Methane, nitro-

Other names: CH3NO2

NM

NSC 428 Nitrocarbol Nitrometan Nitromethane UN 1261

nitromethane [NM]

Inchi: InChi=1S/CH3NO2/c1-2(3)4/h1H3
InchiKey: LYGJENNIWJXYER-UHFFFAOYSA-N

Formula: CH3NO2

SMILES: C[N+](=O)[O-]

Mol. weight [g/mol]: 61.04 CAS: 75-52-5

Physical Properties

Property code	Value	Unit	Source
af	0.3100		KDB
affp	754.60	kJ/mol	NIST Webbook
aigt	691.48	K	KDB
basg	721.60	kJ/mol	NIST Webbook
chl	-709.15 ± 0.59	kJ/mol	NIST Webbook
chl	-733.25 ± 0.75	kJ/mol	NIST Webbook
chl	-709.20	kJ/mol	NIST Webbook
chl	-703.00 ± 1.00	kJ/mol	NIST Webbook
chl	-709.60 ± 0.40	kJ/mol	NIST Webbook
dm	3.10	debye	KDB
ea	0.50 ± 0.02	eV	NIST Webbook
ea	0.44 ± 0.20	eV	NIST Webbook
ea	0.96 ± 0.01	eV	NIST Webbook
ea	0.26 ± 0.08	eV	NIST Webbook
ea	0.01	eV	NIST Webbook
ea	0.17 ± 0.01	eV	NIST Webbook
ea	0.45 ± 0.05	eV	NIST Webbook
ea	0.49 ± 0.11	eV	NIST Webbook
fII	7.30	% in Air	KDB
fpc	316.48	K	KDB

fpo	308.15	K	KDB
gf	-6.95	kJ/mol	KDB
gyrad	2.3060		KDB
hf	-81.00 ± 1.00	kJ/mol	NIST Webbook
hf	-74.78	kJ/mol	KDB
hfl	-113.10 ± 0.63	kJ/mol	NIST Webbook
hfl	-113.00 ± 0.40	kJ/mol	NIST Webbook
hfl	-89.04 ± 0.75	kJ/mol	NIST Webbook
hfus	9.71	kJ/mol	Joback Method
hvap	34.50 ± 0.08	kJ/mol	NIST Webbook
hvap	38.30 ± 0.10	kJ/mol	NIST Webbook
hvap	38.00 ± 0.40	kJ/mol	NIST Webbook
hvap	38.00 ± 0.40	kJ/mol	NIST Webbook
hvap	38.37	kJ/mol	NIST Webbook
hvap	37.20	kJ/mol	NIST Webbook
hvap	38.36	kJ/mol	NIST Webbook
ie	11.29	eV	NIST Webbook
ie	11.08 ± 0.03	eV	NIST Webbook
ie	11.13 ± 0.01	eV	NIST Webbook
ie	11.04 ± 0.02	eV	NIST Webbook
ie	11.07 ± 0.01	eV	NIST Webbook
ie	11.28 ± 0.08	eV	NIST Webbook
ie	11.10	eV	NIST Webbook
ie	11.28	eV	NIST Webbook
ie	11.28 ± 0.08	eV	NIST Webbook
ie	11.05	eV	NIST Webbook
ie	11.12	eV	NIST Webbook
ie	10.70	eV	NIST Webbook
ie	11.10 ± 0.05	eV	NIST Webbook
ie	11.07	eV	NIST Webbook
ie	11.47	eV	NIST Webbook
ie	11.31	eV	NIST Webbook
ie	11.80	eV	NIST Webbook
ie	11.23 ± 0.01	eV	NIST Webbook
ie	11.29	eV	NIST Webbook
ie	11.31 ± 0.01	eV	NIST Webbook
ie	11.08 ± 0.04	eV	NIST Webbook
log10ws	0.26		Estimated Solubility Method
log10ws	0.26		Aqueous Solubility Prediction Method
logp	-0.107		Crippen Method
mcvol	42.370	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
I	70:a(110at0+=0)		

nfpas	%!d(float64=4)		KDB
рс	6310.00 ± 103.42	kPa	NIST Webbook
рс	5870.00	kPa	KDB
рс	5870.00 ± 58.65	kPa	NIST Webbook
rhoc	352.20 ± 3.05	kg/m3	NIST Webbook
rinpol	527.85		NIST Webbook
rinpol	521.00		NIST Webbook
rinpol	526.00		NIST Webbook
rinpol	526.00		NIST Webbook
rinpol	521.00		NIST Webbook
rinpol	487.00		NIST Webbook
rinpol	531.00		NIST Webbook
rinpol	531.00		NIST Webbook
rinpol	543.60		NIST Webbook
rinpol	531.15		NIST Webbook
rinpol	565.00		NIST Webbook
rinpol	512.00		NIST Webbook
rinpol	536.00		NIST Webbook
rinpol	565.00		NIST Webbook
rinpol	565.00		NIST Webbook
rinpol	565.00		NIST Webbook
rinpol	536.00		NIST Webbook
rinpol	500.00		NIST Webbook
rinpol	500.00		NIST Webbook
rinpol	556.00		NIST Webbook
rinpol	526.13		NIST Webbook
rinpol	527.75		NIST Webbook
rinpol	527.88		NIST Webbook
rinpol	528.15		NIST Webbook
rinpol	528.66		NIST Webbook
rinpol	531.00		NIST Webbook
rinpol	529.26		NIST Webbook
rinpol	530.05		NIST Webbook
rinpol	565.00		NIST Webbook
rinpol	528.60		NIST Webbook
rinpol	528.16		NIST Webbook
ripol	1188.50		NIST Webbook
ripol	1180.60		NIST Webbook
ripol	1187.80		NIST Webbook
ripol	1190.20		NIST Webbook
ripol	1179.20		NIST Webbook
ripol	1182.90		NIST Webbook
ripol	1154.00		NIST Webbook
ripol	1177.00		NIST Webbook

win al	4477.00		NICT Wahhaak
ripol	1177.00		NIST Webbook
ripol	1160.90		NIST Webbook
ripol	1159.00		NIST Webbook
ripol	1172.00		NIST Webbook
ripol	1184.70		NIST Webbook
ripol	1187.80		NIST Webbook
ripol	1180.60		NIST Webbook
ripol	1159.00		NIST Webbook
ripol	1178.50		NIST Webbook
sl	171.75	J/mol×K	NIST Webbook
tb	374.30 ± 0.50	K	NIST Webbook
tb	374.15 ± 1.50	K	NIST Webbook
tb	374.15 ± 1.00	K	NIST Webbook
tb	374.34	K	KDB
tb	373.35 ± 0.50	K	NIST Webbook
tb	373.35 ± 0.50	K	NIST Webbook
tb	374.40	K	NIST Webbook
tb	374.43 ± 0.30	K	NIST Webbook
tb	374.17 ± 0.25	K	NIST Webbook
tb	374.35 ± 0.05	K	NIST Webbook
tb	374.85 ± 0.30	K	NIST Webbook
tb	374.22 ± 0.08	K	NIST Webbook
tb	373.13 ± 0.07	K	NIST Webbook
tb	374.40 ± 0.50	K	NIST Webbook
tb	374.17 ± 0.30	K	NIST Webbook
tb	374.15 ± 2.00	K	NIST Webbook
tb	374.25 ± 0.30	K	NIST Webbook
tb	374.40 ± 0.50	K	NIST Webbook
tc	588.00	K	NIST Webbook
tc	588.00	K	KDB
tc	588.00 ± 3.00	K	NIST Webbook
tf	244.00 ± 2.00	K	NIST Webbook
tf	244.60	K	KDB
tf	243.36	K	Efficient determination of crystallisation and melting points at low cooling and heating rates with novel computer controlled equipment
tf	243.95 ± 0.30	K	NIST Webbook
tf	244.32	K	Aqueous Solubility Prediction Method
tf	243.11 ± 0.05	K	NIST Webbook
tf	244.55 ± 0.40	K	NIST Webbook
tf	244.60 ± 0.05	K	NIST Webbook
tt	244.77 ± 0.02	K	NIST Webbook

VC	0.173	m3/kmol	KDB
ZC	0.2077160		KDB
zra	0.23		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [F	(] Source	
cpg	87.12	J/mol×K	552.22	Joback Method	
cpg	67.43	J/mol×K	374.12	Joback Method	
cpg	71.78	J/mol×K	409.74	Joback Method	
cpg	79.86	J/mol×K	480.98	Joback Method	
cpg	83.59	J/mol×K	516.60	Joback Method	
cpg	75.92	J/mol×K	445.36	Joback Method	
cpg	90.47	J/mol×K	587.84	Joback Method	
cpl	108.60	J/mol×K	318.15 a	Excess molar properties for binary systems of alkylimidazolium-base ionic liquids + nitromethane. Experimental results and ERAS-model calculations	ed
cpl	108.80	J/mol×K	313.00	NIST Webbook	
cpl	105.98	J/mol×K	298.15	NIST Webbook	
cpl	106.22	J/mol×K	308.00	NIST Webbook	
cpl	100.00	J/mol×K	298.00	NIST Webbook	
cpl	108.20	J/mol×K	313.15 a	Excess molar properties for binary systems of alkylimidazolium-base ionic liquids + nitromethane. Experimental results and ERAS-model calculations	ed
cpl	107.30	J/mol×K	303.15 a	Excess molar properties for binary systems of alkylimidazolium-base ionic liquids + nitromethane. Experimental results and ERAS-model calculations	ed

cpl 106.90 J/mol×K 298.15	
alkyli	properties for inary systems of imidazolium-based ionic liquids + nitromethane. Experimental results and ERAS-model calculations
bi alkyli	Excess molar properties for inary systems of imidazolium-based ionic liquids + nitromethane. Experimental results and ERAS-model calculations
alkyli	Excess molar properties for nary systems of imidazolium-based ionic liquids + nitromethane. Experimental results and ERAS-model calculations
hfust 9.70 kJ/mol 244.77 l	NIST Webbook
hfust 9.70 kJ/mol 244.80 I	NIST Webbook
hfust 9.70 kJ/mol 244.80 I	NIST Webbook
hvapt 36.80 kJ/mol 369.00 I	NIST Webbook
hvapt 35.20 kJ/mol 440.50 I	NIST Webbook
hvapt 33.99 kJ/mol 374.40 I	NIST Webbook
hvapt 34.41 kJ/mol 374.00	KDB
hvapt 37.20 ± 0.10 kJ/mol 318.00 I	NIST Webbook
hvapt 36.30 ± 0.10 kJ/mol 335.00 I	NIST Webbook
hvapt 38.27 kJ/mol 298.15 l	NIST Webbook
hvapt 34.00 ± 0.10 kJ/mol 374.00 I	NIST Webbook
hvapt 35.20 ± 0.10 kJ/mol 353.00 I	NIST Webbook
S N S C	Densities, /iscosities, and peeds of Sound of the Nitromethane + 1-Pentanol System near the critical Demixing Temperature: Effect of Deuterium Substitution

ludaa	0.0000005	~~ O/a	200.45	Donaitica	
kvisc	0.000005	m2/s	300.15	Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution	
kvisc	0.0000005	m2/s	308.15	Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution	
kvisc	0.0000006	m2/s	295.15	Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution	
kvisc	0.0000006	m2/s	298.15	Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution	
kvisc	0.0000005	m2/s	303.15	Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution	

kvisc	0.000006	m2/s	293.15	Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution
rfi	1.37990		298.15	Physico-chemical studies of sodium tetraphenylborate and tetrabutylammonium tetraphenylborate in pure nitrobenzene and nitromethane and their binaries probed by conductometry, refractometry and FT-IR spectroscopy
rfi	1.37930		298.15	Isothermal (vapour + liquid) equilibria for (nitromethane or nitroethane + 1,4-dichlorobutane) binary systems at temperatures between (343.15 and 363.15) K
rfi	1.37940		298.15	Isothermal Vapor Liquid Equilibria for Nitromethane and Nitroethane + 1,3-Dichloropropane Binary Systems at Temperatures between (343.15 and 363.15) K
rfi	1.37956		298.15	Isothermal vapor liquid equilibria and excess Gibbs free energies in some binary nitroalkane + chloroalkane mixtures at temperatures from 298.15 K to 318.15 K

rfi	1.37960		298.15	Density and refractive index in mixtures of ionic liquids and organic solvents: Correlations and predictions	
rhol	1103.53	kg/m3	318.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1130.76	kg/m3	298.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1117.14	kg/m3	308.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1103.39	kg/m3	318.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1117.23	kg/m3	308.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	

rhol	1103.48	kg/m3	318.15 Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K
rhol	1140.20	kg/m3	293.15 Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane
rhol	1133.40	kg/m3	298.15 Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane
rhol	1126.60	kg/m3	303.15 Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane
rhol	1119.70	kg/m3	308.15 Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane

rhol	1112.90	kg/m3	313.15 1	Density and Heat Capacity as a Function of Temperature for Binary Mixtures of I-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane
rhol	1106.00	kg/m3	318.15 1	Density and Heat Capacity as a Function of Temperature for Binary Mixtures of I-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane
rhol	1117.32	kg/m3	308.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K
rhol	1130.95	kg/m3	298.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K
rhol	1138.00	kg/m3	293.00	KDB
rhol	1130.15	kg/m3	298.15	lonic solvation of tetrabutylammonium hexafluorophosphate in pure nitromethane, 1, 3-dioxolane and nitrobenzene: A comparative physicochemical study
rhol	1158.25	kg/m3	278.15	Water as a solute in nitromethane: Effect of H2O-D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K

rhol	1144.75	kg/m3	288.15	Water as a solute in nitromethane: Effect of H2O-D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K	
rhol	1131.18	kg/m3	298.15	Water as a solute in nitromethane: Effect of H2O-D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K	
rhol	1117.53	kg/m3	308.15	Water as a solute in nitromethane: Effect of H2O-D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K	
rhol	1103.79	kg/m3	318.15	Water as a solute in nitromethane: Effect of H2O-D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K	
rhol	1131.10	kg/m3	298.15	Asymmetric liquid-liquid criticality in the ideal volumetric mixing approximation	
rhol	1130.15	kg/m3	298.15	Exploration of Solvation Consequence of Ionic Liquid [Bu4PCH3SO3] in Various Solvent Systems by Conductance and FTIR Study	

rhol	1130.90	kg/m3	298.15	Volumetric	
				Properties for (Ionic Liquid + Methanol or Ethanol or 1-Propanol + Nitromethane) at 298.15 K and Atmospheric Pressure	
rhol	1130.86	kg/m3	298.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1117.24	kg/m3	308.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1103.50	kg/m3	318.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1130.91	kg/m3	298.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1117.29	kg/m3	308.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	

rhol	1103.55	kg/m3	318.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1130.90	kg/m3	298.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1117.28	kg/m3	308.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
rhol	1103.57	kg/m3	318.15	Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K	
sfust	39.64	J/mol×K	244.77	NIST Webbook	
speedsl	1281.78	m/s	308.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	

con ar indi bin of i with at t	reds of sound, isentropic isentropic isentropic inpressibilities and refractive ices for some intromethane is chloroalkane itemperatures om 298.15 to 318.15 K. imparison with theories
con ar indi bin of i with at t	reds of sound, isentropic isentro
con ar indi bin of i with at t	reds of sound, isentropic isentro
con ar indi bin of i with at t	reds of sound, isentropic isentro
con ar indi bin of i with at t	reds of sound, isentropic isentro

speedsl	1242.76	m/s	318.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1282.12	m/s	308.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1321.50	m/s	298.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1242.50	m/s	318.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	

speedsl	1321.49	m/s	298.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1242.46	m/s	318.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1281.87	m/s	308.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1321.20	m/s	298.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1242.39	m/s	318.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	

speedsl	1281.77	m/s	308.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1321.26	m/s	298.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1242.49	m/s	318.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	
speedsl	1281.90	m/s	308.15	Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories	

speedsl 1321.62 m/s 298.15 Speeds of sou	ınd
speedsl 1321.62 m/s 298.15 Speeds of sour isentropic compressibility and refractive indices for sour binary mixturn of nitromethat with chloroalker at temperaturn from 298.15 at 15 K. Comparison with chories	ies re me es ne ane es to
speedsl 1242.47 m/s 318.15 Speeds of sour isentropic compressibility and refractive indices for sour binary mixturn of nitromethan with chloroalker at temperaturn from 298.15 and 318.15 K. Comparison with chories	ies 'e me es ne ane es to
speedsl 1281.75 m/s 308.15 Speeds of sour isentropic compressibility and refractive indices for sour binary mixturn of nitromethan with chloroalker at temperaturn from 298.15 and 318.15 K. Comparison with theories	ies e me es ne ane es to
speedsl 1321.16 m/s 298.15 Speeds of sour isentropic compressibility and refractive indices for some binary mixture of nitromethat with chloroalker at temperature from 298.15 at 15 K. Comparison with theories	ies 'e me es ne ane es to
speedsl 1321.18 m/s 298.15 Speeds of sour isentropic compressibility and refractive indices for sour binary mixturn of nitromethal with chloroalker at temperaturn from 298.15 318.15 K. Comparison with theories	ies 'e me es ne ane es to

srf	0.04	N/m	293.20	KDB
svapt	128.36	J/mol×K	298.15	NIST Webbook

Correlations

Information	Value
-------------	-------

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.53705e+01
Coeff. B	-3.66507e+03
Coeff. C	-3.32310e+01
Temperature range (K), min.	244.60
Temperature range (K), max.	588.15

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	8.31812e+01
Coeff. B	-7.21717e+03
Coeff. C	-1.02078e+01
Coeff. D	8.36912e-06
Temperature range (K), min.	244.60
Temperature range (K), max.	588.15

Datasets

Mass density, kg/m3

Pressure, kPa - Liquid	Temperature, K - Liquid	Mass density, kg/m3 - Liquid
100.00	298.15	1130.15
Reference		https://www.doi.org/10.1021/je400536f

Sources

manage with nitromethane:

Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l Isothermal vapour liquid equilibria for https://www.doi.org/10.1016/j.fluid.2010.01.024 1,2-dichloroethane + nitromethane and 1,2-dichloroethane + nitromethane and Aethvibythane isinate at his misea Dilution at his matter of the properties of the https://www.doi.org/10.1021/je800754w https://www.doi.org/10.1016/j.jct.2010.07.002 https://www.doi.org/10.1016/j.fluid.2014.10.004 https://en.wikipedia.org/wiki/Joback_method intromethane with chloroalkane at emple at the string of https://en.wikipedia.org/wiki/Joback_method http://webbook.nist.gov/cgi/cbook.cgi?ID=C75525&Units=SI https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1421 Suffate and in Activity of the ionic liquid https://www.doi.org/10.1016/j.fluid.2010.10.008 pf. Organic solutes in the ionic liquid https://www.doi.org/10.1021/je700754k |คยเคล่าเตษเปรื่อง สีเปลกอไ or + พที่จะสิตย์เคล่า volatile organic https://www.doi.org/10.1016/j.jct.2011.09.028 https://www.doi.org/10.1016/j.jct.2011.09.028

https://www.doi.org/10.1016/j.jct.2011.09.028

https://www.doi.org/10.1021/je9003178

https://www.doi.org/10.1016/j.jct.2018.05.003

https://www.doi.org/10.1016/j.jct.2018.05.003

https://www.doi.org/10.1016/j.jct.2018.05.003

https://www.doi.org/10.1016/j.jct.2018.05.003

https://www.doi.org/10.1016/j.jct.2018.05.003

https://www.doi.org/10.1021/je9003178

https://www.doi.org/10.1021/je9003178

https://www.doi.org/10.1021/je9003178

https://www.doi.org/10.1021/je9003178

https://www.doi.org/10.1021/je9003178

https://www.doi.org/10.1016/j.jct.2018.05.003

https://www.doi.org/10.1016/j.jct.2018.05.003

https://www.doi.org/10.1021/je9003178

https://www.doi.org/10.1021/je9003178 measurements: Activity Coefficients at Infinite Dilution https://www.doi.org/10.1021/je300692s Activity Coefficients at Infinite Dilution for Organic Compounds Dissolved in Yoluverine Industries Infinite Dilution Bulletine Industries Infinite Infinite Dilution Bulletine Industries https://www.doi.org/10.1021/je100830b https://www.doi.org/10.1016/j.fluid.2014.11.020 https://www.doi.org/10.1021/acs.jced.5b00670 https://www.doi.org/10.1016/j.jct.2018.08.035 https://www.doi.org/10.1021/je201129y http://link.springer.com/article/10.1007/BF02311772 KDB Pure (Korean Thermophysical https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1421 Properties Databank): Excess molar properties for binary https://www.doi.org/10.1016/j.jct.2008.09.002 systems of alkylimidazolium-based landdigued emilibriumane inary experimentary experimentary and experimentary construction of the construction of https://www.doi.org/10.1016/j.fluid.2013.07.002

Role of Anions (Tetrafluoroborate, Perchlorate) of Tetrabutylammonium Sales Yappet Brasswig Saleation Effects

Prevailing in Industrially Essential https://www.doi.org/10.1021/je3013342 https://www.doi.org/10.1016/j.jct.2008.01.023 projective in the Range proje

Solventys: restrictions are inspectations: of organic solutes in interpretations and interpretations of organic solutes in interpretations of organic solutes in interpretations of property of interpretations of solutes in interpretations of solutes in interpretations of solutes property of interpretations of interpretations of solutes property of interpretations of interpretations of solutes property of interpretations of interpretations

Pagsaurons: Solubilities of some organic solutes in 1-ethyl-3-methylimidazolium acetate. อันสำครับสุริการ์ โดยละบาดการ and ผลายเป็นเราะบาดการ์ เราะบาดการ Using Inverse Gas Chromatography:

https://www.doi.org/10.1021/je400536f

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1421

https://www.doi.org/10.1016/j.fluid.2014.06.021

https://www.doi.org/10.1016/j.jct.2013.12.013

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.doi.org/10.1016/j.jct.2011.11.005

https://www.doi.org/10.1021/je900838a

Legend

af: Acentric Factor affp: Proton affinity

aigt: Autoignition Temperature

Gas basicity basg:

chl: Standard liquid enthalpy of combustion

Ideal gas heat capacity cpg: Liquid phase heat capacity cpl:

dm: **Dipole Moment** ea: Electron affinity

fII: Lower Flammability Limit

Flash Point (Closed Cup Method) fpc: Flash Point (Open Cup Method) fpo:

Standard Gibbs free energy of formation gf:

gyrad: Radius of Gyration

Enthalpy of formation at standard conditions hf:

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

Ionization energy ie: kvisc: Kinematic viscosity

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp:

mcvol: McGowan's characteristic volume

nfpaf:NFPA Fire Ratingnfpah:NFPA Health Ratingnfpas:NFPA Safety Ratingpc:Critical Pressure

pvap: Vapor pressure

rfi: Refractive Index

rhoc: Critical density

rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

svapt: Entropy of vaporization at a given temperature

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility
zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/62-080-4/Methane-nitro.pdf

Generated by Cheméo on 2025-12-23 18:11:26.234798388 +0000 UTC m=+6261683.764839042.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.