Methane, nitro- Other names: CH3NO2 NM NSC 428 Nitrocarbol Nitrometan Nitromethane UN 1261 nitromethane [NM] Inchi: InChi=1S/CH3NO2/c1-2(3)4/h1H3 InchiKey: LYGJENNIWJXYER-UHFFFAOYSA-N Formula: CH3NO2 **SMILES**: C[N+](=O)[O-] **Mol. weight [g/mol]:** 61.04 **CAS:** 75-52-5 ## **Physical Properties** | Property code | Value | Unit | Source | |---------------|-----------------|----------|--------------| | af | 0.3100 | | KDB | | affp | 754.60 | kJ/mol | NIST Webbook | | aigt | 691.48 | K | KDB | | basg | 721.60 | kJ/mol | NIST Webbook | | chl | -703.00 ± 1.00 | kJ/mol | NIST Webbook | | chl | -709.20 | kJ/mol | NIST Webbook | | chl | -709.15 ± 0.59 | kJ/mol | NIST Webbook | | chl | -733.25 ± 0.75 | kJ/mol | NIST Webbook | | chl | -709.60 ± 0.40 | kJ/mol | NIST Webbook | | dm | 3.10 | debye | KDB | | ea | 0.01 | eV | NIST Webbook | | ea | 0.17 ± 0.01 | eV | NIST Webbook | | ea | 0.44 ± 0.20 | eV | NIST Webbook | | ea | 0.45 ± 0.05 | eV | NIST Webbook | | ea | 0.96 ± 0.01 | eV | NIST Webbook | | ea | 0.49 ± 0.11 | eV | NIST Webbook | | ea | 0.50 ± 0.02 | eV | NIST Webbook | | ea | 0.26 ± 0.08 | eV | NIST Webbook | | fII | 7.30 | % in Air | KDB | | fpc | 316.48 | K | KDB | | fno | 200.45 | K | KDB | |---------|------------------|----------|---| | fpo | 308.15
-6.95 | kJ/mol | KDB
KDB | | gf | | KJ/IIIOI | | | gyrad | 2.3060 | 1, 1/ 1 | KDB | | hf | -81.00 ± 1.00 | kJ/mol | NIST Webbook | | hf | -74.78 | kJ/mol | KDB | | hfl | -113.00 ± 0.40 | kJ/mol | NIST Webbook | | hfl | -89.04 ± 0.75 | kJ/mol | NIST Webbook | | hfl | -113.10 ± 0.63 | kJ/mol | NIST Webbook | | hfus | 9.71 | kJ/mol | Joback Method | | hvap | 38.00 ± 0.40 | kJ/mol | NIST Webbook | | hvap | 34.50 ± 0.08 | kJ/mol | NIST Webbook | | hvap | 38.30 ± 0.10 | kJ/mol | NIST Webbook | | hvap | 38.00 ± 0.40 | kJ/mol | NIST Webbook | | hvap | 38.37 | kJ/mol | NIST Webbook | | hvap | 37.20 | kJ/mol | NIST Webbook | | hvap | 38.36 | kJ/mol | NIST Webbook | | ie | 11.31 ± 0.01 | eV | NIST Webbook | | ie | 11.23 ± 0.01 | eV | NIST Webbook | | ie | 11.04 ± 0.02 | eV | NIST Webbook | | ie | 11.12 | eV | NIST Webbook | | ie | 11.07 ± 0.01 | eV | NIST Webbook | | ie | 11.28 ± 0.08 | eV | NIST Webbook | | ie | 10.70 | eV | NIST Webbook | | ie | 11.13 ± 0.01 | eV | NIST Webbook | | ie | 11.10 ± 0.05 | eV | NIST Webbook | | ie | 11.07 | eV | NIST Webbook | | ie | 11.08 ± 0.04 | eV | NIST Webbook | | ie | 11.05 | eV | NIST Webbook | | ie | 11.08 ± 0.03 | eV | NIST Webbook | | ie | 11.29 | eV | NIST Webbook | | ie | 11.47 | eV | NIST Webbook | | ie | 11.31 | eV | NIST Webbook | | ie | 11.80 | eV | NIST Webbook | | ie | 11.29 | eV | NIST Webbook | | ie | 11.10 | eV | NIST Webbook | | ie | 11.28 ± 0.08 | eV | NIST Webbook | | ie | 11.28 | eV | NIST Webbook | | log10ws | 0.26 | | Estimated Solubility
Method | | log10ws | 0.26 | | Aqueous Solubility
Prediction Method | | logp | -0.107 | | Crippen Method | | mcvol | 42.370 | ml/mol | McGowan Method | | nfpaf | %!d(float64=3) | | KDB | | • | %!d(float64=1) | | KDB | | nfpas | %!d(float64=4) | | KDB | |--------|------------------|-------|--------------| | pc | 5870.00 ± 58.65 | kPa | NIST Webbook | | рс | 5870.00 | kPa | KDB | | рс | 6310.00 ± 103.42 | kPa | NIST Webbook | | rhoc | 352.20 ± 3.05 | kg/m3 | NIST Webbook | | rinpol | 565.00 | | NIST Webbook | | rinpol | 531.00 | | NIST Webbook | | rinpol | 526.13 | | NIST Webbook | | rinpol | 556.00 | | NIST Webbook | | rinpol | 500.00 | | NIST Webbook | | rinpol | 536.00 | | NIST Webbook | | rinpol | 565.00 | | NIST Webbook | | rinpol | 565.00 | | NIST Webbook | | rinpol | 565.00 | | NIST Webbook | | rinpol | 512.00 | | NIST Webbook | | rinpol | 543.60 | | NIST Webbook | | rinpol | 521.00 | | NIST Webbook | | rinpol | 531.00 | | NIST Webbook | | rinpol | 521.00 | | NIST Webbook | | rinpol | 487.00 | | NIST Webbook | | rinpol | 526.00 | | NIST Webbook | | rinpol | 531.00 | | NIST Webbook | | rinpol | 536.00 | | NIST Webbook | | rinpol | 526.00 | | NIST Webbook | | rinpol | 565.00 | | NIST Webbook | | rinpol | 527.85 | | NIST Webbook | | rinpol | 528.16 | | NIST Webbook | | rinpol | 528.60 | | NIST Webbook | | rinpol | 531.15 | | NIST Webbook | | rinpol | 530.05 | | NIST Webbook | | rinpol | 529.26 | | NIST Webbook | | rinpol | 528.66 | | NIST Webbook | | rinpol | 528.15 | | NIST Webbook | | rinpol | 527.88 | | NIST Webbook | | rinpol | 527.75 | | NIST Webbook | | rinpol | 500.00 | | NIST Webbook | | ripol | 1188.50 | | NIST Webbook | | ripol | 1190.20 | | NIST Webbook | | ripol | 1178.50 | | NIST Webbook | | ripol | 1179.20 | | NIST Webbook | | ripol | 1180.60 | | NIST Webbook | | ripol | 1182.90 | | NIST Webbook | | ripol | 1184.70 | | NIST Webbook | | ripol | 1172.00 | | NIST Webbook | | | | | | | ele el | 4450.00 | | NICTWALL | |--------|-------------------|---------|---| | ripol | 1159.00 | | NIST Webbook | | ripol | 1177.00 | | NIST Webbook | | ripol | 1177.00 | | NIST Webbook | | ripol | 1154.00 | | NIST Webbook | | ripol | 1159.00 | | NIST Webbook | | ripol | 1187.80 | | NIST Webbook | | ripol | 1180.60 | | NIST Webbook | | ripol | 1187.80 | | NIST Webbook | | ripol | 1160.90 | | NIST Webbook | | sl | 171.75 | J/mol×K | NIST Webbook | | tb | 373.35 ± 0.50 | K | NIST Webbook | | tb | 374.34 | K | KDB | | tb | 374.15 ± 2.00 | K | NIST Webbook | | tb | 374.15 ± 1.00 | K | NIST Webbook | | tb | 374.17 ± 0.30 | K | NIST Webbook | | tb | 374.30 ± 0.50 | K | NIST Webbook | | tb | 374.25 ± 0.30 | K | NIST Webbook | | tb | 374.40 ± 0.50 | K | NIST Webbook | | tb | 374.15 ± 1.50 | K | NIST Webbook | | tb | 373.35 ± 0.50 | K | NIST Webbook | | tb | 373.13 ± 0.07 | K | NIST Webbook | | tb | 374.22 ± 0.08 | K | NIST Webbook | | tb | 374.85 ± 0.30 | K | NIST Webbook | | tb | 374.35 ± 0.05 | K | NIST Webbook | | tb | 374.17 ± 0.25 | K | NIST Webbook | | tb | 374.43 ± 0.30 | K | NIST Webbook | | tb | 374.40 | K | NIST Webbook | | tb | 374.40 ± 0.50 | K | NIST Webbook | | tc | 588.00 | K | NIST Webbook | | tc | 588.00 | K | KDB | | tc | 588.00 ± 3.00 | K | NIST Webbook | | tf | 244.32 | K | Aqueous Solubility Prediction Method | | tf | 244.60 ± 0.05 | K | NIST Webbook | | tf | 243.36 | К | Efficient determination of crystallisation and melting points at low cooling and heating rates with novel computer controlled equipment | | tf | 244.60 | K | KDB | | tf | 243.95 ± 0.30 | K | NIST Webbook | | tf | 244.00 ± 2.00 | K | NIST Webbook | | tf | 243.11 ± 0.05 | K | NIST Webbook | | tf | 244.55 ± 0.40 | K | NIST Webbook | | tt | 244.77 ± 0.02 | K | NIST Webbook | | | | | | |
VC | 0.173 | m3/kmol | KDB | |---------|-----------|---------|-----| | ZC | 0.2077160 | | KDB | |
zra | 0.23 | | KDB | # **Temperature Dependent Properties** | Property code | Value | Unit | Temperature [K | (] Source | |---------------|--------|---------|----------------|---| | срд | 71.78 | J/mol×K | 409.74 | Joback Method | | cpg | 87.12 | J/mol×K | 552.22 | Joback Method | | cpg | 83.59 | J/mol×K | 516.60 | Joback Method | | cpg | 79.86 | J/mol×K | 480.98 | Joback Method | | cpg | 75.92 | J/mol×K | 445.36 | Joback Method | | cpg | 67.43 | J/mol×K | 374.12 | Joback Method | | cpg | 90.47 | J/mol×K | 587.84 | Joback Method | | cpl | 105.98 | J/mol×K | 298.15 | NIST Webbook | | cpl | 106.22 | J/mol×K | 308.00 | NIST Webbook | | cpl | 108.20 | J/mol×K | 313.15
a | Excess molar properties for binary systems of alkylimidazolium-bas ionic liquids + nitromethane. Experimental results and ERAS-model calculations | | cpl | 108.80 | J/mol×K | 313.00 | NIST Webbook | | cpl | 108.60 | J/mol×K | 318.15
a | Excess molar properties for binary systems of alkylimidazolium-bas ionic liquids + nitromethane. Experimental results and ERAS-model calculations | | cpl | 107.30 | J/mol×K | 303.15
a | Excess molar properties for binary systems of alkylimidazolium-bas ionic liquids + nitromethane. Experimental results and ERAS-model calculations | | cpl | 106.90 | J/mol×K | 298.15 | Excess molar properties for binary systems of alkylimidazolium-based ionic liquids + nitromethane. Experimental results and ERAS-model calculations | |-------|------------------|---------|--------|--| | cpl | 106.60 | J/mol×K | 293.15 | Excess molar properties for binary systems of alkylimidazolium-based ionic liquids + nitromethane. Experimental results and ERAS-model calculations | | cpl | 100.00 | J/mol×K | 298.00 | NIST Webbook | | cpl | 107.70 | J/mol×K | 308.15 | Excess molar properties for binary systems of alkylimidazolium-based ionic liquids + nitromethane. Experimental results and ERAS-model calculations | | hfust | 9.70 | kJ/mol | 244.80 | NIST Webbook | | hfust | 9.70 | kJ/mol | 244.77 | NIST Webbook | | hfust | 9.70 | kJ/mol | 244.80 | NIST Webbook | | hvapt | 38.27 | kJ/mol | 298.15 | NIST Webbook | | hvapt | 34.41 | kJ/mol | 374.00 | KDB | | hvapt | 35.20 | kJ/mol | 440.50 | NIST Webbook | | hvapt | 35.20 ± 0.10 | kJ/mol | 353.00 | NIST Webbook | | hvapt | 33.99 | kJ/mol | 374.40 | NIST Webbook | | hvapt | 36.80 | kJ/mol | 369.00 | NIST Webbook | | hvapt | 34.00 ± 0.10 | kJ/mol | 374.00 | NIST Webbook | | hvapt | 37.20 ± 0.10 | kJ/mol | 318.00 | NIST Webbook | | hvapt | 36.30 ± 0.10 | kJ/mol | 335.00 | NIST Webbook | | kvisc | 0.0000005 | m2/s | 305.15 | Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution | | kvisc | 0.000005 | m2/s | 308.15 | Densities, | | |--------|-----------|-------|--------|--|--| | INVIGO | 0.000000 | THE/S | 300.10 | Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution | | | kvisc | 0.0000005 | m2/s | 303.15 | Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution | | | kvisc | 0.0000005 | m2/s | 300.15 | Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution | | | kvisc | 0.000006 | m2/s | 298.15 | Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution | | | kvisc | 0.000006 | m2/s | 295.15 | Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution | | | kvisc | 0.000006 | m2/s | 293.15 | Densities, Viscosities, and Speeds of Sound of the Nitromethane + 1-Pentanol System near the Critical Demixing Temperature: Effect of Deuterium Substitution | | |-------|----------|------|--------|--|--| | rfi | 1.37956 | | 298.15 | Isothermal vapor liquid equilibria and excess Gibbs free energies in some binary nitroalkane + chloroalkane mixtures at temperatures from 298.15 K to 318.15 K | | | rfi | 1.37960 | | 298.15 | Density and refractive index in mixtures of ionic liquids and organic solvents: Correlations and predictions | | | rfi | 1.37930 | | 298.15 | Isothermal (vapour + liquid) equilibria for (nitromethane or nitroethane + 1,4-dichlorobutane) binary systems at temperatures between (343.15 and 363.15) K | | | rfi | 1.37940 | | 298.15 | Isothermal Vapor Liquid Equilibria for Nitromethane and Nitroethane + 1,3-Dichloropropane Binary Systems at Temperatures between (343.15 and 363.15) K | | | rfi | 1.37990 | | 298.15 | Physico-chemical studies of sodium tetraphenylborate and tetrabutylammonium tetraphenylborate in pure nitrobenzene and nitromethane and their binaries probed by conductometry, refractometry and FT-IR spectroscopy | |------|---------|-------|--------|--| | rhol | 1138.00 | kg/m3 | 293.00 | KDB | | rhol | 1103.79 | kg/m3 | 318.15 | Water as a solute in nitromethane: Effect of H2O-D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K | | rhol | 1131.10 | kg/m3 | 298.15 | Asymmetric liquid-liquid criticality in the ideal volumetric mixing approximation | | rhol | 1130.15 | kg/m3 | 298.15 | Exploration of Solvation Consequence of Ionic Liquid [Bu4PCH3SO3] in Various Solvent Systems by Conductance and FTIR Study | | rhol | 1130.90 | kg/m3 | 298.15 | Volumetric Properties for (Ionic Liquid + Methanol or Ethanol or 1-Propanol + Nitromethane) at 298.15 K and Atmospheric Pressure | | rhol | 1130.86 | kg/m3 | 298.15 | Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K | | rhol | 1117.24 | kg/m3 | 308.15 | Volumetric Study
for the Binary
Nitromethane
with
Chloroalkane
Mixtures at
Temperatures in
the Range
(298.15 to
318.15) K | | |------|---------|-------|--------|--|--| | rhol | 1103.50 | kg/m3 | 318.15 | Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K | | | rhol | 1130.91 | kg/m3 | 298.15 | Volumetric Study
for the Binary
Nitromethane
with
Chloroalkane
Mixtures at
Temperatures in
the Range
(298.15 to
318.15) K | | | rhol | 1117.53 | kg/m3 | 308.15 | Water as a solute in nitromethane: Effect of H2O-D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K | | | rhol | 1103.55 | kg/m3 | 318.15 | Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K | | | rhol | 1130.90 | kg/m3 | 298.15 | Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K | | | rhol | 1117.28 | kg/m3 | 308.15 | Volumetric Study
for the Binary
Nitromethane
with
Chloroalkane
Mixtures at
Temperatures in
the Range
(298.15 to
318.15) K | | |------|---------|-------|--------|--|--| | rhol | 1103.53 | kg/m3 | 318.15 | Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K | | | rhol | 1130.95 | kg/m3 | 298.15 | Volumetric Study
for the Binary
Nitromethane
with
Chloroalkane
Mixtures at
Temperatures in
the Range
(298.15 to
318.15) K | | | rhol | 1117.32 | kg/m3 | 308.15 | Volumetric Study
for the Binary
Nitromethane
with
Chloroalkane
Mixtures at
Temperatures in
the Range
(298.15 to
318.15) K | | | rhol | 1103.57 | kg/m3 | 318.15 | Volumetric Study
for the Binary
Nitromethane
with
Chloroalkane
Mixtures at
Temperatures in
the Range
(298.15 to
318.15) K | | | rhol | 1130.76 | kg/m3 | 298.15 | Volumetric Study
for the Binary
Nitromethane
with
Chloroalkane
Mixtures at
Temperatures in
the Range
(298.15 to
318.15) K | | | rhol | 1117.14 | kg/m3 | 308.15 | Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K | | |------|---------|-------|--------------|---|---| | rhol | 1103.39 | kg/m3 | 318.15 | Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K | | | rhol | 1117.23 | kg/m3 | 308.15 | Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K | | | rhol | 1103.48 | kg/m3 | 318.15 | Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K | | | rhol | 1131.18 | kg/m3 | 298.15 | Water as a solute in nitromethane: Effect of H2O-D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K | | | rhol | 1133.40 | kg/m3 | 298.15
1- | Density and Heat Capacity as a Function of Temperature for Binary Mixtures of Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane | 1 | | rhol | 1126.60 | kg/m3 | 303.15 | Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + | |------|---------|-------|--------|---| | rhol | 1119.70 | kg/m3 | 308.15 | Nitromethane Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane | | rhol | 1112.90 | kg/m3 | 313.15 | Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane | | rhol | 1106.00 | kg/m3 | 318.15 | Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane | | rhol | 1144.75 | kg/m3 | 288.15 | Water as a solute in nitromethane: Effect of H2O-D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K | | rhol | 1158.25 | kg/m3 | 278.15 | Water as a solute in nitromethane: Effect of H2O-D2O isotope substitution on the solution volumetric properties between 278.15 K and 318.15 K | |---------|---------|---------|--------|---| | rhol | 1130.15 | kg/m3 | 298.15 | lonic solvation of tetrabutylammonium hexafluorophosphate in pure nitromethane, 1, 3-dioxolane and nitrobenzene: A comparative physicochemical study | | rhol | 1140.20 | kg/m3 | 293.15 | Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane | | rhol | 1117.29 | kg/m3 | 308.15 | Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K | | sfust | 39.64 | J/mol×K | 244.77 | NIST Webbook | | speedsl | 1242.60 | m/s | 318.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | speedsl 1 | 1282.03 | m/s | 308.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | |-----------|---------|-----|--------|---|--| | speedsl 1 | 1321.74 | m/s | 298.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | | speedsl 1 | 1242.76 | m/s | 318.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | | speedsl 1 | 1282.12 | m/s | 308.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | | speedsl 1 | 1321.50 | m/s | 298.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | | speedsl | 1242.50 | m/s | 318.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | |---------|---------|-----|--------|---|--| | speedsl | 1321.49 | m/s | 298.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | | speedsl | 1242.46 | m/s | 318.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | | speedsl | 1281.78 | m/s | 308.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | | speedsl | 1321.20 | m/s | 298.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | |---------|---------|-----|--------|---|--| | speedsl | 1321.33 | m/s | 298.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | | speedsl | 1242.39 | m/s | 318.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | | speedsl | 1281.77 | m/s | 308.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | | speedsl | 1321.26 | m/s | 298.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | | speedsl | 1242.49 | m/s | 318.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | |---------|---------|-----|--------|---| | speedsl | 1281.90 | m/s | 308.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | speedsl | 1321.62 | m/s | 298.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | speedsl | 1242.47 | m/s | 318.15 | Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | speedsl 1281.75 m/s 308.15 Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures | | |---|--| | of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | | speedsl 1321.16 m/s 298.15 Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | | speedsl 1242.45 m/s 318.15 Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | | speedsl 1281.87 m/s 308.15 Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | | speedsl 1321.18 m/s 298.15 Speeds of sound, isentropic compressibilities and refractive indices for some binary mixtures of nitromethane with chloroalkane at temperatures from 298.15 to 318.15 K. Comparison with theories | | | srf | 0.04 | N/m | 293.20 | KDB | |-------|--------|---------|--------|--------------| | svapt | 128.36 | J/mol×K | 298.15 | NIST Webbook | ### **Correlations** | Information | Value | |-------------|-------| |-------------|-------| | Property code | pvap | |-----------------------------|-------------------------| | Equation | ln(Pvp) = A + B/(T + C) | | Coeff. A | 1.53705e+01 | | Coeff. B | -3.66507e+03 | | Coeff. C | -3.32310e+01 | | Temperature range (K), min. | 244.60 | | Temperature range (K), max. | 588.15 | Information Value | Property code | pvap | |-----------------------------|---------------------------------------| | Equation | $ln(Pvp) = A + B/T + C*ln(T) + D*T^2$ | | Coeff. A | 8.31812e+01 | | Coeff. B | -7.21717e+03 | | Coeff. C | -1.02078e+01 | | Coeff. D | 8.36912e-06 | | Temperature range (K), min. | 244.60 | | Temperature range (K), max. | 588.15 | #### **Datasets** ## Mass density, kg/m3 | Pressure, kPa - Liquid | Temperature, K - Liquid | Mass density, kg/m3 - Liquid | |------------------------|-------------------------|---------------------------------------| | 100.00 | 298.15 | 1130.15 | | Reference | | https://www.doi.org/10.1021/je400536f | #### Sources approximation: Density and refractive index in https://www.doi.org/10.1016/j.jct.2008.01.023 mixtures of ionic liquids and organic প্রত্যালয় তেওঁ প্রত্যালয় তেওঁ প্রত্যালয় তেওঁ প্রত্যালয় কর্মান কর Bropernesion some មានកានាទេកាអាមេប្រការ រូបខានទៅប្រភេទពីស្រុកពិនិស្សនិយិច ខេត្តក្រុមស្រុក អាមេរ្យក្រាជែនប្រហែក ក្រុមស្រុក អាមមន្ត្រីប្រភេទពិនិស្សនិយិច of Some Carbon Dioxide + Organic https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1021/je0498560 BIRATWS 9 5 6 9 ks: http://webbook.nist.gov/cgi/cbook.cgi?ID=C75525&Units=SI https://www.doi.org/10.1016/j.jct.2012.08.022 Henry s constants and activity coefficients of some organic solutes in Thursdays Henry hand and hand hand the solution of https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure Companies in New Imidazolium and https://www.doi.org/10.1021/je9003178 https://www.doi.org/10.1021/je9003178 https://www.doi.org/10.1021/je201129y Triggen and the control of contr https://www.doi.org/10.1016/j.jct.2011.11.005 https://www.doi.org/10.1021/je100830b http://pubs.acs.org/doi/abs/10.1021/cig/go/ahttps://www.doi.org/10.1021/je/go/ahttps://www.doi.org/10.1021/je/go/ahttps://www.doi.org/10.1021/je/go/ahttps://www.doi.org/10.1016/j.jct.2012.05 https://www.doi.org/10.1016/j.jct.2012.05 https:/ http://pubs.acs.org/doi/abs/10.1021/ci990307l https://www.doi.org/10.1016/j.fluid.2014.10.004 https://www.doi.org/10.1016/j.jct.2008.05.012 https://www.doi.org/10.1016/j.jct.2011.09.028 https://www.doi.org/10.1016/j.jct.2012.09.017 https://www.doi.org/10.1016/j.jct.2010.07.002 https://www.doi.org/10.1016/j.jct.2013.12.013 https://www.doi.org/10.1016/j.fluid.2010.01.024 https://www.doi.org/10.1016/j.fluid.2011.11.002 https://www.doi.org/10.1016/j.jct.2012.03.002 https://www.doi.org/10.1016/j.fluid.2013.07.002 http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt **Exploration of Solvation Consequence** https://www.doi.org/10.1021/acs.jced.5b00670 of lonic Liquid [Bu4PCH3SO3] in Standard Consequence of lonic Liquid [Bu4PCH3SO3] in Standard Consequence of Liquid L https://www.doi.org/10.1016/j.fluid.2014.11.020 https://www.doi.org/10.1021/je200195q http://link.springer.com/article/10.1007/BF02311772 Density and Heat Capacity as a https://www.doi.org/10.1021/je7002836 Function of Temperature for Binary MDeures of 1-Butyl-3-methylpyridinium https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1421 Tetrafluoroborate + Water + Ethanol southermal warmer et ilquid equilibria for (nitromethane or nitroethane + Aquitismosphikismes haring selikisme einstanin consideration et in the https://www.doi.org/10.1016/j.jct.2012.06.033 https://www.doi.org/10.1021/je800754w https://www.doi.org/10.1016/j.fluid.2010.10.008 https://www.doi.org/10.1016/j.jct.2018.08.035 Infinite dilution activity coefficients of volatile organic compounds in two សមាមព្រះនៃ១៤២អំពីឯកឧទ្ធាស់ដូវមាខ Method: https://www.doi.org/10.1016/j.fluid.2012.10.015 https://www.doi.org/10.1016/j.fluid.2012.10.015 https://www.doi.org/10.1016/j.fluid.2012.10.015 https://www.doi.org/10.1016/j.fluid.2012.10.015 https://www.doi.org/10.1016/j.fluid.2012.10.015 https://www.doi.org/10.1016/j.fluid.2012.10.015 https://www.doi.org/10.1016/j.jct.2015.02.023 https://www.doi.org/10.1016/j.jct.2015.02.023 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1421 https://www.doi.org/10.1021/je900838a Cyano-Functionalized Ionic Liquids Usinga Dievise Castority Macticians of https://www.doi.org/10.1021/je500050p Solutes Dissolved in Two Panekianandekyppneshabianininic Ignigdaguids + Ethanol or + Namehanianics ostiles, and Speeds of Names and costiles, and speeds of sound of the Nitromethane + Arteritar Progression salinities in the Nitromethane + Sound of the Nitromethal Infinition in the Nitromethal Infinition in the Nitromethal Information Info Bis(trifluoromethylsulfonyl)imide lonic **Liquids Using Inverse Gas Chromatography:** https://www.doi.org/10.1016/j.jct.2013.05.035 https://www.doi.org/10.1021/je700754k https://www.doi.org/10.1021/je0500734 https://www.doi.org/10.1021/je800658v https://www.doi.org/10.1016/j.jct.2008.09.002 https://www.doi.org/10.1021/je200637v https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1421 #### Legend af: Acentric Factor affp: Proton affinity aigt: **Autoignition Temperature** basg: Gas basicity chl: Standard liquid enthalpy of combustion Ideal gas heat capacity cpg: Liquid phase heat capacity cpl: dm: **Dipole Moment** ea: Electron affinity Lower Flammability Limit fll: Flash Point (Closed Cup Method) fpc: fpo: Flash Point (Open Cup Method) Standard Gibbs free energy of formation gf: gyrad: Radius of Gyration hf: Enthalpy of formation at standard conditions hfl: Liquid phase enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature ie: Ionization energy kvisc: Kinematic viscosity log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: **mcvol:** McGowan's characteristic volume nfpaf:NFPA Fire Ratingnfpah:NFPA Health Ratingnfpas:NFPA Safety Ratingpc:Critical Pressure pvap: Vapor pressurerfi: Refractive Indexrhoc: Critical densityrhol: Liquid Density rinpol: Non-polar retention indices ripol: Polar retention indices **sfust:** Entropy of fusion at a given temperature **sl:** Liquid phase molar entropy at standard conditions **speedsl:** Speed of sound in fluid **srf:** Surface Tension **svapt:** Entropy of vaporization at a given temperature **tb:** Normal Boiling Point Temperature tc: Critical Temperature tf: Normal melting (fusion) pointtt: Triple Point Temperature vc: Critical Volume zc: Critical Compressibility zra: Rackett Parameter #### Latest version available from: https://www.chemeo.com/cid/62-080-4/Methane-nitro.pdf Generated by Cheméo on 2024-04-19 14:06:26.086880313 +0000 UTC m=+15824835.007457623. Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.