
logp	5.911		Crippen Method
mcvol	236.300	ml/mol	McGowan Method
рс	1570.00 ± 15.68	kPa	NIST Webbook
rinpol	1317.00		NIST Webbook
rinpol	1318.00		NIST Webbook
rinpol	1319.00		NIST Webbook
rinpol	1327.20		NIST Webbook
rinpol	1329.26		NIST Webbook
rinpol	1323.66		NIST Webbook
rinpol	1321.86		NIST Webbook
rinpol	1332.64		NIST Webbook
rinpol	1323.00		NIST Webbook
rinpol	1330.80		NIST Webbook
tb	513.20	K	NIST Webbook
tc	692.00 ± 4.00	K	NIST Webbook
tc	692.00 ± 2.00	K	NIST Webbook
tf	262.34	K	Joback Method
VC	0.892	m3/kmol	Joback Method

Temperature Dependent Properties

rhol	787.76	kg/m3	288.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5
rhol	784.51	kg/m3	293.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5
rhol	784.40	kg/m3	293.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5

rhol	781.15	kg/m3	298.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5
rhol	781.05	kg/m3	298.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5
rhol	777.80	kg/m3	303.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5

rhol	777.70	kg/m3	303.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5
rhol	771.09	kg/m3	313.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5
rhol	770.99	kg/m3	313.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5

rhol	764.36	kg/m3	323.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Millitary Jet Fuel, JP-5
rhol	764.27	kg/m3	323.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5
rhol	811.40	kg/m3	253.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5

rhol	757.53	kg/m3	333.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5
rhol	784.46	kg/m3	293.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,4,6,8,8-Heptamethylnonane
rhol	777.76	kg/m3	303.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,4,6,8,8-Heptamethylnonane
rhol	771.04	kg/m3	313.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,4,6,8,8-Heptamethylnonane

rhol	764.32	kg/m3	323.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,4,6,8,8-Heptamethylnonane
rhol	757.57	kg/m3	333.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,6,8,8-Heptamethylnonane
rhol	750.70	kg/m3	343.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,4,6,8,8-Heptamethylnonane
rhol	743.80	kg/m3	353.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,6,8,8-Heptamethylnonane
rhol	736.80	kg/m3	363.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,6,8,8-Heptamethylnonane

rhol	729.90	kg/m3	373.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2,2,4,4,6,8,8-Heptamethylnonane
rhol	784.48	kg/m3	293.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	777.78	kg/m3	303.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel

rhol	771.07	kg/m3	313.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	764.34	kg/m3	323.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	757.59	kg/m3	333.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel

rhol	750.83	kg/m3	343.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	743.90	kg/m3	353.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	737.00	kg/m3	363.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel

rhol	730.20	kg/m3	373.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 2,2,4,6,6-Pentamethylheptane and 2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel
rhol	811.50	kg/m3	253.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5
rhol	757.53	kg/m3	333.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa

rhol	764.27	kg/m3	323.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of
			n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane
rhol	770.99	kg/m3	(2) at 0.1 MPa 313.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa
rhol	777.73	kg/m3	303.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa
rhol	784.41	kg/m3	293.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa

rhol	787.76	kg/m3	288.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa
rhol	811.40	kg/m3	253.15 Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Hexylbenzene (1) or n-Butylbenzene (1) in 2,2,4,6,6-Pentamethylheptane (2) or 2,2,4,4,6,8,8-Heptamethylnonane (2) at 0.1 MPa
rhol	757.62	kg/m3	333.15 Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP-5

Correlations

Information	Value
Property code	pvap

Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.51537e+01
Coeff. B	-4.57173e+03
Coeff. C	-8.55570e+01
Temperature range (K), min.	393.09
Temperature range (K), max.	550.06

Sources

The Yaws Handbook of Vapor

Pressure: Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and দুয়ার চিপ্তারিক উinary Mixtures of

n-Dodecane with 2,2,4,6,6-Pentamethylheptane or 2244168,8 Heptamethylnonane: Sound, Bulk Moduli, Surface Tensions, McGPwsn Mothe of Quaternary

Mixtures of n-Dodecane (1), 1951, 20 of n-Dodecane (1), 20 of n-

2,2,4,4,6,8,8-Heptamethylnonane at (293.15 to 373.15) K and 0.1 MPa and Comparisons with Alcohol-to-Jet Fuel:

egena

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.doi.org/10.1021/je5000132

https://en.wikipedia.org/wiki/Joback_method

http://webbook.nist.gov/cgi/cbook.cgi?ID=C4390049&Units=SI

https://www.doi.org/10.1021/acs.jced.8b01233

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1021/acs.jced.8b00387

https://www.chemeo.com/doc/models/crippen_log10ws

https://www.doi.org/10.1021/je0340670

https://www.doi.org/10.1021/je501141e

http://pubs.acs.org/doi/abs/10.1021/ci990307l

cpg: Ideal gas heat capacity Liquid phase heat capacity cpl:

dvisc: Dynamic viscosity

Standard Gibbs free energy of formation gf: hf: Enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

Log10 of Water solubility in mol/l log10ws: Octanol/Water partition coefficient logp: mcvol: McGowan's characteristic volume

Critical Pressure pc: Vapor pressure pvap: rhol: Liquid Density

rinpol: Non-polar retention indices **tb:** Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/59-416-5/Nonane-2-2-4-4-6-8-8-heptamethyl.pdf

Generated by Cheméo on 2025-12-05 06:20:37.699790812 +0000 UTC m=+4663835.229831477.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.