Formamide, N-methyl-

Other names: EK 7011

HCONHCH3

METHYLFORMAMIDE Monomethylformamide N-Methylformamide

N-Monomethylformamide N-methylformamide [NMF] N-methylmethanamide

NSC 3051 X 188

Inchi: InChI=1S/C2H5NO/c1-3-2-4/h2H,1H3,(H,3,4)
InchiKey: ATHHXGZTWNVVOU-UHFFFAOYSA-N

Formula: C2H5NO SMILES: CNC=O Mol. weight [g/mol]: 59.07 CAS: 123-39-7

Physical Properties

Value	Unit	Source
851.30	kJ/mol	NIST Webbook
820.30	kJ/mol	NIST Webbook
0.02	eV	NIST Webbook
-44.17	kJ/mol	Joback Method
-116.72	kJ/mol	Joback Method
8.32	kJ/mol	Joback Method
56.20	kJ/mol	NIST Webbook
54.40 ± 1.30	kJ/mol	NIST Webbook
56.19	kJ/mol	NIST Webbook
9.79	eV	NIST Webbook
9.86	eV	NIST Webbook
9.83 ± 0.04	eV	NIST Webbook
10.00 ± 0.05	eV	NIST Webbook
0.38		Crippen Method
-0.638		Crippen Method
50.590	ml/mol	McGowan Method
5713.21	kPa	Joback Method
793.00		NIST Webbook
	851.30 820.30 0.02 -44.17 -116.72 8.32 56.20 54.40 ± 1.30 56.19 9.79 9.86 9.83 ± 0.04 10.00 ± 0.05 0.38 -0.638 50.590 5713.21	851.30 kJ/mol 820.30 kJ/mol 0.02 eV -44.17 kJ/mol -116.72 kJ/mol 8.32 kJ/mol 56.20 kJ/mol 54.40 ± 1.30 kJ/mol 9.79 eV 9.86 eV 9.83 ± 0.04 eV 10.00 ± 0.05 eV 0.38 -0.638 50.590 ml/mol 5713.21 kPa

rinpol	722.00		NIST Webbook
rinpol	793.00		NIST Webbook
ripol	1615.00		NIST Webbook
ripol	1615.00		NIST Webbook
tb	472.25	К	Separation of azeotrope (allyl alcohol + water): Isobaric vapour-liquid phase equilibrium measurements and extractive distillation
tb	455.70	K	NIST Webbook
tb	471.20	К	Separation of azeotropic mixture (2, 2, 3, 3-Tetrafluoro-1-propanol + water) by extractive distillation: Entrainers selection and vapour-liquid equilibrium measurements
tc	524.37	K	Joback Method
tf	206.96	K	Joback Method
VC	0.200	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	86.11	J/mol×K	374.05	Joback Method
cpg	81.25	J/mol×K	343.99	Joback Method
cpg	90.79	J/mol×K	404.12	Joback Method
cpg	103.73	J/mol×K	494.31	Joback Method
cpg	95.28	J/mol×K	434.18	Joback Method
cpg	107.70	J/mol×K	524.37	Joback Method
cpg	99.59	J/mol×K	464.24	Joback Method
cpl	126.63	J/mol×K	308.00	NIST Webbook
cpl	126.10	J/mol×K	298.15	NIST Webbook
cpl	123.80	J/mol×K	298.15	NIST Webbook
cpl	122.00	J/mol×K	298.15	NIST Webbook
cpl	125.20	J/mol×K	298.15	NIST Webbook
hfust	10.44	kJ/mol	270.60	NIST Webbook
hvapt	54.50	kJ/mol	350.50	NIST Webbook
hvapt	53.80	kJ/mol	390.00	NIST Webbook
hvapt	53.40	kJ/mol	420.50	NIST Webbook

pvap	101.30	kPa	471.20	Separation of azeotropic mixture (2, 2, 3, 3-Tetrafluoro-1-propanol + water) by extractive distillation: Entrainers selection and vapour-liquid equilibrium measurements
pvap	1.15	kPa	353.15	Vapor liquid equilibria and density measurement for binary mixtures of o-xylene + NMF, m-xylene +NMF and p-xylene +NMF at 333.15 K, 343.15 K and 353.15 K from 0 kPa to 101.3 kPa
pvap	0.37	kPa	333.15	Vapor liquid equilibria and density measurement for binary mixtures of o-xylene + NMF, m-xylene +NMF and p-xylene +NMF at 333.15 K, 343.15 K and 353.15 K from 0 kPa to 101.3 kPa
pvap	0.67	kPa	343.15	Vapor liquid equilibria and density measurement for binary mixtures of o-xylene + NMF, m-xylene +NMF and p-xylene +NMF at 333.15 K, 343.15 K and 353.15 K from 0 kPa to 101.3 kPa
rhol	999.19	kg/m3		Volumetric Properties of Binary Mixtures of -Butyl-1-methylpyrrolidinium s(trifluoromethylsulfonyl)imide with N-Methylformamide and N,N-Dimethylformamide from (293.15 to 323.15) K

rhol	994.65	kg/m3	303.15	Excess molar volumes and excess isentropic compressibilities of binary and ternary mixtures of o-chlorotoluene with cyclic ether and amides or cyclohexane at different temperatures	
rhol	990.30	kg/m3	308.15	Excess molar volumes and excess isentropic compressibilities of binary and ternary mixtures of o-chlorotoluene with cyclic ether and amides or cyclohexane at different temperatures	
rhol	999.12	kg/m3	298.15	Physico-chemical exploration of solution behaviour of some metal perchlorates prevailing in N-methyl formamide with the manifestation of ion solvent consequences	
rhol	998.80	kg/m3	298.15	Excess Molar Volumes and Viscosity Deviations for the Ternary System N,N-Dimethylformamide + N-Methylformamide + Water and the Binary Subsystems at 298.15 K	
rhol	1003.59	kg/m3	Bis(Volumetric Properties of Binary Mixtures of Butyl-1-methylpyrrolidinium trifluoromethylsulfonyl)imide with N-Methylformamide and N,N-Dimethylformamide from (293.15 to 323.15) K	

rhol	999.00	kg/m3	298.15 Excess molar volumes and excess isentropic compressibilities of binary and ternary mixtures of o-chlorotoluene with cyclic ether and amides or cyclohexane at different temperatures
rhol	994.75	kg/m3	303.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide with N-Methylformamide and N,N-Dimethylformamide from (293.15 to 323.15) K
rhol	990.33	kg/m3	308.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide with N-Methylformamide and N,N-Dimethylformamide from (293.15 to 323.15) K
rhol	990.63	kg/m3	308.15 Solution behavior of {(formamide/N-methylformamide/ N,N-dimethylformamide) + CsCl + water} ternary systems at multiple temperatures
rhol	981.23	kg/m3	318.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide with N-Methylformamide and N,N-Dimethylformamide from (293.15 to 323.15) K

rhol	976.57	kg/m3	323.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide with N-Methylformamide and N,N-Dimethylformamide from (293.15 to 323.15) K
rhol	1003.35	kg/m3	293.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-Methylpyrrolidinium Tris(pentafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	998.91	kg/m3	298.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-Methylpyrrolidinium Tris(pentafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	994.49	kg/m3	303.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-Methylpyrrolidinium Tris(pentafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K

rhol	990.01	kg/m3	308.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-Methylpyrrolidinium Tris(pentafluoroethyl)trifluorophosphate with
			N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to
rhol	985.47	kg/m3	323.15) K 313.15 Volumetric Properties of Binary Mixtures
			of 1-Butyl-1-Methylpyrrolidinium Tris(pentafluoroethyl)trifluorophosphate with
			N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide,
			and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	980.88	kg/m3	318.15 Volumetric Properties of Binary Mixtures of
			1-Butyl-1-Methylpyrrolidinium Tris(pentafluoroethyl)trifluorophosphate with
			N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide,
			and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	976.24	kg/m3	323.15 Volumetric Properties of Binary Mixtures of
			1-Butyl-1-Methylpyrrolidinium Tris(pentafluoroethyl)trifluorophosphate with
			N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and
			N,N-Dimethylacetamide from (293.15 to 323.15) K

rhol	1003.35	kg/m3	293.15	Volumetric Properties of Binary Mixtures	
			1-Bu Tris(penta	ot utyl-3-Methylimidazolium afluoroethyl)trifluorophospha with	ate
			N,	N-Methylformamide, N-Ethylformamide, N-Dimethylformamide, I,N-Dibutylformamide,	
				and ,N-Dimethylacetamide from (293.15 to 323.15) K	
rhol	998.91	kg/m3	298.15	Volumetric Properties of Binary Mixtures	
				of utyl-3-Methylimidazolium afluoroethyl)trifluorophospha with	ate
			N,	N-Methylformamide, N-Ethylformamide, N-Dimethylformamide, I,N-Dibutylformamide,	
			N	and ,N-Dimethylacetamide from (293.15 to 323.15) K	
rhol	994.49	kg/m3	303.15	Volumetric Properties of Binary Mixtures of	
				utyl-3-Methylimidazolium afluoroethyl)trifluorophospha with	ate
			N,	N-Methylformamide, N-Ethylformamide, N-Dimethylformamide, I,N-Dibutylformamide,	
			N	and ,N-Dimethylacetamide from (293.15 to 323.15) K	
rhol	990.01	kg/m3	308.15	Volumetric Properties of Binary Mixtures of	
				utyl-3-Methylimidazolium afluoroethyl)trifluorophospha with	ate
			N,	N-Methylformamide, N-Ethylformamide, N-Dimethylformamide, I,N-Dibutylformamide,	
			N	and ,N-Dimethylacetamide from (293.15 to 323.15) K	

rhol	999.25	kg/m3	298.15 Solution behavior
			of {(formamide/N-methylformamide/ N,N-dimethylformamide) + CsCl + water} ternary systems at multiple temperatures
rhol	980.88	kg/m3	318.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-Methylimidazolium Tris(pentafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	1007.94	kg/m3	288.15 Solution behavior of {(formamide/N-methylformamide/ N,N-dimethylformamide) + CsCl + water} ternary systems at multiple temperatures
rhol	785.32	kg/m3	298.15 Binary Liquid-Liquid Equilibrium (LLE) for N-Methylformamide (NMF) + Hexadecane between (288.15 and 318.15) K and Ternary LLE for Systems of NMF + Heterocyclic Nitrogen Compounds + Hexadecane at 298.15 K
rhol	990.30	kg/m3	308.15 Topological and thermodynamic investigations of mixtures containing o-chlorotoluene and lower amides
rhol	994.65	kg/m3	303.15 Topological and thermodynamic investigations of mixtures containing o-chlorotoluene and lower amides

rhol	999.00	kg/m3	298.15 Topological and thermodynamic investigations of mixtures containing o-chlorotoluene and lower amides
rhol	999.36	kg/m3	298.15 PrhoT measurement and PC-SAFT modeling of N,N-dimethyl formamide, N -methyl formamide, N,N-dimethyl acetamide, and ethylenediamine from T = (293.15-423.15) K and pressures up to 35 MPa
rhol	976.24	kg/m3	323.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-Methylimidazolium Tris(pentafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K
rhol	985.78	kg/m3	313.15 Volumetric Properties of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide with N-Methylformamide and N,N-Dimethylformamide from (293.15 to 323.15) K
rhol	985.47	kg/m3	313.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-Methylimidazolium Tris(pentafluoroethyl)trifluorophosphate with N-Methylformamide, N-Ethylformamide, N,N-Dimethylformamide, N,N-Dibutylformamide, and N,N-Dimethylacetamide from (293.15 to 323.15) K

speedsl	1432.86	m/s	298.15	Topological investigations of molecular interactions of binary and ternary mixtures containing tetrahydropyran, o-toluidine and N-methyl formamide	
speedsl	1431.91	m/s	298.15	Isentropic compressibilities of (amide + water) mixtures: A comparative study	
speedsl	1402.55	m/s	308.15	Topological investigations of molecular interactions of binary and ternary mixtures containing tetrahydropyran, o-toluidine and N-methyl formamide	
speedsl	1417.66	m/s	303.15	Topological investigations of molecular interactions of binary and ternary mixtures containing tetrahydropyran, o-toluidine and N-methyl formamide	

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.52412e+01
Coeff. B	-4.34038e+03
Coeff. C	-6.40690e+01
Temperature range (K), min.	354.33
Temperature range (K), max.	501.18

Information Value

Property code	pvap	
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$	
Coeff. A	7.41690e+01	
Coeff. B	-9.24638e+03	
Coeff. C	-8.20817e+00	
Coeff. D	2.46022e-06	
Temperature range (K), min.	269.35	
Temperature range (K), max.	721.00	

Datasets

Mass density, kg/m3

Pressure, kPa - Liquid	Temperature, K - Liquid	Mass density, kg/m3 - Liquid
100.00	298.15	997.61
Poforonco		https://www.doi.org/10.1021/jo/00526f

https://www.doi.org/10.1021/je400536f

Sources

PrhoT measurement and PC-SAFT mixtures at 298.15 K: Topological and thermodynamic investigations of mixtures containing bethermalweneraliquidwenuilihrief.or binary mixtures of benzene, toluene, Maryfeherund Fruillerighen Amattures of Benzene Mattures of Benzene Mattures of Benzene Mattures, Methylbenzene + 1,2-Dimethylbenzene, 4,5-Dimethylbenzene + 1,3-Limetry perizene +
2,3 4,5-Tetrahydrothiophene 1 1 rdioxide
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5,014 (2) 16 ch 2 full of 1 y pre 7 ferai +
5, Navietipms mamide + Water and the Binary Subsystems at 298.15 K:

PrhoT measurement and PC-SAFT modeling of N.N-dimethyl formamide. N Saparytion managet in piceminethyl (2, 2, 3c2t3 etial unto different measurement and pc-SAFT https://www.doi.org/10.1016/j.jct.2019.06.026 https://www.doi.org/10.1016/j.jct.2019.06.026 https://www.doi.org/10.1021/acs.jced.9b00202 https://www.doi.org/10.1021/je400536f https://www.doi.org/10.1021/je400536f https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1021/je1003466 https://www.doi.org/10.1016/j.fluid.2011.08.018 https: https://www.doi.org/10.1016/j.fluid.2016.08.014 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1376 https://www.doi.org/10.1016/j.jct.2013.12.006 https://www.doi.org/10.1016/j.fluid.2009.03.012 https://www.doi.org/10.1021/je100517z https://www.chemeo.com/doc/models/crippen_log10ws http://link.springer.com/article/10.1007/BF02311772

Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1016/j.jct.2014.05.013 Solution behavior of

{(formamide/N-methylformamide/ Nng-dawe:Narchaakide/arcsc + https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

Resputernary systems at multiple Exires Enthalpies of (N-Methylformamide or https://www.doi.org/10.1021/je700414c

Nativity coefficients of Alaminiaqueous https://www.doi.org/10.1016/j.fluid.2016.05.019

https://www.doi.org/10.1021/je8006265

TOWNERS HANGE AND THE THREE TOWNERS HANGE AND THREE TOWNERS HANG https://www.doi.org/10.1021/je400803f

Mistuses Gind Ternary LLE for Systems of the control of the contro

o-toluidine and N-methyl formamide: Excess molar volumes and excess

Excess molar volumes and excess isentropic compressibilities of binary you meeting more ries of Binary with the spring of the sp

N,N-Dimethylformamide, N,N-Dibutylformamide, and

N-Dimethylacetamide from (293.15 to

1200end

affp: Proton affinity basg: Gas basicity

Ideal gas heat capacity cpg: Liquid phase heat capacity cpl:

Electron affinity ea:

Standard Gibbs free energy of formation gf: hf: Enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

Ionization energy ie:

log10ws: Log10 of Water solubility in mol/l logp: Octanol/Water partition coefficient mcvol: McGowan's characteristic volume

Critical Pressure pc: pvap: Vapor pressure rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices speedsl: Speed of sound in fluid **tb:** Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/61-520-6/Formamide-N-methyl.pdf

Generated by Cheméo on 2025-12-23 13:57:04.449771883 +0000 UTC m=+6246421.979812537.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.