Methane, nitro-

Other names: CH3NO2

NM

NSC 428 Nitrocarbol Nitrometan Nitromethane UN 1261

nitromethane [NM]

Inchi: InChi=1S/CH3NO2/c1-2(3)4/h1H3
InchiKey: LYGJENNIWJXYER-UHFFFAOYSA-N

Formula: CH3NO2

SMILES: C[N+](=O)[O-]

Mol. weight [g/mol]: 61.04 **CAS:** 75-52-5

Physical Properties

Property code	Value	Unit	Source
af	0.3100		KDB
affp	754.60	kJ/mol	NIST Webbook
aigt	691.48	K	KDB
basg	721.60	kJ/mol	NIST Webbook
chl	-703.00 ± 1.00	kJ/mol	NIST Webbook
chl	-709.20	kJ/mol	NIST Webbook
chl	-709.15 ± 0.59	kJ/mol	NIST Webbook
chl	-733.25 ± 0.75	kJ/mol	NIST Webbook
chl	-709.60 ± 0.40	kJ/mol	NIST Webbook
dm	3.10	debye	KDB
ea	0.01	eV	NIST Webbook
ea	0.17 ± 0.01	eV	NIST Webbook
ea	0.44 ± 0.20	eV	NIST Webbook
ea	0.45 ± 0.05	eV	NIST Webbook
ea	0.96 ± 0.01	eV	NIST Webbook
ea	0.49 ± 0.11	eV	NIST Webbook
ea	0.50 ± 0.02	eV	NIST Webbook
ea	0.26 ± 0.08	eV	NIST Webbook
fII	7.30	% in Air	KDB
fpc	316.48	K	KDB

fno	200.45	K	KDB
fpo	308.15 -6.95	kJ/mol	KDB KDB
gf		KJ/IIIOI	
gyrad	2.3060	1, 1/ 1	KDB
hf	-81.00 ± 1.00	kJ/mol	NIST Webbook
hf	-74.78	kJ/mol	KDB
hfl	-113.00 ± 0.40	kJ/mol	NIST Webbook
hfl	-89.04 ± 0.75	kJ/mol	NIST Webbook
hfl	-113.10 ± 0.63	kJ/mol	NIST Webbook
hfus	9.71	kJ/mol	Joback Method
hvap	38.00 ± 0.40	kJ/mol	NIST Webbook
hvap	34.50 ± 0.08	kJ/mol	NIST Webbook
hvap	38.30 ± 0.10	kJ/mol	NIST Webbook
hvap	38.00 ± 0.40	kJ/mol	NIST Webbook
hvap	38.37	kJ/mol	NIST Webbook
hvap	37.20	kJ/mol	NIST Webbook
hvap	38.36	kJ/mol	NIST Webbook
ie	11.31 ± 0.01	eV	NIST Webbook
ie	11.23 ± 0.01	eV	NIST Webbook
ie	11.04 ± 0.02	eV	NIST Webbook
ie	11.12	eV	NIST Webbook
ie	11.07 ± 0.01	eV	NIST Webbook
ie	11.28 ± 0.08	eV	NIST Webbook
ie	10.70	eV	NIST Webbook
ie	11.13 ± 0.01	eV	NIST Webbook
ie	11.10 ± 0.05	eV	NIST Webbook
ie	11.07	eV	NIST Webbook
ie	11.08 ± 0.04	eV	NIST Webbook
ie	11.05	eV	NIST Webbook
ie	11.08 ± 0.03	eV	NIST Webbook
ie	11.29	eV	NIST Webbook
ie	11.47	eV	NIST Webbook
ie	11.31	eV	NIST Webbook
ie	11.80	eV	NIST Webbook
ie	11.29	eV	NIST Webbook
ie	11.10	eV	NIST Webbook
ie	11.28 ± 0.08	eV	NIST Webbook
ie	11.28	eV	NIST Webbook
log10ws	0.26		Estimated Solubility Method
log10ws	0.26		Aqueous Solubility Prediction Method
logp	-0.107		Crippen Method
mcvol	42.370	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
•	%!d(float64=1)		KDB

nfpas	%!d(float64=4)		KDB
pc	5870.00 ± 58.65	kPa	NIST Webbook
рс	5870.00	kPa	KDB
рс	6310.00 ± 103.42	kPa	NIST Webbook
rhoc	352.20 ± 3.05	kg/m3	NIST Webbook
rinpol	565.00		NIST Webbook
rinpol	531.00		NIST Webbook
rinpol	526.13		NIST Webbook
rinpol	556.00		NIST Webbook
rinpol	500.00		NIST Webbook
rinpol	536.00		NIST Webbook
rinpol	565.00		NIST Webbook
rinpol	565.00		NIST Webbook
rinpol	565.00		NIST Webbook
rinpol	512.00		NIST Webbook
rinpol	543.60		NIST Webbook
rinpol	521.00		NIST Webbook
rinpol	531.00		NIST Webbook
rinpol	521.00		NIST Webbook
rinpol	487.00		NIST Webbook
rinpol	526.00		NIST Webbook
rinpol	531.00		NIST Webbook
rinpol	536.00		NIST Webbook
rinpol	526.00		NIST Webbook
rinpol	565.00		NIST Webbook
rinpol	527.85		NIST Webbook
rinpol	528.16		NIST Webbook
rinpol	528.60		NIST Webbook
rinpol	531.15		NIST Webbook
rinpol	530.05		NIST Webbook
rinpol	529.26		NIST Webbook
rinpol	528.66		NIST Webbook
rinpol	528.15		NIST Webbook
rinpol	527.88		NIST Webbook
rinpol	527.75		NIST Webbook
rinpol	500.00		NIST Webbook
ripol	1188.50		NIST Webbook
ripol	1190.20		NIST Webbook
ripol	1178.50		NIST Webbook
ripol	1179.20		NIST Webbook
ripol	1180.60		NIST Webbook
ripol	1182.90		NIST Webbook
ripol	1184.70		NIST Webbook
ripol	1172.00		NIST Webbook

ele el	4450.00		NICTWALL
ripol	1159.00		NIST Webbook
ripol	1177.00		NIST Webbook
ripol	1177.00		NIST Webbook
ripol	1154.00		NIST Webbook
ripol	1159.00		NIST Webbook
ripol	1187.80		NIST Webbook
ripol	1180.60		NIST Webbook
ripol	1187.80		NIST Webbook
ripol	1160.90		NIST Webbook
sl	171.75	J/mol×K	NIST Webbook
tb	373.35 ± 0.50	K	NIST Webbook
tb	374.34	K	KDB
tb	374.15 ± 2.00	K	NIST Webbook
tb	374.15 ± 1.00	K	NIST Webbook
tb	374.17 ± 0.30	K	NIST Webbook
tb	374.30 ± 0.50	K	NIST Webbook
tb	374.25 ± 0.30	K	NIST Webbook
tb	374.40 ± 0.50	K	NIST Webbook
tb	374.15 ± 1.50	K	NIST Webbook
tb	373.35 ± 0.50	K	NIST Webbook
tb	373.13 ± 0.07	K	NIST Webbook
tb	374.22 ± 0.08	K	NIST Webbook
tb	374.85 ± 0.30	K	NIST Webbook
tb	374.35 ± 0.05	K	NIST Webbook
tb	374.17 ± 0.25	K	NIST Webbook
tb	374.43 ± 0.30	K	NIST Webbook
tb	374.40	K	NIST Webbook
tb	374.40 ± 0.50	K	NIST Webbook
tc	588.00	K	NIST Webbook
tc	588.00	K	KDB
tc	588.00 ± 3.00	K	NIST Webbook
tf	244.32	K	Aqueous Solubility Prediction Method
tf	244.60 ± 0.05	K	NIST Webbook
tf	243.36	К	Efficient determination of crystallisation and melting points at low cooling and heating rates with novel computer controlled equipment
tf	244.60	K	KDB
tf	243.95 ± 0.30	K	NIST Webbook
tf	244.00 ± 2.00	K	NIST Webbook
tf	243.11 ± 0.05	K	NIST Webbook
tf	244.55 ± 0.40	K	NIST Webbook
tt	244.77 ± 0.02	K	NIST Webbook

 VC	0.173	m3/kmol	KDB
ZC	0.2077160		KDB
 zra	0.23		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K	(] Source
срд	71.78	J/mol×K	409.74	Joback Method
cpg	87.12	J/mol×K	552.22	Joback Method
cpg	83.59	J/mol×K	516.60	Joback Method
cpg	79.86	J/mol×K	480.98	Joback Method
cpg	75.92	J/mol×K	445.36	Joback Method
cpg	67.43	J/mol×K	374.12	Joback Method
cpg	90.47	J/mol×K	587.84	Joback Method
cpl	105.98	J/mol×K	298.15	NIST Webbook
cpl	106.22	J/mol×K	308.00	NIST Webbook
cpl	108.20	J/mol×K	313.15 a	Excess molar properties for binary systems of alkylimidazolium-bas ionic liquids + nitromethane. Experimental results and ERAS-model calculations
cpl	108.80	J/mol×K	313.00	NIST Webbook
cpl	108.60	J/mol×K	318.15 a	Excess molar properties for binary systems of alkylimidazolium-bas ionic liquids + nitromethane. Experimental results and ERAS-model calculations
cpl	107.30	J/mol×K	303.15 a	Excess molar properties for binary systems of alkylimidazolium-bas ionic liquids + nitromethane. Experimental results and ERAS-model calculations

cpl	106.90	J/mol×K	298.15	Excess molar properties for binary systems of alkylimidazolium-based ionic liquids + nitromethane. Experimental results and ERAS-model calculations
cpl	106.60	J/mol×K	293.15	Excess molar properties for binary systems of alkylimidazolium-based ionic liquids + nitromethane. Experimental results and ERAS-model calculations
cpl	100.00	J/mol×K	298.00	NIST Webbook
cpl	107.70	J/mol×K	308.15	Excess molar properties for binary systems of alkylimidazolium-based ionic liquids + nitromethane. Experimental results and ERAS-model calculations
hfust	9.70	kJ/mol	244.80	NIST Webbook
hfust	9.70	kJ/mol	244.77	NIST Webbook
hfust	9.70	kJ/mol	244.80	NIST Webbook
hvapt	38.27	kJ/mol	298.15	NIST Webbook
hvapt	34.41	kJ/mol	374.00	KDB
hvapt	35.20	kJ/mol	440.50	NIST Webbook
hvapt	35.20 ± 0.10	kJ/mol	353.00	NIST Webbook
hvapt	33.99	kJ/mol	374.40	NIST Webbook
hvapt	36.80	kJ/mol	369.00	NIST Webbook
hvapt	34.00 ± 0.10	kJ/mol	374.00	NIST Webbook
hvapt	37.20 ± 0.10	kJ/mol	318.00	NIST Webbook
hvapt	36.30 ± 0.10	kJ/mol	335.00	NIST Webbook
kvisc	0.0000005	m2/s	305.15	Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution

kvisc	0.000005	m2/s	308.15	Densities,	
INVIGO	0.000000	THE/S	300.10	Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution	
kvisc	0.0000005	m2/s	303.15	Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution	
kvisc	0.0000005	m2/s	300.15	Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution	
kvisc	0.000006	m2/s	298.15	Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution	
kvisc	0.000006	m2/s	295.15	Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution	

kvisc	0.000006	m2/s	293.15	Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution	
rfi	1.37956		298.15	Isothermal vapor liquid equilibria and excess Gibbs free energies in some binary nitroalkane + chloroalkane mixtures at temperatures from 298.15 K to 318.15 K	
rfi	1.37960		298.15	Density and refractive index in mixtures of ionic liquids and organic solvents: Correlations and predictions	
rfi	1.37930		298.15	Isothermal (vapour + liquid) equilibria for (nitromethane or nitroethane + 1,4-dichlorobutane) binary systems at temperatures between (343.15 and 363.15) K	
rfi	1.37940		298.15	Isothermal Vapor Liquid Equilibria for Nitromethane and Nitroethane + 1,3-Dichloropropane Binary Systems at Temperatures between (343.15 and 363.15) K	

rfi	1.37990		298.15	Physico-chemical studies of sodium tetraphenylborate and tetrabutylammonium tetraphenylborate in pure nitrobenzene and nitromethane and their binaries probed by conductometry, refractometry and FT-IR spectroscopy
rhol	1138.00	kg/m3	293.00	KDB
rhol	1103.79	kg/m3	318.15	Water as a solute in nitromethane: Effect of H2O-D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K
rhol	1131.10	kg/m3	298.15	Asymmetric liquid-liquid criticality in the ideal volumetric mixing approximation
rhol	1130.15	kg/m3	298.15	Exploration of Solvation Consequence of Ionic Liquid [Bu4PCH3SO3] in Various Solvent Systems by Conductance and FTIR Study
rhol	1130.90	kg/m3	298.15	Volumetric Properties for (Ionic Liquid + Methanol or Ethanol or 1-Propanol + Nitromethane) at 298.15 K and Atmospheric Pressure
rhol	1130.86	kg/m3	298.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K

rhol	1117.24	kg/m3	308.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1103.50	kg/m3	318.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1130.91	kg/m3	298.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1117.53	kg/m3	308.15	Water as a solute in nitromethane: Effect of H2O-D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K	
rhol	1103.55	kg/m3	318.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1130.90	kg/m3	298.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	

rhol	1117.28	kg/m3	308.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1103.53	kg/m3	318.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1130.95	kg/m3	298.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1117.32	kg/m3	308.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1103.57	kg/m3	318.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1130.76	kg/m3	298.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	

rhol	1117.14	kg/m3	308.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1103.39	kg/m3	318.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1117.23	kg/m3	308.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1103.48	kg/m3	318.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1131.18	kg/m3	298.15	Water as a solute in nitromethane: Effect of H2O-D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K	
rhol	1133.40	kg/m3	298.15 1-	Density and Heat Capacity as a Function of Temperature for Binary Mixtures of Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane	1

rhol	1126.60	kg/m3	303.15	Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and +
rhol	1119.70	kg/m3	308.15	Nitromethane Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane
rhol	1112.90	kg/m3	313.15	Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane
rhol	1106.00	kg/m3	318.15	Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane
rhol	1144.75	kg/m3	288.15	Water as a solute in nitromethane: Effect of H2O-D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K

rhol	1158.25	kg/m3	278.15	Water as a solute in nitromethane: Effect of H2O-D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K
rhol	1130.15	kg/m3	298.15	lonic solvation of tetrabutylammonium hexafluorophosphate in pure nitromethane, 1, 3-dioxolane and nitrobenzene: A comparative physicochemical study
rhol	1140.20	kg/m3	293.15	Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane
rhol	1117.29	kg/m3	308.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K
sfust	39.64	J/mol×K	244.77	NIST Webbook
speedsl	1242.60	m/s	318.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories

speedsl 1	1282.03	m/s	308.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl 1	1321.74	m/s	298.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl 1	1242.76	m/s	318.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl 1	1282.12	m/s	308.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl 1	1321.50	m/s	298.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	

speedsl	1242.50	m/s	318.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1321.49	m/s	298.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1242.46	m/s	318.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1281.78	m/s	308.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	

speedsl	1321.20	m/s	298.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1321.33	m/s	298.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1242.39	m/s	318.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1281.77	m/s	308.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1321.26	m/s	298.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	

speedsl	1242.49	m/s	318.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories
speedsl	1281.90	m/s	308.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories
speedsl	1321.62	m/s	298.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories
speedsl	1242.47	m/s	318.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories

speedsl 1281.75 m/s 308.15 Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures	
of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl 1321.16 m/s 298.15 Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl 1242.45 m/s 318.15 Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl 1281.87 m/s 308.15 Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl 1321.18 m/s 298.15 Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	

srf	0.04	N/m	293.20	KDB
svapt	128.36	J/mol×K	298.15	NIST Webbook

Correlations

Information	Value
-------------	-------

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.53705e+01
Coeff. B	-3.66507e+03
Coeff. C	-3.32310e+01
Temperature range (K), min.	244.60
Temperature range (K), max.	588.15

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	8.31812e+01
Coeff. B	-7.21717e+03
Coeff. C	-1.02078e+01
Coeff. D	8.36912e-06
Temperature range (K), min.	244.60
Temperature range (K), max.	588.15

Datasets

Mass density, kg/m3

Pressure, kPa - Liquid	Temperature, K - Liquid	Mass density, kg/m3 - Liquid
100.00	298.15	1130.15
Reference		https://www.doi.org/10.1021/je400536f

Sources

approximation:

Density and refractive index in https://www.doi.org/10.1016/j.jct.2008.01.023 mixtures of ionic liquids and organic প্রত্যালয় তেওঁ প্রত্যালয় তেওঁ প্রত্যালয় তেওঁ প্রত্যালয় কর্মান কর Bropernesion some មានកានាទេកាអាមេប្រការ រូបខានទៅប្រភេទពីស្រុកពិនិស្សនិយិច ខេត្តក្រុមស្រុក អាមេរ្យក្រាជែនប្រហែក ក្រុមស្រុក អាមមន្ត្រីប្រភេទពិនិស្សនិយិច of Some Carbon Dioxide + Organic https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1021/je0498560 BIRATWS 9 5 6 9 ks: http://webbook.nist.gov/cgi/cbook.cgi?ID=C75525&Units=SI https://www.doi.org/10.1016/j.jct.2012.08.022 Henry s constants and activity coefficients of some organic solutes in Thursdays Henry hand and hand hand the solution of the https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure Companies in New Imidazolium and https://www.doi.org/10.1021/je9003178 https://www.doi.org/10.1021/je9003178 https://www.doi.org/10.1021/je201129y Triggen and the control of the contr https://www.doi.org/10.1016/j.jct.2011.11.005 https://www.doi.org/10.1021/je100830b http://pubs.acs.org/doi/abs/10.1021/cig/go/ahttps://www.doi.org/10.1021/je/go/ahttps://www.doi.org/10.1021/je/go/ahttps://www.doi.org/10.1021/je/go/ahttps://www.doi.org/10.1016/j.jct.2012.05 https://www.doi.org/10.1016/j.jct.2012.05 https:/ http://pubs.acs.org/doi/abs/10.1021/ci990307l https://www.doi.org/10.1016/j.fluid.2014.10.004 https://www.doi.org/10.1016/j.jct.2008.05.012 https://www.doi.org/10.1016/j.jct.2011.09.028 https://www.doi.org/10.1016/j.jct.2012.09.017 https://www.doi.org/10.1016/j.jct.2010.07.002 https://www.doi.org/10.1016/j.jct.2013.12.013 https://www.doi.org/10.1016/j.fluid.2010.01.024 https://www.doi.org/10.1016/j.fluid.2011.11.002 https://www.doi.org/10.1016/j.jct.2012.03.002 https://www.doi.org/10.1016/j.fluid.2013.07.002 http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt **Exploration of Solvation Consequence** https://www.doi.org/10.1021/acs.jced.5b00670 of lonic Liquid [Bu4PCH3SO3] in Standard Consequence of lonic Liquid [Bu4PCH3SO3] in Standard Consequence of Liquid Consequence of L https://www.doi.org/10.1016/j.fluid.2014.11.020 https://www.doi.org/10.1021/je200195q http://link.springer.com/article/10.1007/BF02311772 Density and Heat Capacity as a https://www.doi.org/10.1021/je7002836 Function of Temperature for Binary MDeures of 1-Butyl-3-methylpyridinium https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1421 Tetrafluoroborate + Water + Ethanol southermal warmer et ilquid equilibria for (nitromethane or nitroethane + Aquitismosphikismes haring selikisme einstanin consideration et in the consideration et https://www.doi.org/10.1016/j.jct.2012.06.033

https://www.doi.org/10.1021/je800754w

https://www.doi.org/10.1016/j.fluid.2010.10.008 https://www.doi.org/10.1016/j.jct.2018.08.035

Infinite dilution activity coefficients of volatile organic compounds in two សមាមព្រះនៃ១៤២អំពីឯកឧទ្ធាស់ដូវមាខ Method:

https://www.doi.org/10.1016/j.fluid.2012.10.015

https://www.doi.org/10.1016/j.fluid.2012.10.015

https://www.doi.org/10.1016/j.fluid.2012.10.015

https://www.doi.org/10.1016/j.fluid.2012.10.015

https://www.doi.org/10.1016/j.fluid.2012.10.015

https://www.doi.org/10.1016/j.fluid.2012.10.015

https://www.doi.org/10.1016/j.jct.2015.02.023

https://www.doi.org/10.1016/j.jct.2015.02.023

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1421

https://www.doi.org/10.1021/je900838a

Cyano-Functionalized Ionic Liquids
Usinga Dievise Castority Macticians of https://www.doi.org/10.1021/je500050p
Solutes Dissolved in Two

Panekianandekyppneshabianininic Ignigdaguids + Ethanol or + Namehanianics ostiles, and Speeds of

Names and costiles, and speeds of sound of the Nitromethane + Arteritar Progression salinities in the Nitromethane + Sound of the Nitromethal Infinition in the Nitromethal Infinition in the Nitromethal Information Info

Bis(trifluoromethylsulfonyl)imide lonic **Liquids Using Inverse Gas Chromatography:**

https://www.doi.org/10.1016/j.jct.2013.05.035

https://www.doi.org/10.1021/je700754k

https://www.doi.org/10.1021/je0500734

https://www.doi.org/10.1021/je800658v

https://www.doi.org/10.1016/j.jct.2008.09.002

https://www.doi.org/10.1021/je200637v

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1421

Legend

af: Acentric Factor affp: Proton affinity

aigt: **Autoignition Temperature**

basg: Gas basicity

chl: Standard liquid enthalpy of combustion

Ideal gas heat capacity cpg: Liquid phase heat capacity cpl:

dm: **Dipole Moment** ea: Electron affinity

Lower Flammability Limit fll:

Flash Point (Closed Cup Method) fpc: fpo: Flash Point (Open Cup Method)

Standard Gibbs free energy of formation gf:

gyrad: Radius of Gyration

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy kvisc: Kinematic viscosity

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp:

mcvol: McGowan's characteristic volume

nfpaf:NFPA Fire Ratingnfpah:NFPA Health Ratingnfpas:NFPA Safety Ratingpc:Critical Pressure

pvap: Vapor pressurerfi: Refractive Indexrhoc: Critical densityrhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

svapt: Entropy of vaporization at a given temperature

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility
zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/62-080-4/Methane-nitro.pdf

Generated by Cheméo on 2024-04-19 14:06:26.086880313 +0000 UTC m=+15824835.007457623.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.