1,1':3',1"-Terphenyl, 5'-phenyl-

Other names: 1,1'-Biphenyl, 3,5-diphenyl-

1,3,5-triphenylbenzene

5'-Phenyl-1,1':3',1"-terphenyl

5'-Phenyl-m-terphenyl

NSC 17358

Symmetrical triphenylbenzene

Triphenylbenzene

benzene, 1,3,5-triphenylm-Terphenyl, 5'-phenyls-Triphenylbenzene

InChl=1S/C24H18/c1-4-10-19(11-5-1)22-16-23(20-12-6-2-7-13-20)18-24(17-22)21-14-8-

InchiKey: SXWIAEOZZQADEY-UHFFFAOYSA-N

Formula: C24H18

SMILES: c1ccc(-c2cc(-c3ccccc3)cc(-c3ccccc3)c2)cc1

Mol. weight [g/mol]: 306.40 CAS: 612-71-5

Physical Properties

Property code	Value	Unit	Source
chs	-12241.30 ± 5.30	kJ/mol	NIST Webbook
gf	581.58	kJ/mol	Joback Method
hf	371.80 ± 3.80	kJ/mol	NIST Webbook
hfs	222.00 ± 3.40	kJ/mol	NIST Webbook
hfs	224.60 ± 5.40	kJ/mol	NIST Webbook
hfus	149.50	kJ/mol	New Knudsen effusion apparatus with simultaneous gravimetric and quartz crystal microbalance mass loss detection
hfus	31.10	kJ/mol	Vapor Pressures and Vaporization Enthalpies of the n-Alkanes from C31 to C38 at T = 298.15 K by Correlation Gas Chromatography
hfus	147.70	kJ/mol	New Knudsen effusion apparatus with simultaneous gravimetric and quartz crystal microbalance mass loss detection

hfus	147.90	kJ/mol	New Knudsen effusion apparatus with simultaneous gravimetric and quartz crystal microbalance mass loss detection
hfus	148.40	kJ/mol	New Knudsen effusion apparatus with simultaneous gravimetric and quartz crystal microbalance mass loss detection
hvap	133.40 ± 2.00	kJ/mol	NIST Webbook
hvap	140.00	kJ/mol	NIST Webbook
log10ws	-9.28		Crippen Method
logp	6.688		Crippen Method
mcvol	253.980	ml/mol	McGowan Method
pc	2014.51	kPa	Joback Method
rinpol	2891.00		NIST Webbook
rinpol	469.48		NIST Webbook
SS	367.40	J/mol×K	NIST Webbook
SS	375.50	J/mol×K	NIST Webbook
tb	733.20	K	NIST Webbook
tc	1146.33	K	Joback Method
tf	446.00 ± 3.00	K	NIST Webbook
tf	448.00 ± 0.30	K	NIST Webbook
tf	450.10 ± 4.00	K	NIST Webbook
tf	444.00 ± 1.50	K	NIST Webbook
tt	446.00 ± 1.00	K	NIST Webbook
VC	0.948	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	803.00	J/mol×K	1099.48	Joback Method
cpg	732.93	J/mol×K	865.20	Joback Method
cpg	749.87	J/mol×K	912.06	Joback Method
cpg	765.15	J/mol×K	958.91	Joback Method
cpg	778.96	J/mol×K	1005.77	Joback Method
cpg	791.51	J/mol×K	1052.62	Joback Method
cpg	813.64	J/mol×K	1146.33	Joback Method
cps	361.00	J/mol×K	298.15	NIST Webbook
cps	358.32	J/mol×K	298.10	NIST Webbook

cps	357.96	J/mol×K	298.15	Reassembling and testing of a high-precision heat capacity drop calorimeter. Heat capacity of some polyphenyls at T = 298.15 K	
dvisc	0.0001500	Paxs	678.08	Joback Method	
dvisc	0.0001086	Paxs	740.45	Joback Method	
dvisc	0.0000827	Paxs	802.83	Joback Method	
dvisc	0.0000654	Paxs	865.20	Joback Method	
dvisc	0.0002213	Paxs	615.71	Joback Method	
dvisc	0.0003563	Paxs	553.33	Joback Method	
dvisc	0.0006475	Paxs	490.96	Joback Method	
hfust	33.40	kJ/mol	446.00	NIST Webbook	
hfust	33.40	kJ/mol	446.00	NIST Webbook	
hfust	33.40	kJ/mol	446.00	NIST Webbook	
hfust	32.60	kJ/mol	445.20	NIST Webbook	
hsubt	142.00	kJ/mol	427.00	NIST Webbook	
hsubt	164.40 ± 4.20	kJ/mol	363.00	NIST Webbook	
hsubt	145.60 ± 0.90	kJ/mol	376.00	NIST Webbook	
hsubt	141.20 ± 0.70	kJ/mol	418.00	NIST Webbook	
hsubt	142.20	kJ/mol	392.00	NIST Webbook	
hvapt	77.50	kJ/mol	617.50	NIST Webbook	
hvapt	118.00	kJ/mol	477.00	NIST Webbook	
psub	9.84e-04	kPa	427.36	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	5.42e-04	kPa	421.36	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	5.63e-04	kPa	421.36	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	5.68e-04	kPa	421.36	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	6.72e-04	kPa	423.29	The design, construction, and testing of a new Knudsen effusion apparatus	

psub	6.68e-04	kPa	423.29	The design, construction, and testing of a new Knudsen effusion apparatus
psub	6.49e-04	kPa	423.29	The design, construction, and testing of a new Knudsen effusion apparatus
psub	7.96e-04	kPa	425.26	The design, construction, and testing of a new Knudsen effusion apparatus
psub	7.84e-04	kPa	425.26	The design, construction, and testing of a new Knudsen effusion apparatus
psub	9.66e-04	kPa	427.36	The design, construction, and testing of a new Knudsen effusion apparatus
psub	4.70e-04	kPa	419.24	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.00e-03	kPa	427.36	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.17e-03	kPa	429.29	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.20e-03	kPa	429.29	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.20e-03	kPa	429.29	The design, construction, and testing of a new Knudsen effusion apparatus
psub	1.54e-04	kPa	408.16	Development of the Knudsen effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance

psub	2.53e-04	kPa	413.16	Development of the Knudsen	
				effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance	
psub	4.16e-04	kPa	418.15	Development of the Knudsen effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance	
psub	6.72e-04	kPa	423.16	Development of the Knudsen effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance	
psub	1.08e-03	kPa	428.16	Development of the Knudsen effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance	
psub	1.49e-04	kPa	408.05	Development of the Knudsen effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance	

psub	2.47e-04	kPa	413.05	Development of the Knudsen effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance	
psub	4.03e-04	kPa	418.05	Development of the Knudsen effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance	
psub	4.54e-04	kPa	419.24	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	1.03e-03	kPa	428.04	Development of the Knudsen effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance	
psub	1.44e-04	kPa	408.04	Development of the Knudsen effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance	
psub	2.38e-04	kPa	413.04	Development of the Knudsen effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance	

psub	3.88e-04	kPa	418.03	Development of the Knudsen effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance	
psub	6.22e-04	kPa	423.03	Development of the Knudsen effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance	
psub	9.83e-04	kPa	428.03	Development of the Knudsen effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance	
psub	6.34e-04	kPa	423.03	Development of the Knudsen effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance	
psub	3.71e-04	kPa	417.22	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	3.70e-04	kPa	417.22	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	3.61e-04	kPa	416.86	The design, construction, and testing of a new Knudsen effusion apparatus	

psub	3.16e-04	kPa	415.35	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	3.16e-04	kPa	415.35	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	3.17e-04	kPa	415.35	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	2.51e-04	kPa	413.23	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	2.51e-04	kPa	413.23	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	2.56e-04	kPa	413.23	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	2.06e-04	kPa	411.30	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	2.10e-04	kPa	411.30	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	2.15e-04	kPa	411.30	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	1.64e-04	kPa	409.30	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	1.66e-04	kPa	409.30	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	1.73e-04	kPa	409.30	The design, construction, and testing of a new Knudsen effusion apparatus	

psub	1.39e-04	kPa	407.36	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	1.40e-04	kPa	407.36	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	1.41e-04	kPa	407.36	The design, construction, and testing of a new Knudsen effusion apparatus	
psub	6.48e-04	kPa	423.04	Development of the Knudsen effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance	
psub	3.48e-04	kPa	416.86	The design, construction, and testing of a new Knudsen effusion apparatus	
pvap	8.89e-05	kPa	390.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	0.12	kPa	500.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	0.19	kPa	510.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	

pvap	0.03	kPa	470.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	0.02	kPa	460.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	8.31e-03	kPa	450.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	4.39e-03	kPa	440.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	2.22e-03	kPa	430.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	1.07e-03	kPa	420.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	4.94e-04	kPa	410.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	

pvap	2.16e-04	kPa	400.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	0.08	kPa	490.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	3.44e-05	kPa	380.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	1.24e-05	kPa	370.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	4.16e-06	kPa	360.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	1.28e-06	kPa	350.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	3.62e-07	kPa	340.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	

pvap	9.25e-08	kPa	330.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	2.12e-08	kPa	320.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	4.30e-09	kPa	310.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	7.65e-10	kPa	300.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	5.47e-10	kPa	298.15	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
pvap	0.05	kPa	480.00	Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons	
sfust	75.10	J/mol×K	446.00	NIST Webbook	

Sources

Joback Method: https://en.wikipedia.org/wiki/Joback_method

https://www.chemeo.com/doc/models/crippen_log10ws **Crippen Method:**

NIST Webbook: http://webbook.nist.gov/cgi/cbook.cgi?ID=C612715&Units=SI

http://pubs.acs.org/doi/abs/10.1021/ci990307l **Crippen Method:**

https://www.doi.org/10.1016/j.jct.2018.07.004 Development of the Knudsen effusion methodology for vapour pressure
Reassarbitenes at dons word mealiquids
and brought the street of the control of https://www.doi.org/10.1016/j.jct.2011.06.010

polyphenyls at T = 298.15 K: The design, construction, and testing https://www.doi.org/10.1016/j.jct.2005.08.013 of a new Knudsen effusion apparatus:
Hypothetical Thermodynamic
Properties. Subcooled Vaporization
Ham apparatus on the subcooled Vaporization
Properties of the subcooled Vaporization
Ham apparatus on the subcooled Vaporization

https://www.doi.org/10.1021/je800300x

https://www.doi.org/10.1016/j.jct.2010.12.022

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1021/je030236t

Legend

Gas Chromatography:

Standard solid enthalpy of combustion chs:

Ideal gas heat capacity cpg: Solid phase heat capacity cps:

Dynamic viscosity dvisc:

pionyliancone layering the first duartz the first barrows layering the first barrows and make its layer barrows from C31 to C38 at T = 298.15 K by Correlation

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions

hfs: Solid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsubt: Enthalpy of sublimation at a given temperature hvap: Enthalpy of vaporization at standard conditions Enthalpy of vaporization at a given temperature hvapt:

Log10 of Water solubility in mol/l log10ws: Octanol/Water partition coefficient logp: McGowan's characteristic volume mcvol:

Critical Pressure pc:

psub: Sublimation pressure

pvap: Vapor pressure

rinpol: Non-polar retention indices

sfust: Entropy of fusion at a given temperature

SS: Solid phase molar entropy at standard conditions

Normal Boiling Point Temperature tb:

tc: Critical Temperature

tf: Normal melting (fusion) point tt: **Triple Point Temperature**

Critical Volume vc:

Latest version available from:

https://www.chemeo.com/cid/63-763-5/1-1-3-1-Terphenyl-5-phenyl.pdf

Generated by Cheméo on 2024-05-02 09:47:11.991449351 +0000 UTC m=+16932480.912026663.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.