Diphenylamine

Other names: ANILINOBENZENE

Aniline, N-phenyl-

Benzenamine, N-phenyl-Benzene, (phenylamino)-

Benzene, anilino-

Big Dipper C.I. 10355

DFA DPA

Deccoscald 282
Difenylamin

N,N-Diphenylamine

N-Fenylanilin

N-PHENYL-BENZENAMINE

N-Phenylaniline

N-Phenylbenzenamine N-Phenylbenzeneamine

NSC 215210 Naugalube 428L

No-Scald

No-Scald dpa 283 Phenylaniline

Scaldip

InChl=1S/C12H11N/c1-3-7-11(8-4-1)13-12-9-5-2-6-10-12/h1-10,13H

InchiKey: DMBHHRLKUKUOEG-UHFFFAOYSA-N

Formula: C12H11N

SMILES: c1ccc(Nc2cccc2)cc1

Mol. weight [g/mol]: 169.22 CAS: 122-39-4

Physical Properties

Property code	Value	Unit	Source
chl	-6426.20	kJ/mol	NIST Webbook
gf	364.37	kJ/mol	Joback Method
hf	202.00	kJ/mol	NIST Webbook
hfl	132.00	kJ/mol	NIST Webbook

hfs	109.00	kJ/mol	NIST Webbook
hfs	130.00 ± 1.50	kJ/mol	NIST Webbook
hfs	131.00	kJ/mol	NIST Webbook
hfs	142.50	kJ/mol	NIST Webbook
hfs	117.40 ± 2.10	kJ/mol	NIST Webbook
hfus	19.68	kJ/mol	Measurement and prediction of (solid + liquid) equilibria of gun powder's and propellant's stabilizers mixtures
hsub	110.00	kJ/mol	NIST Webbook
hvap	69.90	kJ/mol	NIST Webbook
hvap	55.23	kJ/mol	NIST Webbook
hvap	70.00	kJ/mol	NIST Webbook
ie	7.19 ± 0.05	eV	NIST Webbook
ie	7.18 ± 0.01	eV	NIST Webbook
ie	7.14 ± 0.03	eV	NIST Webbook
ie	7.25 ± 0.03	eV	NIST Webbook
ie	7.44	eV	NIST Webbook
log10ws	-3.51		Aqueous Solubility Prediction Method
log10ws	-3.50		Estimated Solubility Method
logp	3.430		Crippen Method
mcvol	142.400	ml/mol	McGowan Method
nfpaf	%!d(float64=1)		KDB
nfpah	%!d(float64=3)		KDB
рс	8409.97 ± 405.30	kPa	NIST Webbook
rinpol	1567.00		NIST Webbook
rinpol	1588.00		NIST Webbook
rinpol	1602.00		NIST Webbook
rinpol	1637.00		NIST Webbook
rinpol	1568.00		NIST Webbook
rinpol	1617.00		NIST Webbook
rinpol	1634.00		NIST Webbook
rinpol	1575.00		NIST Webbook
rinpol	1575.00		NIST Webbook
rinpol	1601.00		NIST Webbook
rinpol	274.57		NIST Webbook
rinpol	276.00		NIST Webbook
rinpol	279.32		NIST Webbook
rinpol	1622.00		NIST Webbook
rinpol	279.27		NIST Webbook
rinpol	1625.00		NIST Webbook
rinpol	1621.00		NIST Webbook
rinpol	1619.00		NIST Webbook

rinpol	275.74		NIST Webbook
rinpol	1637.00		NIST Webbook
ripol	2517.00		NIST Webbook
ripol	2517.00		NIST Webbook
ripol	2521.00		NIST Webbook
ripol	2521.00		NIST Webbook
tb	575.15	K	KDB
tb	582.15 ± 2.00	K	NIST Webbook
tb	575.20	K	NIST Webbook
tc	931.15 ± 3.00	K	NIST Webbook
tf	326.65	К	DSC measurement and prediction of phase diagrams for binary mixtures of energetic materials' stabilizers
tf	325.60	К	Experimental and modeling studies of binary organic eutectic systems to be used as stabilizers for nitrate esters-based energetic materials
tf	326.23	K	Aqueous Solubility Prediction Method
tf	325.85	K	KDB
VC	0.526	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	404.16	J/mol×K	825.49	Joback Method
cpg	342.66	J/mol×K	618.82	Joback Method
cpg	357.24	J/mol×K	660.16	Joback Method
cpg	370.60	J/mol×K	701.49	Joback Method
cpg	382.81	J/mol×K	742.83	Joback Method
cpg	393.97	J/mol×K	784.16	Joback Method
cpg	326.77	J/mol×K	577.49	Joback Method
hfust	17.86	kJ/mol	326.20	NIST Webbook
hfust	19.90	kJ/mol	326.10	NIST Webbook
hfust	17.86	kJ/mol	326.20	NIST Webbook
hsubt	96.70 ± 2.50	kJ/mol	310.50	NIST Webbook
hsubt	110.00 ± 1.00	kJ/mol	311.00	NIST Webbook
hvapt	54.20	kJ/mol	623.00	NIST Webbook
hvapt	64.10	kJ/mol	478.00	NIST Webbook

psub	6.10e-04	kPa	315.40	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	2.00e-04	kPa	305.50	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	2.40e-04	kPa	308.00	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	2.50e-04	kPa	308.00	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	2.60e-04	kPa	308.20	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	2.90e-04	kPa	309.10	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	3.00e-04	kPa	309.30	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	3.40e-04	kPa	310.70	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	4.20e-04	kPa	312.30	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	4.50e-04	kPa	313.00	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	

psub	5.00e-04	kPa	313.70	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	5.40e-04	kPa	315.00	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	5.50e-04	kPa	315.00	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	1.70e-04	kPa	305.20	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	6.00e-04	kPa	315.70	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	6.50e-04	kPa	316.00	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	7.00e-04	kPa	316.70	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	7.50e-04	kPa	317.20	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	8.30e-04	kPa	318.00	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	8.60e-04	kPa	318.20	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	

psub	8.50e-04	kPa	318.30	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	8.50e-04	kPa	318.70	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	1.11e-03	kPa	320.30	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	1.10e-03	kPa	320.70	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	1.38e-03	kPa	322.30	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	1.53e-03	kPa	323.20	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	1.43e-03	kPa	323.20	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	1.69e-03	kPa	324.10	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	1.64e-03	kPa	324.70	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	1.86e-03	kPa	325.20	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	

psub	2.03e-03	kPa	326.70	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	1.40e-04	kPa	303.20	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	1.50e-04	kPa	302.70	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	1.30e-04	kPa	302.10	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	1.20e-04	kPa	301.00	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	1.00e-04	kPa	300.20	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	8.00e-05	kPa	298.40	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	7.00e-05	kPa	298.20	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	4.00e-05	kPa	293.70	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	
psub	4.00e-05	kPa	293.10	Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates	

psub	6.00e-05	kPa	296.20	Thermochemistry of Drugs. Experimental and First-Princeles
				Study of
				Fenamates

Correlations

Information

inomation	Value
Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.53095e+01
Coeff. B	-5.43887e+03
Coeff. C	-6.64740e+01
Temperature range (K), min.	428.54
Temperature range (K), max.	610.47

Sources

Experimental and modeling studies of binary organic eutectic systems to be used to Mathriters for nitrate

esters-based energetic materials: McGowan Method:

Estimated Solubility Method:

Solubility of three natural compounds with insecticidal activity in supercritical catworus Salubility predictive Method:

measurements and predictive modeling law Have Hards ook of Vapor

Pressure:

Crippen Method:

http://pubs.acs.org/doi/abs/10.1021/ci990307l

KDB:

NIST Webbook:

https://www.doi.org/10.1016/j.fluid.2019.06.021

https://en.wikipedia.org/wiki/Joback_method

http://link.springer.com/article/10.1007/BF02311772

http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt

https://www.doi.org/10.1016/j.fluid.2019.04.011

Value

https://www.cheric.org/files/research/kdb/mol/mol1314.mol

http://webbook.nist.gov/cgi/cbook.cgi?ID=C122394&Units=SI

https://www.doi.org/10.1016/j.jct.2010.03.025

https://www.doi.org/10.1021/je200128y

https://www.doi.org/10.1016/j.tca.2013.04.021

Legend

Standard liquid enthalpy of combustion chl:

cpg: Ideal gas heat capacity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions hfs: Solid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsub: Enthalpy of sublimation at standard conditions
 hsubt: Enthalpy of sublimation at a given temperature
 hvap: Enthalpy of vaporization at standard conditions
 hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws:Log10 of Water solubility in mol/llogp:Octanol/Water partition coefficientmcvol:McGowan's characteristic volume

nfpaf: NFPA Fire Ratingnfpah: NFPA Health Ratingpc: Critical Pressure

psub: Sublimation pressure

pvap: Vapor pressure

rinpol: Non-polar retention indices

ripol: Polar retention indices

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/62-957-1/Diphenylamine.pdf

Generated by Cheméo on 2025-12-05 09:06:31.130793095 +0000 UTC m=+4673788.660833750.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.