o-Xylene

Other names: 1,2-Dimethylbenzene

1,2-Xylene

1,2-dimethyl-benzene (o-xylene)

2-Methyltoluene

3,4-Xylene

Benzene, 1,2-dimethyl-

NSC 60920

o-Dimethylbenzene o-Methyltoluene

o-Xylol

ortho-Xylene

InChl=1S/C8H10/c1-7-5-3-4-6-8(7)2/h3-6H,1-2H3

InchiKey: CTQNGGLPUBDAKN-UHFFFAOYSA-N

Formula: C8H10

SMILES: Cc1cccc1C

Mol. weight [g/mol]: 106.17 **CAS:** 95-47-6

Physical Properties

Property code	Value	Unit	Source
af	0.3100		KDB
affp	796.00	kJ/mol	NIST Webbook
affp	791.20	kJ/mol	NIST Webbook
affp	793.50 ± 1.70	kJ/mol	NIST Webbook
aigt	738.15	K	KDB
basg	765.30	kJ/mol	NIST Webbook
basg	772.10 ± 2.20	kJ/mol	NIST Webbook
basg	768.30	kJ/mol	NIST Webbook
chl	-4552.90 ± 1.00	kJ/mol	NIST Webbook
chl	-4567.60	kJ/mol	NIST Webbook
chl	-4581.40	kJ/mol	NIST Webbook
chl	-4551.48 ± 0.50	kJ/mol	NIST Webbook
cpl	187.28	J/mol×K	Thermodynamics of mixtures involving some (benzene derivatives + benzonitrile)
dm	0.50	debye	KDB

dvisc	0.0007680	Paxs	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of o-Xylene, m-Xylene, p-Xylene, and Isopropylbenzene with 2-Butanone at 298.15 K
dvisc	0.0007690	Paxs	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of o-Xylene, m-Xylene, p-Xylene, and Isopropylbenzene with 4-Methylpentan-2-one at 298.15 K
ер	36.90	J/mol×K	NIST Webbook
fll	1.10	% in Air	KDB
flu	7.00	% in Air	KDB
fpc	297.04	K	KDB
fpo	290.37	K	KDB
gf	122.20	kJ/mol	KDB
gyrad	3.7890		KDB
hcg	4552.86	kJ/mol	KDB
hcn	4332.784	kJ/mol	KDB
hf	19.00	kJ/mol	KDB
hf	19.00 ± 1.10	kJ/mol	NIST Webbook
hfl	-24.40 ± 1.10	kJ/mol	NIST Webbook
hfus	10.13	kJ/mol	Joback Method
hvap	36.34	kJ/mol	Joback Method
ie	8.75 ± 0.03	eV	NIST Webbook
ie	8.56 ± 0.02	eV	NIST Webbook
ie	8.58 ± 0.01	eV	NIST Webbook
ie	8.55	eV	NIST Webbook
ie	8.56	eV	NIST Webbook
ie	8.57 ± 0.03	eV	NIST Webbook
ie	8.56 ± 0.01	eV	NIST Webbook
ie	8.57	eV	NIST Webbook
ie	8.60 ± 0.10	eV	NIST Webbook
ie	8.70	eV	NIST Webbook
ie	8.56 ± 0.04	eV	NIST Webbook
ie	8.56 ± 0.01	eV	NIST Webbook
ie	8.45 ± 0.02	eV	NIST Webbook
ie	8.85 ± 0.05	eV	NIST Webbook
ie	8.61	eV	NIST Webbook
log10ws	-2.80		Estimated Solubility Method
log10ws	-2.80		Aqueous Solubility Prediction Method
logp	2.303		Crippen Method
mcvol	99.820	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB

nfpah	%!d(float64=2)		KDB
рс	3732.00	kPa	KDB
rhoc	286.54 ± 5.31	kg/m3	NIST Webbook
rhoc	286.65 ± 4.25	kg/m3	NIST Webbook
rhoc	287.71 ± 4.25	kg/m3	NIST Webbook
rinpol	885.20		NIST Webbook
rinpol	877.60		NIST Webbook
rinpol	877.80		NIST Webbook
rinpol	878.00		NIST Webbook
rinpol	878.10		NIST Webbook
rinpol	877.40		NIST Webbook
rinpol	884.00		NIST Webbook
rinpol	877.00		NIST Webbook
rinpol	878.00		NIST Webbook
rinpol	889.00		NIST Webbook
rinpol	889.00		NIST Webbook
rinpol	878.00		NIST Webbook
rinpol	892.90		NIST Webbook
rinpol	895.60		NIST Webbook
rinpol	888.80		NIST Webbook
rinpol	888.80		NIST Webbook
rinpol	889.80		NIST Webbook
rinpol	887.30		NIST Webbook
rinpol	888.00		NIST Webbook
rinpol	889.00		NIST Webbook
rinpol	874.00		NIST Webbook
rinpol	879.60		NIST Webbook
rinpol	889.00		NIST Webbook
rinpol	875.00		NIST Webbook
rinpol	868.30		NIST Webbook
rinpol	874.00		NIST Webbook
rinpol	895.00		NIST Webbook
rinpol	914.00		NIST Webbook
rinpol	889.00		NIST Webbook
rinpol	889.00		NIST Webbook
rinpol	889.00		NIST Webbook
rinpol	889.00		NIST Webbook
rinpol	893.00		NIST Webbook
rinpol	885.00		NIST Webbook
rinpol	884.00		NIST Webbook
rinpol	868.40		NIST Webbook
rinpol	905.00		NIST Webbook
rinpol	881.00		NIST Webbook
rinpol	890.00		NIST Webbook
			2

rinpol 888.0	00 NIST Webbook
rinpol 891.0	00 NIST Webbook
rinpol 885.0	00 NIST Webbook
rinpol 884.0	00 NIST Webbook
rinpol 882.0	00 NIST Webbook
rinpol 877.6	NIST Webbook
rinpol 878.	0 NIST Webbook
rinpol 882.2	20 NIST Webbook
rinpol 900.0	00 NIST Webbook
rinpol 885.0	00 NIST Webbook
rinpol 890.0	00 NIST Webbook
rinpol 896.0	00 NIST Webbook
rinpol 903.0	00 NIST Webbook
rinpol 844.0	00 NIST Webbook
rinpol 880.8	NIST Webbook
rinpol 883.0	00 NIST Webbook
rinpol 890.3	NIST Webbook
rinpol 896.4	NIST Webbook
rinpol 903.2	20 NIST Webbook
rinpol 895.0	00 NIST Webbook
rinpol 880.0	00 NIST Webbook
rinpol 868.9	
rinpol 880.3	
rinpol 880.	NIST Webbook
rinpol 880.8	NIST Webbook
rinpol 881.5	
rinpol 875.6	
rinpol 875.9	
rinpol 879.9	
rinpol 880.8	
rinpol 874.3	
rinpol 874.	
rinpol 880.8	
rinpol 883.0	
rinpol 886.0	
rinpol 880.0	
rinpol 880.0	
rinpol 872.0	
rinpol 874.0	
rinpol 877.2	
rinpol 896.0	
rinpol 900.0	
rinpol 881.0	
rinpol 870.0	00 NIST Webbook

rinpol	875.00	NIST Webbook
rinpol	878.90	NIST Webbook
rinpol	883.70	NIST Webbook
rinpol	886.00	NIST Webbook
rinpol	877.00	NIST Webbook
rinpol	885.00	NIST Webbook
rinpol	889.00	NIST Webbook
rinpol	891.00	NIST Webbook
rinpol	894.00	NIST Webbook
rinpol	898.00	NIST Webbook
rinpol	870.70	NIST Webbook
rinpol	903.00	NIST Webbook
rinpol	880.00	NIST Webbook
rinpol	883.00	NIST Webbook
rinpol	888.40	NIST Webbook
rinpol	888.10	NIST Webbook
rinpol	880.10	NIST Webbook
rinpol	864.00	NIST Webbook
rinpol	871.00	NIST Webbook
rinpol	877.00	NIST Webbook
rinpol	882.00	NIST Webbook
rinpol	918.00	NIST Webbook
rinpol	926.00	NIST Webbook
rinpol	933.00	NIST Webbook
rinpol	911.00	NIST Webbook
rinpol	885.00	NIST Webbook
rinpol	893.00	NIST Webbook
rinpol	882.00	NIST Webbook
rinpol	908.00	NIST Webbook
rinpol	893.20	NIST Webbook
rinpol	891.00	NIST Webbook
rinpol	884.00	NIST Webbook
rinpol	875.00	NIST Webbook
rinpol	881.00	NIST Webbook
rinpol	881.00	NIST Webbook
rinpol	887.00	NIST Webbook
rinpol	887.00	NIST Webbook
rinpol	910.00	NIST Webbook
rinpol	883.80	NIST Webbook
rinpol	880.00	NIST Webbook
rinpol	887.00	NIST Webbook
rinpol	894.00	NIST Webbook
rinpol	893.00	NIST Webbook
rinpol	896.00	NIST Webbook

rinpol	886.00	NIST Webbook
rinpol	894.00	NIST Webbook
rinpol	862.00	NIST Webbook
rinpol	894.00	NIST Webbook
rinpol	881.80	NIST Webbook
rinpol	896.00	NIST Webbook
rinpol	888.00	NIST Webbook
rinpol	889.90	NIST Webbook
rinpol	891.20	NIST Webbook
rinpol	871.00	NIST Webbook
rinpol	898.40	NIST Webbook
rinpol	890.00	NIST Webbook
rinpol	863.00	NIST Webbook
rinpol	888.00	NIST Webbook
rinpol	863.00	NIST Webbook
rinpol	877.70	NIST Webbook
rinpol	890.00	NIST Webbook
rinpol	886.00	NIST Webbook
rinpol	897.00	NIST Webbook
rinpol	876.00	NIST Webbook
rinpol	892.10	NIST Webbook
rinpol	867.90	NIST Webbook
rinpol	872.30	NIST Webbook
rinpol	876.70	NIST Webbook
rinpol	877.00	NIST Webbook
rinpol	850.00	NIST Webbook
rinpol	888.00	NIST Webbook
rinpol	889.90	NIST Webbook
rinpol	891.20	NIST Webbook
rinpol	875.31	NIST Webbook
rinpol	875.68	NIST Webbook
rinpol	875.00	NIST Webbook
rinpol	875.88	NIST Webbook
rinpol	875.89	NIST Webbook
rinpol	876.00	NIST Webbook
rinpol	888.00	NIST Webbook
rinpol	887.00	NIST Webbook
rinpol	881.30	NIST Webbook
rinpol	875.60	NIST Webbook
rinpol	874.60	NIST Webbook
rinpol	870.77	NIST Webbook
rinpol	874.14	NIST Webbook
rinpol	876.31	NIST Webbook
rinpol	887.70	NIST Webbook

rinpol	891.29	NIST Webbook
rinpol	893.63	NIST Webbook
rinpol	875.00	NIST Webbook
rinpol	875.12	NIST Webbook
rinpol	874.00	NIST Webbook
rinpol	897.40	NIST Webbook
rinpol	900.00	NIST Webbook
rinpol	888.00	NIST Webbook
rinpol	894.00	NIST Webbook
rinpol	896.00	NIST Webbook
rinpol	903.66	NIST Webbook
rinpol	877.00	NIST Webbook
rinpol	895.00	NIST Webbook
rinpol	890.00	NIST Webbook
rinpol	881.00	NIST Webbook
rinpol	884.00	NIST Webbook
rinpol	889.00	NIST Webbook
rinpol	890.00	NIST Webbook
rinpol	895.00	NIST Webbook
rinpol	896.00	NIST Webbook
rinpol	883.00	NIST Webbook
rinpol	865.00	NIST Webbook
rinpol	874.00	NIST Webbook
rinpol	874.00	NIST Webbook
rinpol	880.00	NIST Webbook
rinpol	894.00	NIST Webbook
rinpol	838.00	NIST Webbook
rinpol	875.00	NIST Webbook
rinpol	888.00	NIST Webbook
rinpol	895.00	NIST Webbook
rinpol	894.00	NIST Webbook
rinpol	883.00	NIST Webbook
rinpol	889.00	NIST Webbook
rinpol	881.00	NIST Webbook
rinpol	890.00	NIST Webbook
rinpol	891.00	NIST Webbook
rinpol	893.00	NIST Webbook
rinpol	896.00	NIST Webbook
rinpol	883.00	NIST Webbook
rinpol	898.00	NIST Webbook
rinpol	901.00	NIST Webbook
rinpol	898.00	NIST Webbook
rinpol	876.00	NIST Webbook
rinpol	882.00	NIST Webbook

rinpol	884.00	NIST Webbook
rinpol	885.00	NIST Webbook
rinpol	878.00	NIST Webbook
rinpol	868.00	NIST Webbook
rinpol	901.00	NIST Webbook
rinpol	901.00	NIST Webbook
rinpol	871.00	NIST Webbook
rinpol	873.00	NIST Webbook
rinpol	890.00	NIST Webbook
rinpol	899.00	NIST Webbook
rinpol	896.00	NIST Webbook
rinpol	896.00	NIST Webbook
rinpol	902.00	NIST Webbook
rinpol	887.00	NIST Webbook
rinpol	877.74	NIST Webbook
rinpol	896.00	NIST Webbook
rinpol	881.00	NIST Webbook
rinpol	877.00	NIST Webbook
rinpol	896.00	NIST Webbook
rinpol	898.00	NIST Webbook
rinpol	860.00	NIST Webbook
rinpol	896.50	NIST Webbook
rinpol	850.00	NIST Webbook
rinpol	879.00	NIST Webbook
rinpol	885.00	NIST Webbook
rinpol	883.00	NIST Webbook
rinpol	869.00	NIST Webbook
rinpol	872.00	NIST Webbook
rinpol	892.00	NIST Webbook
rinpol	879.00	NIST Webbook
rinpol	878.00	NIST Webbook
rinpol	876.00	NIST Webbook
rinpol	876.00	NIST Webbook
rinpol	889.00	NIST Webbook
rinpol	875.60	NIST Webbook
rinpol	870.50	NIST Webbook
rinpol	873.40	NIST Webbook
rinpol	877.30	NIST Webbook
rinpol	880.10	NIST Webbook
rinpol	882.50	NIST Webbook
rinpol	870.00	NIST Webbook
rinpol	873.00	NIST Webbook
rinpol	876.00	NIST Webbook
rinpol	879.00	NIST Webbook

rinpol	882.00	NIST Webbook
rinpol	877.00	NIST Webbook
rinpol	871.00	NIST Webbook
rinpol	875.00	NIST Webbook
rinpol	854.00	NIST Webbook
rinpol	880.00	NIST Webbook
rinpol	879.00	NIST Webbook
rinpol	894.00	NIST Webbook
rinpol	896.00	NIST Webbook
rinpol	905.00	NIST Webbook
rinpol	894.00	NIST Webbook
rinpol	891.00	NIST Webbook
rinpol	896.00	NIST Webbook
rinpol	870.00	NIST Webbook
rinpol	878.00	NIST Webbook
rinpol	872.00	NIST Webbook
rinpol	888.00	NIST Webbook
rinpol	910.00	NIST Webbook
rinpol	889.00	NIST Webbook
rinpol	884.00	NIST Webbook
rinpol	882.00	NIST Webbook
rinpol	898.00	NIST Webbook
rinpol	869.52	NIST Webbook
rinpol	903.00	NIST Webbook
rinpol	904.00	NIST Webbook
rinpol	890.00	NIST Webbook
rinpol	878.00	NIST Webbook
rinpol	901.00	NIST Webbook
rinpol	883.00	NIST Webbook
rinpol	875.00	NIST Webbook
rinpol	878.00	NIST Webbook
rinpol	886.00	NIST Webbook
rinpol	892.00	NIST Webbook
rinpol	906.00	NIST Webbook
rinpol	895.00	NIST Webbook
rinpol	880.00	NIST Webbook
rinpol	890.00	NIST Webbook
rinpol	855.00	NIST Webbook
rinpol	875.00	NIST Webbook
rinpol	886.00	NIST Webbook
rinpol	875.00	NIST Webbook
rinpol	881.00	NIST Webbook
rinpol	892.00	NIST Webbook
rinpol	895.00	NIST Webbook

rinpol	888.20	NIST Webbook
rinpol	896.40	NIST Webbook
rinpol	894.90	NIST Webbook
rinpol	894.80	NIST Webbook
rinpol	884.00	NIST Webbook
rinpol	866.00	NIST Webbook
rinpol	876.00	NIST Webbook
rinpol	884.00	NIST Webbook
rinpol	900.00	NIST Webbook
rinpol	879.00	NIST Webbook
rinpol	885.00	NIST Webbook
rinpol	884.00	NIST Webbook
rinpol	900.00	NIST Webbook
rinpol	880.00	NIST Webbook
rinpol	128.10	NIST Webbook
rinpol	128.40	NIST Webbook
rinpol	130.67	NIST Webbook
rinpol	883.80	NIST Webbook
rinpol	890.30	NIST Webbook
rinpol	878.32	NIST Webbook
rinpol	877.40	NIST Webbook
rinpol	882.40	NIST Webbook
rinpol	879.50	NIST Webbook
rinpol	876.70	NIST Webbook
rinpol	873.80	NIST Webbook
rinpol	870.90	NIST Webbook
rinpol	868.00	NIST Webbook
rinpol	900.00	NIST Webbook
rinpol	874.64	NIST Webbook
rinpol	874.10	NIST Webbook
rinpol	874.17	NIST Webbook
rinpol	915.10	NIST Webbook
rinpol	908.30	NIST Webbook
rinpol	918.00	NIST Webbook
rinpol	878.70	NIST Webbook
rinpol	874.20	NIST Webbook
rinpol	871.90	NIST Webbook
rinpol	873.40	NIST Webbook
rinpol	875.70	NIST Webbook
rinpol	874.60	NIST Webbook
rinpol	879.40	NIST Webbook
rinpol	882.00	NIST Webbook
rinpol	889.80	NIST Webbook
ripol	1183.90	NIST Webbook

ripol	1164.90	NIST Webbook
ripol	1230.00	NIST Webbook
ripol	1232.00	NIST Webbook
ripol	1210.00	NIST Webbook
ripol	1218.00	NIST Webbook
ripol	1227.00	NIST Webbook
ripol	1201.00	NIST Webbook
ripol	1184.00	NIST Webbook
ripol	1181.00	NIST Webbook
ripol	1185.00	NIST Webbook
ripol	1185.00	NIST Webbook
ripol	1191.00	NIST Webbook
ripol	1178.00	NIST Webbook
ripol	1183.00	NIST Webbook
ripol	1171.00	NIST Webbook
ripol	1195.00	NIST Webbook
ripol	1159.00	NIST Webbook
ripol	1204.40	NIST Webbook
ripol	1187.00	NIST Webbook
ripol	1174.00	NIST Webbook
ripol	1187.00	NIST Webbook
ripol	1174.00	NIST Webbook
ripol	1189.00	NIST Webbook
ripol	1192.00	NIST Webbook
ripol	1175.00	NIST Webbook
ripol	1188.00	NIST Webbook
ripol	1177.00	NIST Webbook
ripol	1184.00	NIST Webbook
ripol	1187.00	NIST Webbook
ripol	1190.00	NIST Webbook
ripol	1169.00	NIST Webbook
ripol	1183.00	NIST Webbook
ripol	1181.00	NIST Webbook
ripol	1191.00	NIST Webbook
ripol	1190.00	NIST Webbook
ripol	1191.00	NIST Webbook
ripol	1176.00	NIST Webbook
ripol	1190.00	NIST Webbook
ripol	1175.00	NIST Webbook
ripol	1176.00	NIST Webbook
ripol	1189.00	NIST Webbook
ripol	1193.00	NIST Webbook
ripol	1208.00	NIST Webbook
ripol	1186.00	NIST Webbook

ripol	1182.00	NIST Webbook
ripol	1175.00	NIST Webbook
ripol	1186.00	NIST Webbook
ripol	1186.00	NIST Webbook
ripol	1190.00	NIST Webbook
ripol	1188.00	NIST Webbook
ripol	1191.00	NIST Webbook
ripol	1216.00	NIST Webbook
ripol	1229.00	NIST Webbook
ripol	1189.00	NIST Webbook
ripol	1203.00	NIST Webbook
ripol	1202.00	NIST Webbook
ripol	1198.00	NIST Webbook
ripol	1201.00	NIST Webbook
ripol	1213.00	NIST Webbook
ripol	1225.00	NIST Webbook
ripol	1178.00	NIST Webbook
ripol	1188.00	NIST Webbook
ripol	1165.00	NIST Webbook
ripol	1204.00	NIST Webbook
ripol	1159.00	NIST Webbook
ripol	1177.00	NIST Webbook
ripol	1189.00	NIST Webbook
ripol	1197.00	NIST Webbook
ripol	1173.00	NIST Webbook
ripol	1191.40	NIST Webbook
ripol	1181.00	NIST Webbook
ripol	1191.00	NIST Webbook
ripol	1171.00	NIST Webbook
ripol	1192.00	NIST Webbook
ripol	1180.00	NIST Webbook
ripol	1181.00	NIST Webbook
ripol	1155.00	NIST Webbook
ripol	1182.00	NIST Webbook
ripol	1182.00	NIST Webbook
ripol	1182.00	NIST Webbook
ripol	1187.00	NIST Webbook
ripol	1225.00	NIST Webbook
ripol	1172.00	NIST Webbook
ripol	1175.00	NIST Webbook
ripol	1182.00	NIST Webbook
ripol	1163.00	NIST Webbook
ripol	1171.00	NIST Webbook
ripol	1175.00	NIST Webbook

tb	417.60	K	KDB
			Systems of Methyl Formate with o-Xylene, m-Xylene, p-Xylene, and Ethylbenzene at 101.33 kPa
tb	417.56	K	Isobaric Vapor-Liquid Equilibium for the Binary
sl	246.02	J/mol×K	NIST Webbook
sl	248.10	J/mol×K	NIST Webbook
sg	353.60 ± 1.30	J/mol×K	NIST Webbook
ripol	1174.00		NIST Webbook
ripol	1188.70		NIST Webbook
ripol	1178.00		NIST Webbook
ripol	1193.00		NIST Webbook
ripol	1200.00		NIST Webbook
ripol	1186.00		NIST Webbook
ripol	1174.60		NIST Webbook
ripol	1174.00		NIST Webbook
ripol	1209.84		NIST Webbook
ripol	1215.66		NIST Webbook
ripol	1221.09		NIST Webbook
ripol	1192.98		NIST Webbook
ripol	1174.00		NIST Webbook
ripol	1234.30		NIST Webbook
ripol	1198.32		NIST Webbook
ripol	1204.40		NIST Webbook
ripol	1185.70		NIST Webbook
ripol	1221.00		NIST Webbook
ripol	1191.00		NIST Webbook
ripol	1190.00		NIST Webbook
ripol	1180.00		NIST Webbook
ripol	1191.00		NIST Webbook
ripol ripol	1232.00		NIST Webbook
ripol	1183.00 1232.00		NIST Webbook NIST Webbook
ripol	1183.00		NIST Webbook
ripol	1186.00		NIST Webbook
ripol			
ripol	1165.00 1232.00		NIST Webbook NIST Webbook
ripol	1188.00		NIST Webbook
ripol	1186.00		NIST Webbook
ripol	1191.00		
ripol	1166.00		NIST Webbook NIST Webbook
ripol	1187.00		NIST Webbook
ripol	1171.00		NIST Webbook
	4474.00		NIOTIVALL

tb	417.55	К	Vapor-Liquid Equilibria Data for Binary Systems of Ethylbenzene + Xylene Isomers at 100.65 kPa
tb	417.43	К	Measurement and Correlation of Vapor-Liquid Equilibrium for Binary Systems of Dimethyl Carbonate with Butyl Butyrate, o-Xylene, and Cyclohexanone at 101.3 kPa
tb	417.50	К	Isobaric vapor-liquid equilibrium for binary systemsof toluene + o-xylene, benzene + o-xylene, nonane + benzene and nonane + heptane at 101.3 kPa
tc	630.30	K	KDB
tf	248.08	K	Aqueous Solubility Prediction Method
tf	247.90	K	KDB
tt	247.80 ± 0.25	K	NIST Webbook
VC	0.370	m3/kmol	KDB
VC	0.370	m3/kmol	NIST Webbook
ZC	0.2634870		KDB
zra	0.26		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	192.50 ± 2.10	J/mol×K	463.00	NIST Webbook	
cpg	182.00 ± 1.70	J/mol×K	428.00	NIST Webbook	
cpg	168.20 ± 1.70	J/mol×K	393.00	NIST Webbook	
cpl	187.58	J/mol×K	298.15	NIST Webbook	
cpl	187.65	J/mol×K	298.15	NIST Webbook	
cpl	182.40	J/mol×K	303.00	NIST Webbook	
cpl	183.89	J/mol×K	298.10	NIST Webbook	
cpl	187.82	J/mol×K	298.15	NIST Webbook	
срІ	187.00	J/mol×K	298.00	NIST Webbook	
срІ	206.70	J/mol×K	347.00	NIST Webbook	

dvisc	0.0005584	Paxs	323.15	Densities and Viscosities of N-Formylmorpholine (NFM) + p-Xylene, + o-Xylene, + m-Xylene at Different Temperatures and Atmospheric Pressure	
dvisc	0.0005890	Paxs	318.15	Densities and Viscosities of Binary Mixtures of Methyl 4-Chlorobutyrate with Aromatic Hydrocarbons at T) (298.15 to 318.15) K	
dvisc	0.0007580	Paxs	298.15	Densities and Viscosities of Binary Mixtures of Methyl 4-Chlorobutyrate with Aromatic Hydrocarbons at T) (298.15 to 318.15) K	
dvisc	0.0006210	Paxs	313.15	Thermophysical Properties of Isoamyl Acetate or Methyl Benzoate + Hydrocarbon Binary Mixtures, at (303.15 and 313.15) K	
dvisc	0.0006650	Paxs	308.15	Densities and Viscosities of Binary Mixtures of Methyl 4-Chlorobutyrate with Aromatic Hydrocarbons at T) (298.15 to 318.15) K	
dvisc	0.0006950	Paxs	303.15	Thermophysical Properties of Isoamyl Acetate or Methyl Benzoate + Hydrocarbon Binary Mixtures, at (303.15 and 313.15) K	

dvisc	0.0005105	Paxs	333.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	
dvisc	0.0005433	Paxs	328.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	
dvisc	0.0005711	Paxs	323.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	
dvisc	0.0006117	Paxs	318.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	
dvisc	0.0006451	Paxs	313.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K	

dvisc	0.0006900	Paxs	308.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K
dvisc	0.0007404	Pa×s	303.15	Densities and Viscosities of Binary Mixtures of Vitamin K3 with Benzene, Toluene, Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene from (303.15 to 333.15) K
dvisc	0.0004136	Pa×s	353.15	Densities and Viscosities of N-Formylmorpholine (NFM) + p-Xylene, + o-Xylene, + m-Xylene at Different Temperatures and Atmospheric Pressure
dvisc	0.0004544	Paxs	343.15	Densities and Viscosities of N-Formylmorpholine (NFM) + p-Xylene, + o-Xylene, + m-Xylene at Different Temperatures and Atmospheric Pressure
dvisc	0.0007576	Paxs	298.15	Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at different temperatures

dvisc	0.0006690	Paxs	308.15	Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at different temperatures
dvisc	0.0005972	Paxs	318.15	Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at different temperatures
dvisc	0.0005020	Paxs	333.15	Densities and Viscosities of N-Formylmorpholine (NFM) + p-Xylene, + o-Xylene, + m-Xylene at Different Temperatures and Atmospheric Pressure
dvisc	0.0006660	Paxs	308.15	Viscometric Studies of Molecular Interactions in Binary Liquid Mixtures of Isomeric Xylenes with Methanol
dvisc	0.0006280	Paxs	313.15	Viscometric Studies of Molecular Interactions in Binary Liquid Mixtures of Isomeric Xylenes with Methanol
dvisc	0.0005910	Paxs	318.15	Viscometric Studies of Molecular Interactions in Binary Liquid Mixtures of Isomeric Xylenes with Methanol

	0.000=000	D	000 17	\ <i>C</i>	
dvisc	0.0005600	Paxs	323.15	Viscometric Studies of Molecular Interactions in Binary Liquid Mixtures of Isomeric Xylenes with Methanol	
dvisc	0.0008092	Paxs	293.15	Viscosities, Densities, and Ultrasonic Velocities of 3-Pentanone + Ethylbenzene and 3-Pentanone + o-Xylene at (293.15, 303.15, and 313.15) K	
dvisc	0.0007172	Paxs	303.15	Viscosities, Densities, and Ultrasonic Velocities of 3-Pentanone + Ethylbenzene and 3-Pentanone + o-Xylene at (293.15, 303.15, and 313.15) K	
dvisc	0.0006292	Paxs	313.15	Viscosities, Densities, and Ultrasonic Velocities of 3-Pentanone + Ethylbenzene and 3-Pentanone + o-Xylene at (293.15, 303.15, and 313.15) K	
dvisc	0.0007590	Paxs	298.15 Cm	Densities, Excess Molar Volumes, Viscosities, Speeds of Sound, Excess Isentropic Compressibilities, and Relative Permittivities for H2m+1(OCH2CH2)r (m) 1 or 2 or 4 andn) 1) + Benzene, + Toluene, + (o-, m-, and p-) Xylenes, + Ethylbenzene, and + Cyclohexane	nOH

dvisc	0.0006580	Paxs	S Cc P CmH2n ()	Densities, Excess Molar Volumes, Viscosities, Speeds of Sound, Excess Isentropic ompressibilities, and Relative ermittivities for n+1(OCH2CH2)r m) 1 or 2 or 4 andn) 1) + Benzene, + Foluene, + (o-, m-, and p-) Xylenes, + Ethylbenzene, and + Cyclohexane	nOH
dvisc	0.0007440	Paxs	B of E	Excess Molar Volumes and Viscosities of Sinary Mixtures Sulfolane with Benzene, Toluene, Ethylbenzene, p-Xylene, o-Xylene, and m-Xylene at 303.15 and 323.15 K and Atmospheric Pressure	
dvisc	0.0007062	Paxs	B of E	Excess Molar Volumes and Viscosities of Sinary Mixtures Sulfolane with Benzene, Toluene, Ethylbenzene, p-Xylene, and m-Xylene at 303.15 and 323.15 K and Atmospheric Pressure	
dvisc	0.0005554	Paxs	B of E	Excess Molar Volumes and Viscosities of sinary Mixtures Sulfolane with Benzene, Toluene, Ethylbenzene, p-Xylene, o-Xylene, and m-Xylene at 303.15 and 323.15 K and Atmospheric Pressure	

dvisc	0.0006950	Paxs	303.15	Viscosity, Density, and Refractive Index of Some (Ester + Hydrocarbon) Binary Mixtures at 303.15 K and 313.15 K	
dvisc	0.0006210	Paxs	313.15	Viscosity, Density, and Refractive Index of Some (Ester + Hydrocarbon) Binary Mixtures at 303.15 K and 313.15 K	
dvisc	0.0008710	Pa×s	288.15	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and 303.15) K	
dvisc	0.0008100	Paxs	293.15	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and 303.15) K	
dvisc	0.0007560	Paxs	298.15	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and 303.15) K	

dvisc	0.0007080	Paxs	303.15	Viscosities, Densities, and Speeds of Sound of Binary Mixtures of Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene with Anisole at (288.15, 293.15, 298.15, and 303.15) K	
dvisc	0.0006660	Paxs	308.15	Density and Viscosity of the Binary Mixtures of Hexan-1-ol with Isomeric Xylenes at T = (308.15 and 318.15) K and Atmospheric Pressure	
dvisc	0.0005910	Paxs	318.15	Density and Viscosity of the Binary Mixtures of Hexan-1-ol with Isomeric Xylenes at T = (308.15 and 318.15) K and Atmospheric Pressure	
dvisc	0.0007610	Paxs	298.15	Densities and Viscosities of N-Formylmorpholine (NFM) + p-Xylene, + o-Xylene at Different Temperatures and Atmospheric Pressure	
dvisc	0.0007095	Paxs	303.15	Densities and Viscosities of N-Formylmorpholine (NFM) + p-Xylene, + o-Xylene, + m-Xylene at Different Temperatures and Atmospheric Pressure	

dvisc	0.0006261	Paxs	313.15	Densities and Viscosities of N-Formylmorpholine (NFM) + p-Xylene, + o-Xylene, + m-Xylene at Different Temperatures and Atmospheric Pressure
dvisc	0.0007100	Paxs	303.15	Viscometric Studies of Molecular Interactions in Binary Liquid Mixtures of Isomeric Xylenes with Methanol
hfust	13.60	kJ/mol	247.80	NIST Webbook
hfust	13.60	kJ/mol	247.80	NIST Webbook
hfust	13.60	kJ/mol	247.82	NIST Webbook
hsubt	60.10	kJ/mol	248.00	NIST Webbook
hvapt	36.70	kJ/mol	521.00	NIST Webbook
hvapt	40.80	kJ/mol	378.00	NIST Webbook
hvapt	39.80	kJ/mol	401.00	NIST Webbook
hvapt	45.00	kJ/mol	298.00	NIST Webbook
hvapt	38.00	kJ/mol	444.50	NIST Webbook
hvapt	41.10	kJ/mol	376.00	NIST Webbook
hvapt	36.24	kJ/mol	417.60	NIST Webbook
hvapt	43.07	kJ/mol	298.00	Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects
hvapt	36.82	kJ/mol	417.50	KDB
hvapt	36.70	kJ/mol	598.50	NIST Webbook
pvap	30.14	kPa	376.75	Vapor liquid equilibrium for the binary systems tetrahydrothiophene + toluene and tetrahydrothiophene + o-xylene at 368.15 K and 383.15 K

pvap	8.54	kPa	343.15	Vapor-liquid	
				equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
рvар	5.61	kPa	333.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	3.46	kPa	323.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	2.05	kPa	313.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	12.71	kPa	353.15	Vapor liquid equilibria and density measurement for binary mixtures of o-xylene + NMF, m-xylene +NMF and p-xylene +NMF at 333.15 K, 343.15 K and 353.15 K from 0 kPa to 101.3 kPa	

pvap	8.47	kPa	343.15	Vapor liquid equilibria and density measurement for binary mixtures of o-xylene + NMF, m-xylene +NMF and p-xylene +NMF at 333.15 K, 343.15 K and 353.15 K from 0 kPa to 101.3 kPa
pvap	5.45	kPa	333.15	Vapor liquid equilibria and density measurement for binary mixtures of o-xylene + NMF, m-xylene +NMF and p-xylene +NMF at 333.15 K, 343.15 K and 353.15 K from 0 kPa to 101.3 kPa
pvap	101.85	kPa	417.28	Vapor liquid equilibrium for the binary systems tetrahydrothiophene + toluene and tetrahydrothiophene + o-xylene at 368.15 K and 383.15 K
pvap	90.54	kPa	413.06	Vapor liquid equilibrium for the binary systems tetrahydrothiophene + toluene and tetrahydrothiophene + o-xylene at 368.15 K and 383.15 K
pvap	80.41	kPa	408.83	Vapor liquid equilibrium for the binary systems tetrahydrothiophene + toluene and tetrahydrothiophene + o-xylene at 368.15 K and 383.15 K

pvap	70.27	kPa	404.09	Vapor liquid equilibrium for the binary systems tetrahydrothiophene + toluene and tetrahydrothiophene + o-xylene at 368.15 K and 383.15 K	
рvар	60.03	kPa	398.66	Vapor liquid equilibrium for the binary systems tetrahydrothiophene + toluene and tetrahydrothiophene + o-xylene at 368.15 K and 383.15 K	
pvap	50.43	kPa	392.87	Vapor liquid equilibrium for the binary systems tetrahydrothiophene + toluene and tetrahydrothiophene + o-xylene at 368.15 K and 383.15 K	
pvap	40.20	kPa	385.55	Vapor liquid equilibrium for the binary systems tetrahydrothiophene + toluene and tetrahydrothiophene + o-xylene at 368.15 K and 383.15 K	
pvap	0.88	kPa	298.15	(Vapour + liquid) equilibria of (1-butanol + benzene, or toluene, or o-, or m-, or p-xylene) at T = 308.15 K	
pvap	12.73	kPa	353.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	14.75	kPa	357.30	Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts	

pvap	29.61	kPa	376.70	Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts	
pvap	49.44	kPa	392.70	Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts	
pvap	64.27	kPa	401.50	Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts	
pvap	102.78	kPa	418.60	Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts	
pvap	93.13	kPa	414.41	Refractive Index and Vapor-Liquid Equilibrium Data for the Binary Systems of Anisole with Xylene Isomers at 93.13 kPa	
pvap	20.40	kPa	365.49	Vapor liquid equilibrium for the binary systems tetrahydrothiophene + toluene and tetrahydrothiophene + o-xylene at 368.15 K and 383.15 K	
pvap	20.00	kPa	365.15	Vapour-liquid equilibrium for tripropylene glycol + aromatic hydrocarbons binary systems: Experimental data and regression	
pvap	16.62	kPa	360.15	Vapour-liquid equilibrium for tripropylene glycol + aromatic hydrocarbons binary systems: Experimental data and	
	pvap pvap pvap pvap pvap	pvap 49.44 pvap 64.27 pvap 93.13 pvap 20.40 pvap 20.00	pvap 49.44 kPa pvap 64.27 kPa pvap 102.78 kPa pvap 93.13 kPa pvap 20.40 kPa	pvap 49.44 kPa 392.70 pvap 64.27 kPa 401.50 pvap 102.78 kPa 418.60 pvap 93.13 kPa 414.41 pvap 20.40 kPa 365.49 pvap 20.00 kPa 365.15	DSC method to measuring vapor pressures of narrow boiling range oil cuts pvap 49.44 kPa 392.70 Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts pvap 64.27 kPa 401.50 Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts pvap 102.78 kPa 418.60 Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts pvap 93.13 kPa 414.41 Refractive Index and Vapor-Liquid Equilibrium Data for the Binary Systems of Anisole with Xylene Isomers at 93.13 kPa pvap 20.40 kPa 365.49 Vapor liquid equilibrium for the binary systems tetrahydrothiophene + toluene and tetrahydrothiophene + toluene and tetrahydrothiophene glycol + aromatic hydrocarbons binary systems: Experimental data and regression pvap 16.62 kPa 360.15 Vapour-liquid equilibrium for tripropylene glycol + aromatic hydrocarbons binary systems: Experimental equilibrium for tripropylene glycol + aromatic hydrocarbons binary systems: Experimental hydrocarbons binary systems: E

pvap	11.27	kPa	350.15	Vapour-liquid equilibrium for tripropylene glycol + aromatic hydrocarbons binary systems: Experimental data and regression	
pvap	9.18	kPa	345.15	Vapour-liquid equilibrium for tripropylene glycol + aromatic hydrocarbons binary systems: Experimental data and regression	
pvap	90.18	kPa	413.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	68.42	kPa	403.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	101.30	kPa	417.43	Measurement and Correlation of Vapor-Liquid Equilibrium for Binary Systems of Dimethyl Carbonate with Butyl Butyrate, o-Xylene, and Cyclohexanone at 101.3 kPa	
pvap	51.01	kPa	393.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	

pvap	43.63	kPa	388.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	37.35	kPa	383.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	
pvap	3.60	kPa	323.15	Vapor-Liquid Equilibrium Data, Excess Enthalpy Data, and Azeotropic Data for the Binary System Dibutyl Ether + o-Xylene	
pvap	50.60	kPa	393.04	Vapor-Liquid Equilibrium Data, Excess Enthalpy Data, and Azeotropic Data for the Binary System Dibutyl Ether + o-Xylene	
pvap	90.39	kPa	413.15	Vapor-Liquid Equilibrium Data, Excess Enthalpy Data, and Azeotropic Data for the Binary System Dibutyl Ether + o-Xylene	
pvap	31.66	kPa	378.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	

pvap	12.66	kPa	353.15	Vapor liquid equilibria and density measurement for binary mixtures of toluene, benzene, o-xylene, m-xylene, sulfolane and nonane at 333.15K and 353.15K	
pvap	5.44	kPa	333.15	Vapor liquid equilibria and density measurement for binary mixtures of toluene, benzene, o-xylene, m-xylene, sulfolane and nonane at 333.15K and 353.15K	
pvap	12.80	kPa	353.15	Vapor liquid equilibria and density measurement for binary mixtures of toluene, benzene, o-xylene, m-xylene, sulfolane and nonane at 333.15K and 353.15K	
pvap	5.32	kPa	333.15	Vapor liquid equilibria and density measurement for binary mixtures of toluene, benzene, o-xylene, m-xylene, sulfolane and nonane at 333.15K and 353.15K	
pvap	26.73	kPa	373.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression	

pvap	18.65	kPa	363.15	Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons: Experimental and regression
pvap	13.73	kPa	355.15	Vapour-liquid equilibrium for tripropylene glycol + aromatic hydrocarbons binary systems: Experimental data and regression
pvap	250.00	kPa	456.10	Isobaric Vapor Liquid Equilibrium for Binary Systems of 2,2,4-Trimethylpentane with o-Xylene, m-Xylene, p-Xylene, and Ethylbenzene at 250 kPa
rfi	1.49480		313.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K
rfi	1.49750		308.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K
rfi	1.49466		313.15	Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes with o-Xylene, m-Xylene, p-Xylene, and Mesitylene at T = (298.15 and 313.15) K

rfi	1.50262	298.15	Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes with o-Xylene, m-Xylene, p-Xylene, and Mesitylene at T = (298.15 and 313.15) K
rfi	1.50550	293.15	Solubilities of Methyldiphenylphosphine Oxide in Selected Solvents
rfi	1.49210	318.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K
rfi	1.49480	313.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K
rfi	1.50290	298.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K

rfi	1.50550	293.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.50830	288.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.50240	298.15	Densities, Excess Molar Volumes, Viscosity, and Refractive Indices of Binary Mixtures of Ethanoic Acid and Trichloroethylene with Dimethylbenzenes at Different Temperatures	
rfi	1.50260	298.00	Vapor-Liquid Equilibrium for Dimethyl Disulfide + Butane, + trans-But-2-ene, + 2-Methylpropane, + 2-Methylpropene, + Ethanol, and	
rfi	1.49210	318.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.50260	298.15	Vapor-Liquid Equilibrium for Binary System of 1-Propanethiol, Thiophene, and Diethyl Sulfide with Toluene at 90.03 kPa	

rfi	1.50200	298.15	Isobaric Vapor-Liquid Equilibria for the Binary Mixtures of Styrene with Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene	
rfi	1.50180	298.15	Liquid-liquid equilibria for mixtures of (Furfural + an Aromatic hydrocarbon + an alkane) at T=298.15 K	
rfi	1.50150	293.15	Volumetric properties of binary mixtures of tributylamine with benzene derivatives and comparison with ERAS model results at temperatures from (293.15 to 333.15) K	
rfi	1.48580	293.15	Activity coefficients and excess Gibbs free energy of some binary mixtures formed by p-cresol at 95.23 kPa	
rfi	1.50570	298.15	A study of densities and volumetric properties of binary mixtures of N-methyl-2-pyrrolidon with xylene at different temperatures and atmospheric pressure	e
rfi	1.50570	298.15	Densities and volumetric properties of binary mixtures of xylene with N,N-dimethylformamid at different temperatures	le

rfi	1.50000	303.15	Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K	
rfi	1.50180	298.15	Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K	
rfi	1.49750	308.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.50470	293.15	Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K	

rfi	1.50720	288.15	Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene) binary mixtures between T = (288.15 to 303.15) K	
rfi	1.50573	293.15	A study of densities and volumetric properties of binary mixtures containing nitrobenzene at T = (293.15 to 353.15) K	
rfi	1.50570	293.15	Densities and volumetric properties of a (xylene + dimethyl sulfoxide) at temperature from (293.15 to 353.15) K	
rfi	1.50020	303.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.50280	298.15	Phase equilibria of binary systems of 3-methylthiophene with four different hydrocarbons	
rfi	1.50280	298.15	Phase equilibria on four binary systems containing 3-methylthiophene	
rfi	1.50550	293.15	Excess Gibbs' energies of the binary mixtures formed by N,N-dimethylformamide with xylenes and cresols at 95.1 kPa	

rfi	1.50550	293.15	Bubble points of some binary mixtures formed by o-cresol at 95.75 kPa	
rfi	1.50310	308.15	Topological and thermodynamic investigations of molecular interactions in binary mixtures: Molar excess volumes and molar excess enthalpies	
rfi	1.50300	298.15	Bubble temperature measurements on the binary mixtures formed by decane with a variety of compounds at 95.8 kPa	
rfi	1.50295	298.15	KDB	
rfi	1.50830	288.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.50550	293.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	

rfi	1.50290		298.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.50020		303.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.50570		293.10	Volumetric properties of (cyclohexanone + a xylene) at temperature between (293.15 and 353.15) K	
rhol	867.20	kg/m3	308.15	Densities and Dynamic Viscosities of Alicyclic Cyclohexane with Toluene, o-Xylene, and Mesitylene at T = (303.15 to 323.15) K and Atmospheric Pressure	
rhol	871.30	kg/m3	303.15	Thermodynamic characterization of binary mixtures of poly(propylene glycol) 425 with toluene and o-, m- and p-xylenes	

rhol	867.07	kg/m3	308.15	Thermodynamic characterization of binary mixtures of poly(propylene glycol) 425 with toluene and o-, m- and p-xylenes	
rhol	862.83	kg/m3	313.15	Thermodynamic characterization of binary mixtures of poly(propylene glycol) 425 with toluene and o-, m- and p-xylenes	
rhol	858.57	kg/m3	318.15	Thermodynamic characterization of binary mixtures of poly(propylene glycol) 425 with toluene and o-, m- and p-xylenes	
rhol	854.30	kg/m3	323.15	Thermodynamic characterization of binary mixtures of poly(propylene glycol) 425 with toluene and o-, m- and p-xylenes	
rhol	850.01	kg/m3	328.15	Thermodynamic characterization of binary mixtures of poly(propylene glycol) 425 with toluene and o-, m- and p-xylenes	
rhol	845.71	kg/m3	333.15	Thermodynamic characterization of binary mixtures of poly(propylene glycol) 425 with toluene and o-, m- and p-xylenes	
rhol	875.81	kg/m3	298.15	Isobaric Vapor Liquid Equilibrium for the Binary Systems of Diethyl Carbonate with Xylene Isomers and Ethylbenzene at 101.33 kPa	

rhol	871.50	kg/m3	303.15	Densities and Dynamic Viscosities of Alicyclic Cyclohexane with Toluene, o-Xylene, and Mesitylene at T = (303.15 to 323.15) K and Atmospheric Pressure	
rhol	875.51	kg/m3	298.15	Thermodynamic characterization of binary mixtures of poly(propylene glycol) 425 with toluene and o-, m- and p-xylenes	
rhol	862.80	kg/m3	313.15	Densities and Dynamic Viscosities of Alicyclic Cyclohexane with Toluene, o-Xylene, and Mesitylene at T = (303.15 to 323.15) K and Atmospheric Pressure	
rhol	858.80	kg/m3	318.15	Densities and Dynamic Viscosities of Alicyclic Cyclohexane with Toluene, o-Xylene, and Mesitylene at T = (303.15 to 323.15) K and Atmospheric Pressure	
rhol	854.30	kg/m3	323.15	Densities and Dynamic Viscosities of Alicyclic Cyclohexane with Toluene, o-Xylene, and Mesitylene at T = (303.15 to 323.15) K and Atmospheric Pressure	

rhol	875.60	kg/m3	298.15 Volumetric Properties of the D2EHPA-o-Xylene-Neodymium (Samarium, Europium, Gadolinium, Terbium, Dysprosium) Di(2-ethylhexyl)phosphate Systems at 298.15 K
rhol	875.00	kg/m3	298.15 Excess Molar Entalpies of Dimethyl Carbonate with o-Xylene, m-Xylene, p-Xylene, Ethylbenzene, or Ethyl Benzoate at 298.15 K
rhol	875.00	kg/m3	298.15 Excess Molar Enthalpies for Dimethyl Carbonate with o-Xylene, m-Xylene, p-Xylene, Ethylbenzene or Ethyl Benzoate at 298.15 K and 10.2 MPa
rhol	875.92	kg/m3	298.15 Excess Molar Volumes and Surface Tensions of Xylene with Acetone or 2-Butanone at 298.15 K
rhol	875.92	kg/m3	298.15 Excess Molar Volumes and Surface Tensions of Xylene with Isopropyl Ether or Methyl tert-Butyl Ether at 298.15 K
rhol	875.72	kg/m3	298.15 Excess Molar Volumes of 2,4,6,8-Tetramethylcyclotetrasiloxane with Benzene, Toluene, and Xylene at T = (288.15, 298.15, and 308.15) K
rhol	879.72	kg/m3	293.15 Thermodynamic characterization of binary mixtures of poly(propylene glycol) 425 with toluene and o-, m- and p-xylenes

rhol	875.52	kg/m3	298.15	Evaluation of the Performance of Four Solvents for the Liquid Liquid Extraction of Acrylic Acid from Water
rhol	875.50	kg/m3	298.20	Isobaric Vapor Liquid Equilibrium of Binary Systems of Hexane or Octane with 1,2-Dimethylbenzene or
				1,3-Dimethylbenzene at 101.3 kPa
rhol	875.81	kg/m3	298.15	Vapor Liquid Equilibrium for 2-Methyl-1-butanol + Ethylbenzene + Xylene Isomers at 101.33 kPa
rhol	875.91	kg/m3	298.15	Thermodynamic Properties of Ternary Liquid Mixtures Containing o-Chlorotoluene: Excess Molar Volumes and Excess Isentropic Compressibilities
rhol	871.70	kg/m3	303.15	Thermodynamic Properties of Ternary Liquid Mixtures Containing o-Chlorotoluene: Excess Molar Volumes and Excess Isentropic Compressibilities
rhol	867.48	kg/m3	308.15	Thermodynamic Properties of Ternary Liquid Mixtures Containing o-Chlorotoluene: Excess Molar Volumes and Excess Isentropic Compressibilities
rhol	875.99	kg/m3	298.15	Molar Excess Volumes and Excess Isentropic Compressibilities of Ternary Mixtures of o-Toluidine

rhol	875.90	kg/m3		Molar Excess Volumes and Excess Isentropic Compressibilities of {2-Methylaniline (i) + Benzene (j) + Methylbenzene}, {2-Methylaniline (i) + Benzene (j) + 1,2-Dimethylbenzene (k)}, and {2-Methylaniline (i) + Benzene (j) + 1,4-Dimethylbenzene (k)} at T = 308.15 K	
rhol	866.51	kg/m3	308.15	Acoustic and thermodynamic properties of binary mixtures of 1-nonanol with o-xylene, m-xylene, p-xylene, ethylbenzene and mesitylene at T = (298.15 and 308.15) K	
rhol	875.36	kg/m3	298.15	Acoustic and thermodynamic properties of binary mixtures of 1-nonanol with o-xylene, m-xylene, p-xylene, ethylbenzene and mesitylene at T = (298.15 and 308.15) K	
rhol	875.67	kg/m3		Effect of temperature and composition on the density, refractive index, and excess quantities of binary mixtures of c,6,8-tetramethyl-2,4,6,8- methenylcyclotetrasiloxane with aromatic hydrocarbons	

rhol	850.24	kg/m3	328.15 2,4,	Effect of temperature and composition on the density, refractive index, and excess quantities of binary mixtures of 6,8-tetramethyl-2,4,6,8-	
			tetra	ethenylcyclotetrasiloxane with aromatic hydrocarbons	
rhol	858.81	kg/m3		Effect of temperature and composition on the density, refractive index, and excess quantities of binary mixtures of 6,8-tetramethyl-2,4,6,8-	
			tetra	ethenylcyclotetrasiloxane with aromatic hydrocarbons	
rhol	867.30	kg/m3	308.15	Effect of temperature and composition on the density, refractive index, and excess quantities of binary mixtures of	
				6,8-tetramethyl-2,4,6,8-	
			tetra	ethenylcyclotetrasiloxane with aromatic hydrocarbons	
rhol	884.07	kg/m3	288.15	Effect of temperature and composition on the density, refractive index, and excess quantities of binary mixtures of 6,8-tetramethyl-2,4,6,8-	
				ethenylcyclotetrasiloxane	
				with aromatic hydrocarbons	

rhol	746.76	kg/m3	353.15	Excess volumes and partial molar volumes of binary mixtures of 1,2-propanediol carbonate with xylene in the temperature range of (293.15 to 353.15) K	
rhol	784.38	kg/m3	343.15	Excess volumes and partial molar volumes of binary mixtures of 1,2-propanediol carbonate with xylene in the temperature range of (293.15 to 353.15) K	
rhol	815.74	kg/m3	333.15	Excess volumes and partial molar volumes of binary mixtures of 1,2-propanediol carbonate with xylene in the temperature range of (293.15 to 353.15) K	
rhol	840.84	kg/m3	323.15	Excess volumes and partial molar volumes of binary mixtures of 1,2-propanediol carbonate with xylene in the temperature range of (293.15 to 353.15) K	
rhol	859.67	kg/m3	313.15	Excess volumes and partial molar volumes of binary mixtures of 1,2-propanediol carbonate with xylene in the temperature range of (293.15 to 353.15) K	
rhol	872.25	kg/m3	303.15	Excess volumes and partial molar volumes of binary mixtures of 1,2-propanediol carbonate with xylene in the temperature range of (293.15 to 353.15) K	

rhol	878.60	kg/m3	293.15	Excess volumes and partial molar volumes of binary mixtures of 1,2-propanediol carbonate with xylene in the temperature range of (293.15 to 353.15) K	
rhol	867.48	kg/m3	308.15	Heat capacities of binary and ternary mixtures containing o-chlorotoluene, cyclic ether and aromatic hydrocarbons	
rhol	875.91	kg/m3	298.15	Heat capacities of binary and ternary mixtures containing o-chlorotoluene, cyclic ether and aromatic hydrocarbons	
rhol	875.50	kg/m3	298.15	Isobaric vapor-liquid equilibrium for n-undecane + p-, o-, m-xylene at 10 kPa	
rhol	859.54	kg/m3	298.15	Isobaric vapor-liquid equilibrium data of the binary systems of octane with p, o, m-xylene at 20 kPa	
rhol	859.54	kg/m3	298.15	Isobaric vapor-liquid equilibrium of binary systems of decane with p-, o-, m-xylene at 20 kPa	
rhol	875.90	kg/m3	298.15	Bubble point measurements of binary mixtures formed by 1-hexanol with selected nitro-compounds and substituted benzenes at 95.6 kPa	

rhol	858.53	kg/m3	318.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K	
rhol	862.79	kg/m3	313.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K	
rhol	867.05	kg/m3	308.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K	
rhol	871.31	kg/m3	303.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K	

rhol	879.83	kg/m3	293.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K	
rhol	884.09	kg/m3	288.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K	
rhol	875.99	kg/m3	298.15	Thermodynamic Properties of Ternary Liquid Mixtures of 2-Pyrrolidinone with Aromatic Hydrocarbons	
rhol	874.89	kg/m3	298.15	Experimental Study of the Dynamic Viscosity Deviations in the Binary Systems: Hexane + Ethylbenzene, + o-Xylene, + m-Xylene, + p-Xylene at 298.15 K	
rhol	880.00	kg/m3	293.00	KDB	_
rhol	879.68	kg/m3	293.15	Isobaric vapor liquid equilibium for the binary systerms of 1-butanol with o-xylene, m-xylene, p-xylene, and ethylbenzene at 101.33 kPa	

	0=1 =0				
rhol	871.70	kg/m3	303.15	Heat capacities of binary and ternary mixtures containing o-chlorotoluene, cyclic ether and aromatic hydrocarbons	
rhol	875.57	kg/m3	298.15	Densities and Volumetric Properties of Binary Mixtures of Butyl Acrylate with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 288.15 K to 318.15 K	
rhol	883.91	kg/m3	288.15	Thermodynamic characterization of binary mixtures of poly(propylene glycol) 425 with toluene and o-, m- and p-xylenes	
sfust	54.87	J/mol×K	247.82	NIST Webbook	
speedsl	1300.66	m/s	308.15	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	1329.40	m/s	303.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1250.66	m/s	320.65	Influence of temperature on thermodynamics of ethers + xylenes	

speedsl	1285.20	m/s	318.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods
speedsl	1369.00	m/s	293.15	Densities, Speeds of Sound, and Isentropic Compressibilities of Binary Mixtures of {Alkan-1-ols + 1,2-Dimethylbenzene, or 1,3-Dimethylbenzene, or 1,4-Dimethylbenzene, or Ethylbenzene) at (293.15, 303.15, and 313.15) K
speedsl	1328.00	m/s	303.15	Densities, Speeds of Sound, and Isentropic Compressibilities of Binary Mixtures of {Alkan-1-ols + 1,2-Dimethylbenzene, or 1,3-Dimethylbenzene, or 1,4-Dimethylbenzene, or thylbenzene, at (293.15, 303.15, and 313.15) K
speedsl	1347.50	m/s	298.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods

speedsl	1289.00	m/s	313.15	Densities, Speeds of Sound, and Isentropic Compressibilities of Binary Mixtures of {Alkan-1-ols + 1,2-Dimethylbenzene, or 1,3-Dimethylbenzene, or 1,4-Dimethylbenzene, or Ethylbenzene} at (293.15, 303.15, and 313.15) K	
speedsl	1346.00	m/s	298.15	Isentropic Compressibilities Changes of Mixing of Tetrahydropyran and Aromatic Hydrocarbons Ternary Mixtures at 308.15 K	
speedsl	1260.62	m/s	318.15	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	1313.30	m/s	308.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1270.55	m/s	315.65	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	1280.61	m/s	313.15	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	1290.59	m/s	310.65	Influence of temperature on thermodynamics of ethers + xylenes	

speedsl	1381.29	m/s	288.15	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	1371.75	m/s	290.65	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	1362.16	m/s	293.15	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	1351.83	m/s	295.65	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	1341.51	m/s	298.15	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	1331.21	m/s	300.65	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	1298.50	m/s	313.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1320.96	m/s	303.15	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	1310.79	m/s	305.65	Influence of temperature on thermodynamics of ethers + xylenes	
speedsl	1240.87	m/s	323.15	Influence of temperature on thermodynamics of ethers + xylenes	

speedsl	1367.70	m/s	293.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
srf	0.03	N/m	303.15	Densities and Surface Tensions of Propyl Acetate + Xylenes or + Ethylbenzene from (298.15 to 308.15) K	
srf	0.03	N/m	298.15	Experimental and theoretical surface tension deviations in the binary systems propyl propanoate + o-, m- and p-xylene at 298.15K	
srf	0.03	N/m	298.15	Excess thermodynamic functions derived from densities and surface tensions of (p- or o-xylene + ethylene glycol dimethyl ether) between the temperatures (298.15 and 308.15) K	
srf	0.03	N/m	303.15	Excess thermodynamic functions derived from densities and surface tensions of (p- or o-xylene + ethylene glycol dimethyl ether) between the temperatures (298.15 and 308.15) K	
srf	0.03	N/m	333.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	

	0.00	N1/	0.40.45	0 (= :	
srf	0.02	N/m	343.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	
srf	0.03	N/m	293.20	KDB	
srf	0.03	N/m	308.15	Densities and Surface Tensions of Propyl Acetate + Xylenes or + Ethylbenzene from (298.15 to 308.15) K	
srf	0.03	N/m	313.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	
srf	0.03	N/m	318.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	
srf	0.03	N/m	323.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	
srf	0.03	N/m	308.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	
srf	0.03	N/m	303.15	Surface Tension of o-Xylene + Acetic Acid and m-Xylene + Acetic Acid Binary Mixtures from 303.15 K to 343.15 K	

srf	0.03	N/m	308.15	Excess thermodynamic functions derived from densities and surface tensions of (p- or o-xylene + ethylene glycol dimethyl ether) between the temperatures (298.15 and 308.15) K	
srf	0.03	N/m	298.15	Densities and Surface Tensions of Propyl Acetate + Xylenes or + Ethylbenzene from (298.15 to 308.15) K	
tcondl	0.14	W/m×K	257.96	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.14	W/m×K	257.75	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.14	W/m×K	258.10	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

tcondl	0.13	W/m×K	277.07	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.13	W/m×K	277.27	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.13	W/m×K	277.42	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.13	W/m×K	295.56	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.13	W/m×K	295.78	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

tcondl	0.13	W/m×K	312.07	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.13	W/m×K	312.29	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.13	W/m×K	312.44	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	328.72	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	328.94	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

tcondl	0.12	W/m×K	329.09	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.13	W/m×K	295.91	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

Correlations

Information Value

Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.44465e+01
Coeff. B	-3.60720e+03
Coeff. C	-5.05540e+01
Temperature range (K), min.	305.32
Temperature range (K), max.	445.43

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	8.33218e+01
Coeff. B	-7.94623e+03
Coeff. C	-1.00606e+01
Coeff. D	5.93974e-06
Temperature range (K), min.	247.98
Temperature range (K), max.	630.37

Datasets

Mass density, kg/m3

283.15 100.00 890.5 283.15 1000.00 890.8 283.15 3000.00 892.4 283.15 5000.00 893.5 283.15 10000.00 896.7 283.15 15000.00 899.0 283.15 20000.00 902.6 283.15 25000.00 908.1 283.15 35000.00 910.9 283.15 40000.00 913.3 283.15 60000.00 918.2 283.15 60000.00 918.2 283.15 60000.00 918.2 283.15 60000.00 973.0 293.15 100.00 879.7 293.15 100.00 879.9 293.15 3000.00 881.4 293.15 1000.00 882.4 293.15 15000.00 882.4 293.15 2000.00 884.9 293.15 3000.00 894.9 293.15 3000.00 894.9 293.15	Temperature, K - Liquid	Pressure, kPa - Liquid	Mass density, kg/m3 - Liquid
283.15 3000.00 892.4 283.15 5000.00 893.5 283.15 10000.00 896.7 283.15 15000.00 899.0 283.15 20000.00 902.6 283.15 25000.00 908.1 283.15 35000.00 910.9 283.15 40000.00 913.3 283.15 50000.00 918.2 283.15 60000.00 923.0 293.15 100.00 879.7 293.15 100.00 879.7 293.15 3000.00 881.4 293.15 5000.00 882.4 293.15 1000.00 885.9 293.15 1500.00 888.9 293.15 2500.00 894.9 293.15 3000.00 894.9 293.15 3000.00 894.9 293.15 35000.00 90.5 293.15 3000.00 894.9 293.15 35000.00 90.5 293.15 3000.00 894.9 293.15 3000.00 894.9 <td>283.15</td> <td>100.00</td> <td>890.5</td>	283.15	100.00	890.5
283.15 5000.00 893.5 283.15 10000.00 896.7 283.15 15000.00 899.0 283.15 20000.00 902.6 283.15 25000.00 908.1 283.15 30000.00 908.1 283.15 35000.00 910.9 283.15 40000.00 913.3 283.15 50000.00 918.2 283.15 60000.00 923.0 293.15 100.00 879.7 293.15 1000.00 879.9 293.15 3000.00 881.4 293.15 5000.00 882.4 293.15 15000.00 885.9 293.15 20000.00 892.0 293.15 25000.00 894.9 293.15 3000.00 894.9 293.15 3000.00 894.9 293.15 3000.00 894.9 293.15 3000.00 894.9 293.15 3000.00 897.8 293.15 <td>283.15</td> <td>1000.00</td> <td>890.8</td>	283.15	1000.00	890.8
283.15 10000.00 896.7 283.15 15000.00 899.0 283.15 20000.00 902.6 283.15 25000.00 908.1 283.15 35000.00 910.9 283.15 4000.00 913.3 283.15 40000.00 918.2 283.15 60000.00 923.0 293.15 100.00 879.7 293.15 1000.00 879.9 293.15 3000.00 881.4 293.15 5000.00 882.4 293.15 15000.00 885.9 293.15 15000.00 886.9 293.15 2000.00 892.0 293.15 25000.00 894.9 293.15 3000.00 894.9 293.15 3000.00 897.8 293.15 3000.00 897.8 293.15 3000.00 897.8 293.15 3000.00 897.8 293.15 3000.00 897.8 293.15 3000.00 897.8 293.15 3000.00 897.8<	283.15	3000.00	892.4
283.15 15000.00 899.0 283.15 20000.00 902.6 283.15 25000.00 905.3 283.15 30000.00 908.1 283.15 35000.00 910.9 283.15 40000.00 913.3 283.15 50000.00 923.0 283.15 60000.00 923.0 293.15 100.00 879.7 293.15 3000.00 879.9 293.15 3000.00 881.4 293.15 10000.00 885.9 293.15 15000.00 888.9 293.15 2000.00 892.0 293.15 2000.00 894.9 293.15 3000.00 897.8 293.15 3500.00 900.5 293.15 3500.00 903.1 293.15 3000.00 897.8 293.15 3000.00 897.8 293.15 3000.00 897.8 293.15 3000.00 903.1 293.15 3000.00 907.9 303.15 4000.00 907.9<	283.15	5000.00	893.5
283.15 20000.00 905.3 283.15 25000.00 905.3 283.15 30000.00 908.1 283.15 35000.00 910.9 283.15 40000.00 913.3 283.15 50000.00 923.0 283.15 60000.00 923.0 293.15 100.00 879.7 293.15 1000.00 879.9 293.15 3000.00 881.4 293.15 5000.00 882.4 293.15 15000.00 885.9 293.15 2000.00 892.0 293.15 2000.00 894.9 293.15 3000.00 897.8 293.15 35000.00 897.8 293.15 35000.00 900.5 293.15 35000.00 908.5 293.15 3000.00 903.1 293.15 3000.00 908.5 293.15 3000.00 908.5 293.15 3000.00 908.5 293.15 3000.00 908.5 293.15 300.00 908.5<	283.15	10000.00	896.7
283.15 25000.00 905.3 283.15 30000.00 908.1 283.15 35000.00 910.9 283.15 40000.00 913.3 283.15 50000.00 918.2 283.15 60000.00 923.0 293.15 100.00 879.7 293.15 1000.00 879.9 293.15 3000.00 881.4 293.15 5000.00 882.4 293.15 15000.00 885.9 293.15 20000.00 892.0 293.15 25000.00 894.9 293.15 3000.00 897.8 293.15 35000.00 90.5 293.15 35000.00 90.5 293.15 36000.00 90.5 293.15 3000.00 90.5 293.15 3000.00 90.5 293.15 3000.00 90.5 293.15 3000.00 90.5 293.15 3000.00 90.5 293.15 3000.00 90.5 293.15 3000.00 90.5	283.15	15000.00	899.0
283.15 30000.00 908.1 283.15 35000.00 910.9 283.15 40000.00 913.3 283.15 50000.00 918.2 283.15 60000.00 923.0 293.15 100.00 879.7 293.15 1000.00 879.9 293.15 3000.00 881.4 293.15 5000.00 882.4 293.15 15000.00 888.9 293.15 15000.00 892.0 293.15 25000.00 894.9 293.15 3000.00 897.8 293.15 35000.00 90.5 293.15 35000.00 903.1 293.15 40000.00 903.1 293.15 5000.00 908.5 293.15 10000.00 870.9 303.15 100.00 871.6 303.15 300.00 874.4 303.15 1000.00 874.4 303.15 15000.00 884.2 303.15 15000.00 884.2 303.15 25000.00 884.	283.15	20000.00	902.6
283.15 35000.00 910.9 283.15 40000.00 913.3 283.15 50000.00 918.2 283.15 60000.00 923.0 293.15 100.00 879.7 293.15 3000.00 881.4 293.15 5000.00 882.4 293.15 10000.00 885.9 293.15 15000.00 888.9 293.15 2000.00 892.0 293.15 25000.00 894.9 293.15 35000.00 897.8 293.15 35000.00 90.5 293.15 35000.00 903.1 293.15 40000.00 903.1 293.15 50000.00 903.1 293.15 60000.00 913.1 303.15 100.00 871.6 303.15 3000.00 873.0 303.15 1000.00 874.4 303.15 1000.00 874.4 303.15 1500.00 884.2 303.15 2000.00 884.2 303.15 25000.00 884.	283.15	25000.00	905.3
283.15 40000.00 913.3 283.15 50000.00 918.2 283.15 60000.00 923.0 293.15 100.00 879.7 293.15 3000.00 881.4 293.15 3000.00 882.4 293.15 5000.00 885.9 293.15 15000.00 888.9 293.15 20000.00 892.0 293.15 25000.00 894.9 293.15 30000.00 897.8 293.15 35000.00 900.5 293.15 40000.00 903.1 293.15 5000.00 908.5 293.15 60000.00 913.1 303.15 100.00 870.9 303.15 100.00 871.6 303.15 5000.00 874.4 303.15 15000.00 884.2 303.15 15000.00 884.2 303.15 2000.00 884.2 303.15 25000.00 884.2	283.15	30000.00	908.1
283.15 50000.00 918.2 283.15 60000.00 923.0 293.15 100.00 879.7 293.15 1000.00 879.9 293.15 3000.00 881.4 293.15 5000.00 882.4 293.15 10000.00 885.9 293.15 15000.00 888.9 293.15 20000.00 892.0 293.15 25000.00 894.9 293.15 30000.00 897.8 293.15 35000.00 903.1 293.15 40000.00 903.1 293.15 50000.00 908.5 293.15 60000.00 913.1 303.15 100.00 870.9 303.15 1000.00 874.4 303.15 1000.00 877.8 303.15 15000.00 884.2 303.15 2000.00 884.2 303.15 25000.00 887.3	283.15	35000.00	910.9
283.15 60000.00 923.0 293.15 100.00 879.7 293.15 1000.00 879.9 293.15 3000.00 881.4 293.15 5000.00 882.4 293.15 10000.00 885.9 293.15 15000.00 888.9 293.15 20000.00 892.0 293.15 25000.00 894.9 293.15 30000.00 897.8 293.15 35000.00 90.5 293.15 40000.00 903.1 293.15 50000.00 908.5 293.15 60000.00 913.1 303.15 100.00 870.9 303.15 300.00 873.0 303.15 5000.00 874.4 303.15 1000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	283.15	40000.00	913.3
293.15 100.00 879.7 293.15 1000.00 879.9 293.15 3000.00 881.4 293.15 5000.00 882.4 293.15 10000.00 885.9 293.15 15000.00 888.9 293.15 20000.00 892.0 293.15 25000.00 894.9 293.15 30000.00 897.8 293.15 35000.00 90.5 293.15 40000.00 903.1 293.15 50000.00 908.5 293.15 60000.00 913.1 303.15 100.00 870.9 303.15 1000.00 871.6 303.15 300.00 874.4 303.15 15000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	283.15	50000.00	918.2
293.15 1000.00 879.9 293.15 3000.00 881.4 293.15 5000.00 882.4 293.15 10000.00 885.9 293.15 20000.00 892.0 293.15 25000.00 894.9 293.15 30000.00 897.8 293.15 35000.00 900.5 293.15 40000.00 903.1 293.15 50000.00 908.5 293.15 60000.00 913.1 303.15 100.00 870.9 303.15 1000.00 871.6 303.15 5000.00 874.4 303.15 10000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 884.2 303.15 25000.00 887.3	283.15	60000.00	923.0
293.15 3000.00 881.4 293.15 5000.00 882.4 293.15 10000.00 885.9 293.15 15000.00 898.9 293.15 20000.00 894.9 293.15 30000.00 897.8 293.15 35000.00 900.5 293.15 40000.00 903.1 293.15 50000.00 908.5 293.15 60000.00 913.1 303.15 100.00 870.9 303.15 1000.00 871.6 303.15 3000.00 874.4 303.15 10000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	293.15	100.00	879.7
293.15 5000.00 882.4 293.15 10000.00 885.9 293.15 15000.00 888.9 293.15 20000.00 892.0 293.15 25000.00 894.9 293.15 30000.00 897.8 293.15 35000.00 900.5 293.15 40000.00 903.1 293.15 50000.00 908.5 293.15 60000.00 913.1 303.15 100.00 870.9 303.15 1000.00 871.6 303.15 3000.00 874.4 303.15 10000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	293.15	1000.00	879.9
293.15 10000.00 885.9 293.15 15000.00 888.9 293.15 20000.00 892.0 293.15 25000.00 894.9 293.15 30000.00 897.8 293.15 35000.00 900.5 293.15 40000.00 903.1 293.15 50000.00 908.5 293.15 60000.00 913.1 303.15 100.00 870.9 303.15 1000.00 871.6 303.15 3000.00 873.0 303.15 5000.00 874.4 303.15 10000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	293.15	3000.00	881.4
293.15 15000.00 888.9 293.15 20000.00 892.0 293.15 25000.00 894.9 293.15 30000.00 897.8 293.15 35000.00 900.5 293.15 40000.00 903.1 293.15 50000.00 908.5 293.15 60000.00 913.1 303.15 100.00 870.9 303.15 1000.00 873.0 303.15 3000.00 874.4 303.15 10000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	293.15	5000.00	882.4
293.15 20000.00 892.0 293.15 25000.00 894.9 293.15 30000.00 897.8 293.15 35000.00 900.5 293.15 40000.00 903.1 293.15 50000.00 908.5 293.15 60000.00 913.1 303.15 100.00 870.9 303.15 1000.00 871.6 303.15 3000.00 873.0 303.15 5000.00 874.4 303.15 10000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	293.15	10000.00	885.9
293.15 25000.00 894.9 293.15 30000.00 897.8 293.15 35000.00 900.5 293.15 40000.00 903.1 293.15 50000.00 908.5 293.15 60000.00 913.1 303.15 100.00 870.9 303.15 1000.00 871.6 303.15 3000.00 873.0 303.15 10000.00 874.4 303.15 15000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	293.15	15000.00	888.9
293.15 30000.00 897.8 293.15 35000.00 900.5 293.15 40000.00 903.1 293.15 50000.00 908.5 293.15 60000.00 913.1 303.15 100.00 870.9 303.15 1000.00 871.6 303.15 3000.00 873.0 303.15 5000.00 874.4 303.15 15000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	293.15	20000.00	892.0
293.15 35000.00 900.5 293.15 40000.00 903.1 293.15 50000.00 908.5 293.15 60000.00 913.1 303.15 100.00 870.9 303.15 1000.00 871.6 303.15 3000.00 873.0 303.15 5000.00 874.4 303.15 10000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	293.15	25000.00	894.9
293.15 40000.00 903.1 293.15 50000.00 908.5 293.15 60000.00 913.1 303.15 100.00 870.9 303.15 1000.00 871.6 303.15 3000.00 873.0 303.15 5000.00 874.4 303.15 10000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	293.15	30000.00	897.8
293.15 50000.00 908.5 293.15 60000.00 913.1 303.15 100.00 870.9 303.15 1000.00 871.6 303.15 3000.00 873.0 303.15 5000.00 874.4 303.15 10000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	293.15	35000.00	900.5
293.15 60000.00 913.1 303.15 100.00 870.9 303.15 1000.00 871.6 303.15 3000.00 873.0 303.15 5000.00 874.4 303.15 10000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	293.15	40000.00	903.1
303.15 100.00 870.9 303.15 1000.00 871.6 303.15 3000.00 873.0 303.15 5000.00 874.4 303.15 10000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	293.15	50000.00	908.5
303.15 1000.00 871.6 303.15 3000.00 873.0 303.15 5000.00 874.4 303.15 10000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	293.15	60000.00	913.1
303.15 3000.00 873.0 303.15 5000.00 874.4 303.15 10000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	303.15	100.00	870.9
303.15 5000.00 874.4 303.15 10000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	303.15	1000.00	871.6
303.15 10000.00 877.8 303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	303.15	3000.00	873.0
303.15 15000.00 881.1 303.15 20000.00 884.2 303.15 25000.00 887.3	303.15	5000.00	874.4
303.15 20000.00 884.2 303.15 25000.00 887.3	303.15	10000.00	877.8
303.15 25000.00 887.3	303.15	15000.00	881.1
	303.15	20000.00	884.2
303.15 30000.00 890.3	303.15	25000.00	887.3
	303.15	30000.00	890.3

303.15	35000.00	893.1
303.15	40000.00	895.9
303.15	50000.00	901.2
303.15	60000.00	906.4
313.15	100.00	862.7
313.15	1000.00	862.9
313.15	3000.00	864.5
313.15	5000.00	865.9
313.15	10000.00	869.6
313.15	15000.00	873.0
313.15	20000.00	876.3
313.15	25000.00	879.6
313.15	30000.00	882.7
313.15	35000.00	885.7
313.15	40000.00	888.4
313.15	50000.00	894.2
313.15	60000.00	899.2
323.15	100.00	853.8
323.15	1000.00	854.6
323.15	3000.00	856.1
323.15	5000.00	857.7
323.15	10000.00	861.5
323.15	15000.00	865.2
323.15	20000.00	868.8
323.15	25000.00	872.0
323.15	30000.00	875.3
323.15	35000.00	878.4
323.15	40000.00	881.5
323.15	50000.00	887.3
323.15	60000.00	892.8
333.15	100.00	845.1
333.15	1000.00	846.0
333.15	3000.00	847.8
333.15	5000.00	849.4
333.15	10000.00	853.3
333.15	15000.00	857.1
333.15	20000.00	860.9
333.15	25000.00	864.4
333.15	30000.00	867.8
333.15	35000.00	871.0
333.15	40000.00	874.3
333.15	50000.00	880.3
333.15	60000.00	886.0
343.15	100.00	836.3

837.2	1000.00	343.15
839.0	3000.00	343.15
840.9	5000.00	343.15
844.9	10000.00	343.15
849.0	15000.00	343.15
853.0	20000.00	343.15
856.6	25000.00	343.15
860.2	30000.00	343.15
863.7	35000.00	343.15
866.8	40000.00	343.15
873.2	50000.00	343.15
878.9	60000.00	343.15
827.8	100.00	353.15
828.6	1000.00	353.15
830.6	3000.00	353.15
832.4	5000.00	353.15
836.9	10000.00	353.15
841.2	15000.00	353.15
845.1	20000.00	353.15
849.1	25000.00	353.15
852.8	30000.00	353.15
856.4	35000.00	353.15
859.8	40000.00	353.15
866.3	50000.00	353.15
872.5	60000.00	353.15
819.3	100.00	363.15
820.3	1000.00	363.15
822.4	3000.00	363.15
824.3	5000.00	363.15
828.7	10000.00	363.15
833.6	15000.00	363.15
837.6	20000.00	363.15
841.5	25000.00	363.15
845.5	30000.00	363.15
849.3	35000.00	363.15
853.1	40000.00	363.15
		000.45
859.8	50000.00	363.15

Reference

https://www.doi.org/10.1016/j.fluid.2019.06.014

Viscosity, Pa*s

273.48 100.00 0.0011017 273.48 1000.00 0.0011126 273.48 5000.00 0.0011545 273.48 10000.00 0.0012091 273.48 15000.00 0.0013191 273.48 25000.00 0.0013777 273.48 25000.00 0.0013777 273.48 30000.00 0.0013779 273.48 30000.00 0.0013779 273.48 30000.00 0.0013779 273.48 30000.00 0.0013779 273.48 30000.00 0.0009529 283.22 1000.00 0.0009529 283.22 1000.00 0.0009529 283.21 15000.00 0.0010749 283.21 20000.00 0.0011687 283.21 25000.00 0.0012159 293.04 100.00 0.0012159 293.04 100.00 0.0008252 293.04 100.00 0.0008252 293.04 1000.00 0.0008252 293.04	Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
273.48 5000.00 0.0011545 273.48 10000.00 0.0012091 273.48 15000.00 0.0013191 273.48 20000.00 0.0013191 273.48 25000.00 0.0013777 273.48 30000.00 0.0014359 283.22 100.00 0.0009529 283.22 5000.00 0.0009529 283.21 10000.00 0.0010310 283.21 15000.00 0.0010749 283.21 20000.00 0.0011687 283.21 25000.00 0.0011687 283.21 25000.00 0.0011687 283.21 30000.00 0.001687 283.21 30000.00 0.001896 293.04 100.00 0.0088196 293.04 100.00 0.0088535 293.04 1000.00 0.0088535 293.05 2000.00 0.0098535 293.05 2000.00 0.009865 293.05 20000.00 0.009865 293.05 <t< td=""><td>273.48</td><td>100.00</td><td>0.0011017</td></t<>	273.48	100.00	0.0011017
273.48 10000.00 0.0012091 273.48 15000.00 0.0012642 273.48 20000.00 0.0013777 273.48 25000.00 0.0013777 273.48 30000.00 0.0014359 283.22 100.00 0.0009859 283.22 5000.00 0.0009859 283.21 10000.00 0.0010310 283.21 15000.00 0.0010749 283.21 20000.00 0.0011687 283.21 25000.00 0.0012159 283.21 30000.00 0.0012159 293.04 100.00 0.008252 293.04 1000.00 0.008252 293.04 1000.00 0.008855 293.04 1000.00 0.008855 293.04 1000.00 0.008855 293.05 2500.00 0.009865 293.05 25000.00 0.009865 293.05 25000.00 0.001062 293.06 30000.00 0.0007178 302.87 1	273.48	1000.00	0.0011126
273.48 15000.00 0.0012642 273.48 20000.00 0.0013191 273.48 25000.00 0.0013777 273.48 30000.00 0.0009464 283.22 100.00 0.0009464 283.22 5000.00 0.0009859 283.21 10000.00 0.0010749 283.21 15000.00 0.0010749 283.21 20000.00 0.0011209 283.21 20000.00 0.0011209 283.21 25000.00 0.0012159 283.21 30000.00 0.0012159 293.04 100.00 0.0008252 293.04 1000.00 0.0008252 293.04 1000.00 0.0008252 293.04 1000.00 0.000855 293.04 1000.00 0.000855 293.05 15000.00 0.0008901 293.05 25000.00 0.0009869 293.05 25000.00 0.001062 293.06 30000.00 0.0007489 302.87	273.48	5000.00	0.0011545
273.48 2000.00 0.0013191 273.48 25000.00 0.0013777 273.48 30000.00 0.0014359 283.22 100.00 0.0009629 283.22 5000.00 0.0009859 283.21 10000.00 0.0010310 283.21 15000.00 0.0010749 283.21 20000.00 0.0011209 283.21 25000.00 0.0011687 283.21 25000.00 0.0011687 283.21 30000.00 0.0012159 293.04 100.00 0.008816 293.04 100.00 0.0088535 293.04 5000.00 0.0088535 293.04 5000.00 0.0088535 293.04 5000.00 0.0088535 293.05 15000.00 0.0008850 293.05 25000.00 0.0008850 293.05 25000.00 0.0009685 293.06 30000.00 0.001062 293.06 30000.00 0.0007478 302.87	273.48	10000.00	0.0012091
273.48 25000.00 0.0013777 273.48 30000.00 0.0014359 283.22 100.00 0.0009464 283.22 1000.00 0.0009529 283.22 5000.00 0.0009869 283.21 10000.00 0.0010749 283.21 20000.00 0.0011209 283.21 25000.00 0.0012159 283.21 25000.00 0.0012159 283.21 30000.00 0.0012159 293.04 100.00 0.008196 293.04 1000.00 0.008855 293.04 5000.00 0.008855 293.04 1000.00 0.008891 293.05 15000.00 0.009865 293.05 2000.00 0.0099269 293.05 2000.00 0.0099269 293.06 30000.00 0.001062 293.06 30000.00 0.001062 293.06 30000.00 0.0007178 302.87 1000.00 0.0007178 302.88 10	273.48	15000.00	0.0012642
273.48 30000.00 0.0014359 283.22 100.00 0.0009464 283.22 1000.00 0.0009859 283.21 10000.00 0.0010310 283.21 15000.00 0.0010749 283.21 20000.00 0.0011209 283.21 25000.00 0.0012159 283.21 30000.00 0.0012159 293.04 100.00 0.0008196 293.04 1000.00 0.0008252 293.04 5000.00 0.0008355 293.04 5000.00 0.0008935 293.05 15000.00 0.0009269 293.05 25000.00 0.0009269 293.05 25000.00 0.0010477 302.87 100.00 0.0007178 302.88 10000.00 0.0007489 302.88 15000.00 0.0008128 302.87 20000.00 0.0008457 302.87 25000.00 0.0008410 312.66 100.00 0.0006351 312.66	273.48	20000.00	0.0013191
283.22 100.00 0.0009464 283.22 1000.00 0.0009529 283.22 5000.00 0.0009859 283.21 10000.00 0.0010310 283.21 15000.00 0.001749 283.21 20000.00 0.0011209 283.21 25000.00 0.0011209 283.21 30000.00 0.0012159 293.04 100.00 0.0008196 293.04 5000.00 0.0008252 293.04 5000.00 0.0008535 293.04 10000.00 0.0008901 293.05 15000.00 0.0009269 293.05 25000.00 0.0009685 293.05 25000.00 0.0010477 302.87 100.00 0.0007178 302.87 1000.00 0.0007489 302.88 15000.00 0.000794 302.87 25000.00 0.0008457 302.87 25000.00 0.000847 302.87 25000.00 0.0008457 302.87 <	273.48	25000.00	0.0013777
283.22 1000.00 0.0009859 283.21 10000.00 0.0010310 283.21 15000.00 0.0010749 283.21 20000.00 0.0011209 283.21 25000.00 0.0011687 283.21 30000.00 0.0012159 293.04 100.00 0.0008196 293.04 1000.00 0.0008535 293.04 10000.00 0.0008535 293.04 10000.00 0.0008901 293.05 15000.00 0.0009685 293.05 25000.00 0.001062 293.06 30000.00 0.001062 293.06 30000.00 0.0007178 302.87 1000.00 0.0007228 302.88 5000.00 0.0007489 302.88 15000.00 0.0008457 302.87 2000.00 0.0008457 302.87 25000.00 0.0008790 302.87 25000.00 0.0008790 302.87 25000.00 0.0006371 312.66 100.00 0.0006371 312.66 100.00 0.	273.48	30000.00	0.0014359
283.22 5000.00 0.0009859 283.21 10000.00 0.0010310 283.21 15000.00 0.0010749 283.21 20000.00 0.0011209 283.21 25000.00 0.001159 293.04 100.00 0.0008159 293.04 1000.00 0.000852 293.04 5000.00 0.0008535 293.04 1000.00 0.0008901 293.05 15000.00 0.0009269 293.05 25000.00 0.0010062 293.06 30000.00 0.0010062 293.06 30000.00 0.0007178 302.87 100.00 0.000778 302.88 5000.00 0.000728 302.88 15000.00 0.0008457 302.87 20000.00 0.0008457 302.87 25000.00 0.0008790 302.87 25000.00 0.0008790 302.87 25000.00 0.0008790 302.87 25000.00 0.0008790 312.66	283.22	100.00	0.0009464
283.21 10000.00 0.0010310 283.21 15000.00 0.0010749 283.21 20000.00 0.0011209 283.21 25000.00 0.0011687 283.21 30000.00 0.0008196 293.04 100.00 0.0008252 293.04 5000.00 0.0008535 293.04 10000.00 0.0008901 293.05 15000.00 0.009269 293.05 25000.00 0.001062 293.06 30000.00 0.001477 302.87 100.00 0.0007178 302.87 1000.00 0.0007228 302.88 5000.00 0.0007489 302.88 15000.00 0.0008457 302.87 20000.00 0.0008790 302.87 20000.00 0.0008790 302.87 25000.00 0.0008790 302.87 30000.00 0.0008790 302.87 3000.00 0.0008790 302.87 3000.00 0.0008790 312.66 100.00 0.0006371 312.67 1000.00 0.00	283.22	1000.00	0.0009529
283.21 15000.00 0.0010749 283.21 20000.00 0.0011209 283.21 25000.00 0.0011687 283.21 30000.00 0.0012159 293.04 100.00 0.0008196 293.04 1000.00 0.000855 293.04 5000.00 0.0008535 293.04 10000.00 0.0008901 293.05 15000.00 0.009269 293.05 25000.00 0.009685 293.05 25000.00 0.001062 293.06 30000.00 0.001062 293.06 30000.00 0.0007178 302.87 100.00 0.0007178 302.88 5000.00 0.0007489 302.88 15000.00 0.0008128 302.87 20000.00 0.0008457 302.87 25000.00 0.000879 302.87 30000.00 0.000879 302.87 30000.00 0.000879 312.66 100.00 0.0006371 312.67	283.22	5000.00	0.0009859
283.21 20000.00 0.0011209 283.21 25000.00 0.0011687 283.21 30000.00 0.0012159 293.04 100.00 0.0008196 293.04 1000.00 0.0008252 293.04 5000.00 0.0008535 293.04 10000.00 0.0008801 293.05 15000.00 0.0009269 293.05 25000.00 0.001062 293.06 30000.00 0.0010477 302.87 100.00 0.0007178 302.87 100.00 0.0007228 302.88 5000.00 0.0007489 302.88 15000.00 0.0008128 302.87 20000.00 0.0008128 302.87 25000.00 0.0008128 302.87 25000.00 0.0008457 302.87 30000.00 0.0008414 312.66 100.00 0.0006371 312.66 1000.00 0.000635 312.66 10000.00 0.0007185 312.66 <	283.21	10000.00	0.0010310
283.21 25000.00 0.0011687 283.21 30000.00 0.0012159 293.04 100.00 0.0008196 293.04 1000.00 0.0008252 293.04 5000.00 0.0008535 293.05 15000.00 0.0009269 293.05 20000.00 0.0009685 293.05 25000.00 0.0010062 293.06 30000.00 0.0007178 302.87 100.00 0.0007178 302.88 5000.00 0.0007228 302.88 15000.00 0.0007489 302.88 15000.00 0.0008457 302.87 20000.00 0.0008457 302.87 25000.00 0.0008457 302.87 25000.00 0.0008457 302.87 25000.00 0.0006371 312.66 100.00 0.000635 312.66 1000.00 0.0006901 312.66 1000.00 0.0007486	283.21	15000.00	0.0010749
283.21 30000.00 0.0012159 293.04 100.00 0.0008196 293.04 1000.00 0.0008252 293.04 5000.00 0.0008535 293.04 10000.00 0.0008901 293.05 15000.00 0.0009269 293.05 20000.00 0.0010062 293.06 30000.00 0.0010477 302.87 100.00 0.007178 302.88 5000.00 0.0007489 302.88 10000.00 0.0007489 302.88 15000.00 0.0008128 302.87 20000.00 0.0008457 302.87 25000.00 0.0008790 302.87 30000.00 0.0008790 302.87 30000.00 0.0006371 312.66 100.00 0.0006414 312.67 5000.00 0.0006901 312.66 1000.00 0.0007486	283.21	20000.00	0.0011209
293.04 100.00 0.0008196 293.04 1000.00 0.0008252 293.04 5000.00 0.0008535 293.04 10000.00 0.0008901 293.05 15000.00 0.0009269 293.05 20000.00 0.0010062 293.06 30000.00 0.0010477 302.87 100.00 0.0007178 302.88 5000.00 0.0007489 302.88 10000.00 0.0007489 302.88 15000.00 0.0008128 302.87 20000.00 0.0008457 302.87 25000.00 0.0008790 302.87 30000.00 0.0008790 302.87 30000.00 0.0008790 302.87 30000.00 0.0006371 312.66 100.00 0.0006371 312.66 1000.00 0.0006635 312.66 10000.00 0.0006901 312.66 10000.00 0.0007486	283.21	25000.00	0.0011687
293.04 1000.00 0.0008252 293.04 5000.00 0.0008535 293.04 10000.00 0.0008901 293.05 15000.00 0.0009269 293.05 20000.00 0.0010062 293.06 30000.00 0.0010477 302.87 100.00 0.0007178 302.88 5000.00 0.0007489 302.88 10000.00 0.0007794 302.88 15000.00 0.0008128 302.87 20000.00 0.0008457 302.87 25000.00 0.0008790 302.87 30000.00 0.0008790 302.87 30000.00 0.0006371 312.66 100.00 0.0006414 312.67 5000.00 0.0006901 312.66 10000.00 0.0007486	283.21	30000.00	0.0012159
293.04 5000.00 0.0008535 293.04 10000.00 0.0008901 293.05 15000.00 0.0009685 293.05 25000.00 0.0010062 293.06 30000.00 0.0010477 302.87 100.00 0.0007178 302.88 5000.00 0.0007228 302.88 10000.00 0.0007794 302.88 15000.00 0.0008128 302.87 20000.00 0.0008457 302.87 25000.00 0.0008790 302.87 30000.00 0.0008790 302.87 30000.00 0.0006371 312.66 100.00 0.000635 312.67 5000.00 0.000635 312.66 10000.00 0.0006901 312.66 10000.00 0.0007486	293.04	100.00	0.0008196
293.04 10000.00 0.0008901 293.05 15000.00 0.0009269 293.05 20000.00 0.0010062 293.06 30000.00 0.0010477 302.87 100.00 0.0007178 302.88 5000.00 0.0007489 302.88 10000.00 0.0007794 302.88 15000.00 0.0008128 302.87 20000.00 0.0008457 302.87 25000.00 0.0008790 302.87 30000.00 0.0008790 302.87 30000.00 0.0006371 312.66 100.00 0.000635 312.67 5000.00 0.000635 312.66 10000.00 0.0007486	293.04	1000.00	0.0008252
293.05 15000.00 0.0009269 293.05 20000.00 0.0009685 293.05 25000.00 0.0010062 293.06 30000.00 0.0010477 302.87 100.00 0.0007178 302.88 5000.00 0.0007489 302.88 15000.00 0.0007794 302.87 20000.00 0.0008457 302.87 25000.00 0.0008790 302.87 30000.00 0.0008790 302.87 30000.00 0.0006371 312.66 1000.00 0.000635 312.67 5000.00 0.0006901 312.67 15000.00 0.0007185 312.66 20000.00 0.0007486	293.04	5000.00	0.0008535
293.05 20000.00 0.0009685 293.05 25000.00 0.0010062 293.06 30000.00 0.0010477 302.87 100.00 0.0007178 302.88 5000.00 0.0007489 302.88 15000.00 0.0007794 302.87 20000.00 0.0008457 302.87 25000.00 0.0008790 302.87 30000.00 0.0008790 302.87 30000.00 0.0006371 312.66 100.00 0.0006414 312.67 5000.00 0.000635 312.66 10000.00 0.0006901 312.67 15000.00 0.0007185 312.66 20000.00 0.0007486	293.04	10000.00	0.0008901
293.05 25000.00 0.0010062 293.06 30000.00 0.0010477 302.87 100.00 0.0007178 302.88 5000.00 0.0007489 302.88 10000.00 0.0007794 302.88 15000.00 0.0008128 302.87 20000.00 0.0008457 302.87 25000.00 0.0008790 302.87 30000.00 0.0009126 312.66 100.00 0.0006371 312.67 1000.00 0.0006414 312.66 10000.00 0.0006901 312.67 15000.00 0.0007185 312.66 20000.00 0.0007486	293.05	15000.00	0.0009269
293.06 30000.00 0.0010477 302.87 100.00 0.0007178 302.87 1000.00 0.0007228 302.88 5000.00 0.0007489 302.88 10000.00 0.0007794 302.88 15000.00 0.0008128 302.87 20000.00 0.0008790 302.87 30000.00 0.0008790 312.66 100.00 0.0006371 312.67 1000.00 0.0006414 312.66 10000.00 0.0006901 312.66 10000.00 0.0007185 312.66 20000.00 0.0007486	293.05	20000.00	0.0009685
302.87 100.00 0.0007178 302.87 1000.00 0.0007228 302.88 5000.00 0.0007489 302.88 10000.00 0.0007794 302.88 15000.00 0.0008128 302.87 20000.00 0.0008457 302.87 25000.00 0.0008790 302.87 30000.00 0.0009126 312.66 100.00 0.0006371 312.67 1000.00 0.0006414 312.66 10000.00 0.0006635 312.66 10000.00 0.0006901 312.67 15000.00 0.0007185 312.66 20000.00 0.0007486	293.05	25000.00	0.0010062
302.87 1000.00 0.0007228 302.88 5000.00 0.0007489 302.88 10000.00 0.0008128 302.87 20000.00 0.0008457 302.87 25000.00 0.0008790 302.87 30000.00 0.0009126 312.66 100.00 0.0006371 312.67 5000.00 0.0006414 312.66 10000.00 0.0006901 312.67 15000.00 0.0007185 312.66 20000.00 0.0007486	293.06	30000.00	0.0010477
302.88 5000.00 0.0007489 302.88 10000.00 0.0008128 302.87 20000.00 0.0008457 302.87 25000.00 0.0008790 302.87 30000.00 0.0009126 312.66 100.00 0.0006371 312.67 1000.00 0.0006414 312.66 10000.00 0.0006635 312.66 10000.00 0.0006901 312.67 15000.00 0.0007185 312.66 20000.00 0.0007486	302.87	100.00	0.0007178
302.88 10000.00 0.0007794 302.88 15000.00 0.0008128 302.87 20000.00 0.0008790 302.87 30000.00 0.0009126 312.66 100.00 0.0006371 312.67 1000.00 0.0006414 312.66 10000.00 0.0006635 312.66 10000.00 0.0006901 312.67 15000.00 0.0007185 312.66 20000.00 0.0007486	302.87	1000.00	0.0007228
302.88 15000.00 0.0008128 302.87 20000.00 0.0008457 302.87 25000.00 0.0008790 302.87 30000.00 0.0009126 312.66 100.00 0.0006371 312.67 1000.00 0.0006414 312.66 10000.00 0.0006635 312.66 10000.00 0.0006901 312.67 15000.00 0.0007185 312.66 20000.00 0.0007486	302.88	5000.00	0.0007489
302.87 20000.00 0.0008457 302.87 25000.00 0.0008790 302.87 30000.00 0.0009126 312.66 100.00 0.0006371 312.67 1000.00 0.0006414 312.66 10000.00 0.0006901 312.67 15000.00 0.0007185 312.66 20000.00 0.0007486	302.88	10000.00	0.0007794
302.87 25000.00 0.0008790 302.87 30000.00 0.0009126 312.66 100.00 0.0006371 312.67 1000.00 0.0006414 312.67 5000.00 0.0006635 312.66 10000.00 0.0006901 312.67 15000.00 0.0007185 312.66 20000.00 0.0007486	302.88	15000.00	0.0008128
302.87 30000.00 0.0009126 312.66 100.00 0.0006371 312.67 1000.00 0.0006414 312.67 5000.00 0.0006635 312.66 10000.00 0.0006901 312.67 15000.00 0.0007185 312.66 20000.00 0.0007486	302.87	20000.00	0.0008457
312.66 100.00 0.0006371 312.67 1000.00 0.0006414 312.67 5000.00 0.0006635 312.66 10000.00 0.0006901 312.67 15000.00 0.0007185 312.66 20000.00 0.0007486	302.87	25000.00	0.0008790
312.67 1000.00 0.0006414 312.67 5000.00 0.0006635 312.66 10000.00 0.0006901 312.67 15000.00 0.0007185 312.66 20000.00 0.0007486	302.87	30000.00	0.0009126
312.67 5000.00 0.0006635 312.66 10000.00 0.0006901 312.67 15000.00 0.0007185 312.66 20000.00 0.0007486	312.66	100.00	0.0006371
312.66 10000.00 0.0006901 312.67 15000.00 0.0007185 312.66 20000.00 0.0007486	312.67	1000.00	0.0006414
312.67 15000.00 0.0007185 312.66 20000.00 0.0007486	312.67	5000.00	0.0006635
312.66 20000.00 0.0007486	312.66	10000.00	0.0006901
	312.67	15000.00	0.0007185
312.66 25000.00 0.0007781	312.66	20000.00	0.0007486
	312.66	25000.00	0.0007781

312.66	30000.00	0.0008077
321.85	100.00	0.0005744
321.85	1000.00	0.0005794
321.86	5000.00	0.0005991
321.85	10000.00	0.0006241
321.85	15000.00	0.0006489
321.86	20000.00	0.0006748
321.86	25000.00	0.0006987
321.85	30000.00	0.0007248
332.47	100.00	0.0005150
332.47	1000.00	0.0005176
332.48	5000.00	0.0005347
332.48	10000.00	0.0005575
332.48	15000.00	0.0005798
332.48	20000.00	0.0006029
332.48	25000.00	0.0006273
332.48	30000.00	0.0006504
343.06	100.00	0.0004586
343.07	1000.00	0.0004624
343.07	5000.00	0.0004782
343.07	10000.00	0.0004990
343.08	15000.00	0.0005195
343.09	20000.00	0.0005401
343.08	25000.00	0.0005603
343.08	30000.00	0.0005817
353.04	100.00	0.0004177
353.04	1000.00	0.0004196
353.03	5000.00	0.0004342
353.02	10000.00	0.0004549
353.02	15000.00	0.0004725
353.02	20000.00	0.0004922
353.02	25000.00	0.0005113
353.01	30000.00	0.0005312
362.85	100.00	0.0003838
362.85	1000.00	0.0003862
362.85	5000.00	0.0004001
362.85	10000.00	0.0004169
362.86	15000.00	0.0004340
362.86	20000.00	0.0004506
362.87	25000.00	0.0004690
362.87	30000.00	0.0004842
372.83	100.00	0.0003528
372.84	1000.00	0.0003556
372.84	5000.00	0.0003683

372.85	10000.00	0.0003831
372.86	15000.00	0.0004015
372.86	20000.00	0.0004156
372.85	25000.00	0.0004324
372.86	30000.00	0.0004477

Reference

https://www.doi.org/10.1016/j.jct.2015.11.027

Temperature, K	Pressure, kPa	Viscosity, Pa*s
303.15	101.30	0.0007272

Reference

https://www.doi.org/10.1021/je034204h

Refractive index (Na D-line)

	Pressure, kPa - Liquid	Temperature, K - Liquid	Refractive index (Na D-line) - Liquid
	93.00	298.15	1.5022
_			

Reference

https://www.doi.org/10.1021/acs.jced.7b00372

Sources

Activity coefficients at infinite dilution Activity coefficients at infinite dilution of organic solutes in N-alkylpyridinium Eisterinion entem pischmething from the mappyriding properties if a green the properties of the properties of

Activity coefficients at infinite dilution and physicochemical properties for byganic somesimuly catellinium fronthe Tark systems of 1-butanol with billing https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=654

Velocities of 3-Pentanone +
Ethymenhemeshing of pentanone +
ickymenhemeshing of pentanone ickymenhemeshing of pentanone ickymenhemeshing of pentanone ickymenhemeshing of pentanone by pentanone ickymenhemeshing of pentanone ickymenhemeshin បុរី អូលាន ក្រុមស្រួលខ្លែក្នុងក្រុមស្រាស ក្រុមវង្សាទេ based ក្រុមស្រួលក្រុមវិទ្ធាស្រ្តាស្រ្តាស្រ្តាស្រ្តាស្រ្តាស្រ្តាស្រ្ត

https://www.doi.org/10.1016/j.jct.2010.06.009

https://www.doi.org/10.1016/j.tca.2015.04.011

https://www.doi.org/10.1021/je200039y

https://www.doi.org/10.1016/j.fluid.2005.06.011

https://www.doi.org/10.1016/j.jct.2018.08.028

https://www.doi.org/10.1016/j.fluid.2005.09.012

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1016/j.jct.2012.05.017

https://www.doi.org/10.1021/je201053v

https://www.doi.org/10.1016/j.jct.2010.01.006

https://www.doi.org/10.1016/j.jct.2006.07.017

https://www.doi.org/10.1016/j.jct.2018.05.017

https://www.doi.org/10.1016/j.jct.2018.07.024

Measurements of activity coefficients at infinite dilution for organic solutes And with experimental entire distribution isomers rate only of the property of game Compounds in Four New Isomers with a property of seasons with a lonic the week of the property of separation, passed on activity of separation. ชื่อคาการคายสาราการคายกับเด็ก of 2.Methy solution of 1. Ethylbenzene + ผู้เห็นจะโรคเก็บ และการคาย เมื่อเก็บ เลือน เมื่อเก็บ เลือน เมื่อเก็บ เมื่อ and regression: Viscosity measurements of Viscosity measurements of ortho-xylene, meta-xylene, para-xylene Examinations in the Dynamic Viscosity Deviations in the Binary systems! Presentions in the Binary systems! Present in the Binary systems! Present in the Binary systems! Present in the Binary systems of the Binary systems [OMMIM][NTf2] ionic liquid and modelling of thermodynamic functions:

https://www.doi.org/10.1016/j.jct.2012.03.005 measurements of activity coefficients at infinite dilution for organic solutes and with coefficients and plants in the dilution of the properties for the many plants in the properties for the plants in the properties for the plants in the plants of the plants in the plants of the plants in the plants of the p https://www.doi.org/10.1016/j.jct.2011.04.018 https://www.doi.org/10.1016/j.fluid.2012.09.019 https://www.doi.org/10.1016/j.jct.2016.06.028 https://www.doi.org/10.1021/je301220s https://www.doi.org/10.1016/j.fluid.2017.06.001 https://www.doi.org/10.1021/je034204h https://www.doi.org/10.1016/j.fluid.2014.03.003 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1016/j.jct.2015.11.027 https://www.doi.org/10.1007/s10765-009-0622-2 https://www.doi.org/10.1016/j.fluid.2010.01.029 https://www.doi.org/10.1021/je1000582 https://www.doi.org/10.1016/j.jct.2005.04.010 https://www.doi.org/10.1021/je020181f https://www.doi.org/10.1016/j.tca.2009.07.017 https://www.doi.org/10.1016/j.jct.2014.04.024 https://www.doi.org/10.1021/je700221w
https://www.doi.org/10.1021/je700221w
https://www.doi.org/10.1021/je700221w
https://www.doi.org/10.1021/je060485s
https://www.doi.org/10.1021/je060485s
https://www.doi.org/10.1016/j.jct.2012.10.023
https://www.doi.org/10.1016/j.jct.2012.10.023

Thermodynamics and activity coefficients at infinite dilution for biguid guidebaachtiagramachid polyfeltyleetalebaachtiagramachid polyfeltyleetalebaachtiagramachid polyfeltyleetalebaachtiagramachid polyfeltyleetalebaachtiagramachid properties from Solubilities:

Equation of the solubilities of the solution of the sol coefficients at infinite dilution for Separation of the association of Extense in arithes laylines in whenever of place of the standard of the standa MBABUSE THE TOTAL REGARDS Solutes and Walker William equilibria for mixtures of Material Reports in a granic solutes and water in the equilibria for mixtures of intervention of the entire of the xylenes from their mixtures with hexane:

https://www.doi.org/10.1016/j.fluid.2018.06.013 https://www.doi.org/10.1016/j.fluid.2015.08.022 https://www.doi.org/10.1021/je501140p https://www.doi.org/10.1021/je401057z https://www.doi.org/10.1021/je900838a https://www.doi.org/10.1021/je060005x https://www.doi.org/10.1016/j.fluid.2009.09.024 https://www.doi.org/10.1007/s10765-010-0768-y https://www.doi.org/10.1016/j.jct.2013.02.004 https://www.doi.org/10.1021/acs.jced.8b00487 https://www.doi.org/10.1016/j.jct.2011.10.027 https://www.doi.org/10.1016/j.jct.2018.09.003 https://www.doi.org/10.1016/j.fluid.2010.08.016 https://www.doi.org/10.1021/je100952p https://www.doi.org/10.1007/s10765-010-0717-9 https://www.doi.org/10.1016/j.jct.2013.07.004 https://www.doi.org/10.1016/j.jct.2017.10.003 https://www.doi.org/10.1016/j.fluid.2018.09.024 https://www.doi.org/10.1007/s10765-011-0997-8 https://www.doi.org/10.1021/je010317u https://www.doi.org/10.1021/je800043a https://www.doi.org/10.1021/je0341920 https://www.doi.org/10.1016/j.fluid.2008.03.004 https://www.doi.org/10.1021/je4001894 https://www.doi.org/10.1021/acs.jced.6b00324 https://www.doi.org/10.1021/je201129y https://www.doi.org/10.1021/je0341763 https://www.doi.org/10.1016/j.fluid.2011.04.001

High-pressure densities of https://www.doi.org/10.1016/j.fluid.2019.06.014 https://www.doi.org/10.1016/j.jct.2014.04.020 of organic solutes in the ionic liquid Measuring Surfamidension of legylds at High Temperature and Elevated Phesion of heavylds at High Temperature and activity https://www.doi.org/10.1021/je700578f https://www.doi.org/10.1016/j.jct.2011.06.007 coefficients at infinite dilution Melasuficanas y obmorgand sarces and leasuropine compressibilities of Ternary phase political phase in the compressibilities of Ternary phase political phase in the compression of the https://www.doi.org/10.1016/j.fluid.2009.02.010 Activity coefficients at infinite dilution of organic solutes in 1-hexyl-3-Measuraments in a continuous continuous in 1-hexyl-3-Measuraments in a continuous in a continuous in 1-hexyl-3-Measuraments in a continuous in a https://www.doi.org/10.1016/j.jct.2013.10.038 2-propanol, 2-methyl-1-propanol, and 2-propanol, 2-methyl-1-propanol, and 2-propanol https://www.doi.org/10.1016/j.jct.2017.01.016 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=654 binary mixtures at different the property of the permitted of the permitte https://www.doi.org/10.1021/je060033f https://www.doi.org/10.1016/j.fluid.2013.11.034 Controller of the particle of the property of the particle of https://www.doi.org/10.1016/j.fluid.2016.10.009 https://www.doi.org/10.1021/je2009736 https://www.doi.org/10.1021/acs.jced.8b00891 https://www.doi.org/10.1021/je201310d https://www.doi.org/10.1016/j.fluid.2016.02.004 of Brigarians thronts and water in the property of the propert https://www.doi.org/10.1021/je7005665 https://www.doi.org/10.1021/je060041w Panaijies and yalumatzia properties of https://www.doi.org/10.1016/j.jct.2004.04.004 TEMPROPOSITION TO THE SOLUTION OF THE SOLUTION https://www.doi.org/10.1016/j.jct.2013.01.005 https://www.doi.org/10.1016/j.fluid.2012.05.006 ntips://www.doi.org/10.1016/j.jct.2011.02
ntaging a part of organic galates and ware sit in beasing a like in the situation of alkanes, alkenes, alkyl benzenes in antiwity professional factorial interior of alkanes, alkenes, alkyl benzenes in antiwity professional factorial interior of alkanes, alkenes, alkyl benzenes in antiwity professional factorial interior of alkanes, alkenes, alkyl benzenes in antiwity professional factorial interior of alkanes, alkenes, alkyl benzenes in antiwity professional factorial interior of alkanes, alkyl benzenes in antiwity professional factorial interior of alkanes, alkyl benzenes in antiwity professional factorial interior of alkanes, alkyl benzenes in antiwity professional factorial interior of alkanes, alkyl benzenes in antiwity professional factorial interior of alkanes, alkyl benzenes in antiwity professional factorial interior of alkanes, alkyl benzenes in antiwity professional factorial interior of alkanes, alkyl benzenes in the professional factorial interior of alkanes, alkyl benzenes in alkyl benz https://www.doi.org/10.1016/j.jct.2011.02.012 https://www.doi.org/10.1016/j.jct.2015.07.046 https://www.doi.org/10.1021/acs.jced.5b00980 https://www.doi.org/10.1016/j.jct.2017.07.012 https://www.doi.org/10.1016/j.jct.2015.05.022 https://www.doi.org/10.1016/j.jct.2009.06.011 https://www.doi.org/10.1016/j.fluid.2009.01.011 1-butyl-1-methylpyrrolidinium

trifluoromethanesulfonate using GLC:

```
Activity Coefficients at Infinite Dilution https://www.doi.org/10.1021/je9002724
        of Alkanes, Alkenes, and Alkyl
        Extraction in benzene, ethylbenzene,
                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.fluid.2014.07.034
    https://www.doi.org/10.1016/j.fluid.2014.07.034
https://www.doi.org/10.1016/j.fluid.2012.04.008
https://www.doi.org/10.1016/j.fluid.2012.04.008
https://www.doi.org/10.1016/j.fluid.2012.04.008
https://www.doi.org/10.1021/acs.jced.7b00244
https://www.doi.org/10.1021/acs.jced.7b00244
https://www.doi.org/10.1021/je060142u
https://www.doi.org/10.1021/je060142u
https://www.doi.org/10.1021/je060142u
https://www.doi.org/10.1016/j.fluid.2019.03.023
https://www.doi.org/10.1016/j.fluid.2019.03.023
https://www.doi.org/10.1016/j.fluid.2019.03.023
https://www.doi.org/10.1016/j.fluid.2019.03.023
https://www.doi.org/10.1016/j.fluid.2019.03.023
https://www.doi.org/10.1016/j.fluid.2019.03.023
https://www.doi.org/10.1016/j.fluid.2019.03.023
                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.fluid.2012.04.008
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.fluid.2019.03.023
The strike the sector to the strike the s
                                                                                                                                                                                                                                                                                                 http://webbook.nist.gov/cgi/cbook.cgi?ID=C95476&Units=SI
     https://www.doi.org/10.1016/j.jct.2018.0 https://www.doi.org/10.1016/j.jct.2018.0 https://www.doi.org/10.1016/j.jct.2018.0 https://www.doi.org/10.1016/j.jct.2018.0 https://www.doi.org/10.1016/j.jct.2018.0 https://www.doi.org/10.1021/je100517z https://www.doi.org/10.1021/je100517z https://www.doi.org/10.1016/j.fluid.2004. https://www.doi.org/10.1016/j.fluid.2004. https://www.doi.org/10.1016/j.fluid.2004. https://www.doi.org/10.1016/j.fluid.2004. https://www.doi.org/10.1021/je034128i https://www.doi.org/10.1021/je034128i https://www.doi.org/10.1021/je034128i https://www.doi.org/10.1016/j.fluid.2004. https://www.d
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.fluid.2004.10.027
                                                                                                                                                                                                                                                                                                 http://onschallenge.wikispaces.com/file/view/AqueousDataset002.xlsx/351826032/AqueousDa
                                                                                                                                                                                                                                                                                                https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=654
       TigeDomethylbienzene + NMF, and 1.4tDynathylbienzenezoliMinfrom
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.fluid.2015.06.046
         Market Resident Spikaria Viscizacijon of
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.jct.2018.11.020
        Cimini mints us says a self of the says 
                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2013.10.048
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1021/je200151j
    1-Hexyl-3-methylimidazole Nitrate and sobayic3/memylimidazole Nitrate and https://www.doi.org/10.1021/je3002283 https://www.doi.org/10.1021/je020145g
1-4-by/hetmyta/medazolioma kPa:
HeixitikoophicanitaitiinHyitocanitions: https://www.doi.org/10.1016/j.jct.2015.05.014 https://www.doi.org/10.1021/acs.jced.8b00348
Equilibrium Data for the Binary
Systems of Anisolo with Yylono
                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1021/acs.jced.8b00348
```

Systems of Anisole with Xylene

Isomers at 93.13 kPa:

```
Measurement and correlation of
                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.jct.2014.09.003
    solubility of
                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2013.09.044
    Ploaneredzijšienia etheixankrobenzene
  https://www.doi.org/10.1021/je034279l
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.fluid.2010.05.017
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2015.02.023
 Activity of officients of the initial districts of organic solutes in the initial control of organic solutes in the initial control of organic solutes in the initial control of the in
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/je900890u
                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.jct.2005.02.012
                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/acs.jced.6b00085
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2011.11.021
https://www.doi.org/10.1016/j.fluid.2008.

https://www.doi.org/10.1016/j.fluid.2008.

https://www.doi.org/10.1021/je7006549

https://www.doi.org/10.1021/je7006549

https://www.doi.org/10.1021/je101008y

https://www.doi.org/10.1021/je101008y

https://www.doi.org/10.1021/je800091s

https://www.doi.org/10.1016/j.jct.2013.09

https://www.doi.org/10.1016/j.jct.2013.09

https://www.doi.org/10.1016/j.jct.2013.09

https://www.doi.org/10.1016/j.jct.2013.09

https://www.doi.org/10.1016/j.jct.2005.0

https://www.doi.org/10.1016/j.jct.2005.0

https://www.doi.org/10.1016/j.jct.2013.09

http
                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2008.01.020
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2013.09.007
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2005.01.017
                                                                                                                                                                                                                                                                                                             http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt
  in the temperature range of (293.15 to the temperature range of (2
                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2006.09.007
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2019.05.011
  systems based on activity coefficients being he amurous priorite and property of the property 
    systems based on activity coefficients
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/je060395n
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.fluid.2009.12.002
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.tca.2007.12.006
                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/je200974r
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2017.11.017
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/je200266f
  多時間が必用的を

Special Mana All Englishes All
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/je500050p
                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.fluid.2017.12.029
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2018.02.014
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2010.02.006
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.fluid.2014.06.021
 TEXENTIFIED HANDING CONTROL STUDY OF THE TRANSPORT OF THE
                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.jct.2012.01.019
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2017.03.004
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.fluid.2018.07.028
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2016.07.021
https://www.doi.org/10.1021/acs.jced.5b.pitern.s.//www.doi.org/10.1021/acs.jced.5b.pitern.s.//www.doi.org/10.1021/je8005419
https://www.doi.org/10.1021/je8005419
https://www.doi.org/10.1021/je8005419
https://www.doi.org/10.1021/je8005419
https://www.doi.org/10.1021/je100019r
https://www.doi.org/10.1016/j.jct.2006.10
https://www.doi.org/10.1016/j.jct.2012.00
https://www.doi.org/10.1016/j.jct.2012.00
https://www.doi.org/10.1016/j.jct.2012.00
https://www.doi.org/10.1021/je900237e
https://www.doi.org/10.1021/je900237e
https://www.doi.org/10.1021/je900237e
https://www.doi.org/10.1016/j.jct.2012.00
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/acs.jced.5b00043
                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.jct.2006.11.003
                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1016/j.jct.2012.03.015
```

bis(trifluoromethylsulfonyl)-amide:

Activity coefficients at infinite dilution and physicochemical properties for Departies of nesdand way in and ionic https://www.doi.org/10.1021/je060170c https://www.doi.org/10.1021/je060170c https://www.doi.org/10.1021/je060170c https://www.doi.org/10.1021/je060390q https://www.doi.org/10.1021/je060390q https://www.doi.org/10.1021/je060390q https://www.doi.org/10.1021/je060390q https://www.doi.org/10.1021/je060390q https://www.doi.org/10.1016/j.jct.2011.11.025 https://www.doi.org/10.1021/je060390q https://www.doi.org/10.1016/j.jct.2011.11.025 https://www.doi.org/10.1016/j.jct.2016.01.017 https://www.doi.org/10.1016/j.jct.2016.01.017 https://www.doi.org/10.1016/j.jct.2006.12.017 https://www.doi.org/10.1016/j.jct.2006.12.017 free energy of some binary mixtures for the type fire energy of some binary mixtures for and physicochemical properties for and physicochemical properties for Schlabitishings and water in the ionic Mathyldiphenylphosaphine Oxide in Straight Activity coefficients at initial dilution for hate: broadly sometimes and water in the ionic broadly sometimes are in the ionic broadly sometimes and water in the ionic broadly sometimes are in the ionic broadly sometimes and water in the ionic broadly sometimes and water in the ionic broadly sometimes are in the ionic broadly sometimes and water in the ionic broadly sometimes are in the ionic broadly sometimes and water in the ionic broadly sometimes are in the ionic broadly sometimes and water in the ionic broadly sometimes are in the ionic broadly sometimes and water in the ionic broadly sometimes are in the ionic broadly sometimes and water in the ionic broadly sometimes are in the ionic broadly sometimes and water in the ionic broadly sometimes are in the ionic broadly sometimes and water in the ionic broadly sometimes are in the ionic broadly sometimes and in the ionic broadly sometimes are in the ionic broadly sometimes and in the ionic broadly sometimes are in the ionic broadly sometimes and in the ionic broadly sometimes are in the ionic broadly sometimes and in the ionic broadly sometimes are in the ionic broadly sometimes and in the ionic broadly sometimes are in the ionic broadly sometimes and in the orgamic sources and water in the ichic notified acapte a methy in blandaring of the thermodynamic parameters of ionic liquid 1 คะบอง ราคา เมื่อเล่า เมล่า เมื่อเล่า เมล่า เมล่า เมื่อเล่า เมล่า เมล่า เมล่า เมล่า เมล่า เมล่า เมล Pressure: Thermodynamic Parameters of a New Thermodynamic Parameters of a New Synthesized Tricationic Ionic Liquid states and the states of the

https://www.doi.org/10.1016/j.jct.2012.08.016

https://www.doi.org/10.1021/je100734t

https://www.doi.org/10.1021/acs.jced.7b00971

https://www.doi.org/10.1016/j.jct.2013.05.008

https://www.doi.org/10.1021/je900277m

https://www.doi.org/10.1016/j.jct.2013.08.030

https://www.doi.org/10.1016/j.fluid.2013.10.012

https://www.doi.org/10.1016/j.jct.2018.09.023

https://www.doi.org/10.1016/j.jct.2014.06.006

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.doi.org/10.1021/acs.jced.8b00601

https://www.doi.org/10.1021/je049793l

https://www.doi.org/10.1021/je400592a

https://www.doi.org/10.1016/j.fluid.2009.11.017

https://www.doi.org/10.1021/je900194v

https://www.doi.org/10.1016/j.jct.2010.05.017

atispfiចៅក្លេ dilution at organic solutes ត្រីស្រាល់ដូច្នេក់ apor-Liquid Equilibria for the https://www.doi.org/10.1021/je050523s

Legend

flu:

Por Nic Profesi dusing g.l.c.:

af: Acentric Factor affp: Proton affinity

Riperby Mirthern of Parrene with Bisky processes and

aigt: **Autoignition Temperature**

basg: Gas basicity

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacity

Liquid phase heat capacity cpl:

dm: **Dipole Moment** dvisc: Dynamic viscosity

ep: Protonation entropy at 298K fll: Lower Flammability Limit

Flash Point (Closed Cup Method) fpc: fpo: Flash Point (Open Cup Method)

Standard Gibbs free energy of formation gf:

Upper Flammability Limit

Radius of Gyration gyrad:

hcg: Heat of Combustion, Gross form hcn: Heat of Combustion, Net Form

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsubt: Enthalpy of sublimation at a given temperaturehvap: Enthalpy of vaporization at standard conditionshvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws:Log10 of Water solubility in mol/llogp:Octanol/Water partition coefficientmcvol:McGowan's characteristic volume

nfpaf: NFPA Fire Rating
nfpah: NFPA Health Rating
pc: Critical Pressure
pvap: Vapor pressure
rfi: Refractive Index
rhoc: Critical density
rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature **sg:** Molar entropy at standard conditions

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tcondl: Liquid thermal conductivitytf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility
zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/62-853-6/o-Xylene.pdf

Generated by Cheméo on 2025-12-24 01:26:45.250084052 +0000 UTC m=+6287802.780124707.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.