1,4-Dioxane

Other names: 1,4-Diethylene dioxide

1,4-Diethyleneoxide

1,4-Dioxacyclohexane

1,4-Dioxan

1,4-Dioxin, tetrahydro-DIETHYLENE DIOXIDE DIETHYLENE ETHER

Di(ethylene oxide)

Diokan Dioksan

Diossano-1,4 Dioxaan-1,4

Dioxan
Dioxan-1,4
Dioxane
Dioxane-1,4
Dioxanne

Dioxyethylene ether Glycol ethylene ether Glycol ethylene ether 8

NCI-C03689

NE 220 NSC 8728 P-DIOXANE

Rcra waste number U108 Tetrahydro-1,4-dioxin Tetrahydro-p-dioxin

UN 1165 p-Dioxan

p-Dioxin, tetrahydro-

Inchi: InChI=1S/C4H8O2/c1-2-6-4-3-5-1/h1-4H2
InchiKey: RYHBNJHYFVUHQT-UHFFFAOYSA-N

Formula: C4H8O2 SMILES: C1COCCO1

Mol. weight [g/mol]: 88.11 **CAS:** 123-91-1

Physical Properties

Property code	Value	Unit	Source
af	0.2810		KDB
affp	797.40	kJ/mol	NIST Webbook
aigt	453.15	K	KDB
basg	770.00	kJ/mol	NIST Webbook
chl	-2346.20	kJ/mol	NIST Webbook
chl	-2186.80	kJ/mol	NIST Webbook
chl	-2363.90 ± 0.50	kJ/mol	NIST Webbook
chl	-2362.23 ± 0.99	kJ/mol	NIST Webbook
dm	0.40	debye	KDB
dvisc	0.0011960	Paxs	Excess Molar Volumes and Viscosity Deviations of Binary Liquid Mixtures of 1,3-Dioxolane and 1,4-Dioxane with Butyl Acetate, Butyric Acid, Butylamine, and 2-Butanone at 298.15 K
fII	1.97	% in Air	KDB
flu	22.50	% in Air	KDB
fpc	296.48	K	KDB
fpo	285.37	K	KDB
gf	-180.90	kJ/mol	KDB
gyrad	3.1100		KDB
hf	-315.30 ± 0.80	kJ/mol	NIST Webbook
hf	-315.30	kJ/mol	KDB
hf	-318.00 ± 2.00	kJ/mol	NIST Webbook
hfl	-353.50 ± 0.80	kJ/mol	NIST Webbook
hfl	-355.13 ± 0.86	kJ/mol	NIST Webbook
hfus	12.84	kJ/mol	Joback Method
hvap	34.26	kJ/mol	Joback Method
ie	9.19 ± 0.01	eV	NIST Webbook
ie	9.19 ± 0.01	eV	NIST Webbook
ie	9.40	eV	NIST Webbook
ie	9.41	eV	NIST Webbook
ie	9.30 ± 0.10	eV	NIST Webbook
ie	9.43	eV	NIST Webbook
ie	9.43	eV	NIST Webbook
ie	9.13 ± 0.03	eV	NIST Webbook
log10ws	0.43		Crippen Method
logp	0.033		Crippen Method
mcvol	68.100	ml/mol	McGowan Method

рс	5210.00	kPa	KDB
рс	5471.55 ± 303.98	kPa	NIST Webbook
рс	5210.00 ± 68.94	kPa	NIST Webbook
рс	5000.00 ± 70.00	kPa	NIST Webbook
rhoc	360.35 ± 9.69	kg/m3	NIST Webbook
rinpol	702.00	Ng/1110	NIST Webbook
rinpol	698.00		NIST Webbook
rinpol	687.00		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol	692.00		NIST Webbook
rinpol	693.00		NIST Webbook
rinpol	648.00		NIST Webbook
rinpol	699.00		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	697.00		NIST Webbook
rinpol	680.00		NIST Webbook
rinpol	694.00		NIST Webbook
rinpol	694.00		NIST Webbook
rinpol	705.00		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol	702.00		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	692.00		NIST Webbook
rinpol	686.00		NIST Webbook
rinpol	687.00		NIST Webbook
rinpol	696.00		NIST Webbook
rinpol	721.00		NIST Webbook
rinpol	705.00		NIST Webbook
rinpol	643.00		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol	718.00		NIST Webbook
rinpol	731.30		NIST Webbook
rinpol	671.00		NIST Webbook
rinpol	669.70		NIST Webbook
rinpol	690.00		NIST Webbook
rinpol	706.00		NIST Webbook
rinpol	648.00		NIST Webbook
rinpol	670.10		NIST Webbook
rinpol	687.00		NIST Webbook
rinpol	651.00		NIST Webbook

rinpol	697.00		NIST Webbook
rinpol	680.00		NIST Webbook
rinpol	660.30		NIST Webbook
rinpol	694.00		NIST Webbook
rinpol	696.00		NIST Webbook
ripol	1084.00		NIST Webbook
ripol	1097.00		NIST Webbook
ripol	1083.00		NIST Webbook
ripol	1065.00		NIST Webbook
ripol	1065.00		NIST Webbook
ripol	1093.00		NIST Webbook
ripol	1066.00		NIST Webbook
ripol	1100.00		NIST Webbook
ripol	1081.00		NIST Webbook
ripol	1065.00		NIST Webbook
ripol	1066.00		NIST Webbook
ripol	1085.00		NIST Webbook
ripol	1105.00		NIST Webbook
ripol	1083.00		NIST Webbook
ripol	1083.00		NIST Webbook
ripol	1068.00		NIST Webbook
sg	299.91	J/mol×K	NIST Webbook
sl	196.60	J/mol×K	NIST Webbook
tb	374.47	К	Study of isobaric vapour liquid equilibrium of some cyclic ethers with 1-chloropropane: Experimental results and SAFT-VR modelling
tb	374.45	К	Measurement and correlation of binary vapor liquid equilibria of isomeric butanols with 1,4-dioxane
tb	374.60	K	KDB
tb	374.52	К	Vapor-Liquid Equilibrium and Volumetric Measurements for Binary Mixtures of 1,4-Dioxane with Isomeric Chlorobutanes
tc	585.15 ± 2.00	K	NIST Webbook
tc	588.00 ± 2.00	K	NIST Webbook
tc	588.15 ± 2.00	K	NIST Webbook
tc	587.00	K	KDB
tc	587.30 ± 1.00	K	NIST Webbook

tf	284.48	К	Efficient determination of crystallisation and melting points at low cooling and heating rates with novel computer controlled equipment
tf	284.90	K	KDB
tt	284.10 ± 0.20	K	NIST Webbook
VC	0.239 ± 0.008	m3/kmol	NIST Webbook
VC	0.238	m3/kmol	KDB
VC	0.239 ± 0.004	m3/kmol	NIST Webbook
ZC	0.2540620		KDB
zra	0.27		KDB

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	176.66	J/mol×K	578.47	Joback Method	
cpg	118.28	J/mol×K	369.04	Joback Method	
cpg	129.39	J/mol×K	403.94	Joback Method	
cpg	139.92	J/mol×K	438.85	Joback Method	
cpg	159.34	J/mol×K	508.66	Joback Method	
cpg	149.90	J/mol×K	473.75	Joback Method	
cpg	168.26	J/mol×K	543.56	Joback Method	
cpl	154.80	J/mol×K	296.00	NIST Webbook	
cpl	150.57	J/mol×K	298.15	NIST Webbook	
cpl	153.70	J/mol×K	308.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	155.30	J/mol×K	313.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	

cpl	156.50	J/mol×K	318.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	147.90	J/mol×K	298.15	NIST Webbook	
cpl	158.40	J/mol×K	323.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	155.60	J/mol×K	298.00	NIST Webbook	
cpl	160.20	J/mol×K	328.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	160.40	J/mol×K	333.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	149.65	J/mol×K	298.15	NIST Webbook	
cpl	149.49	J/mol×K	298.15	NIST Webbook	
cpl	150.65	J/mol×K	298.15	NIST Webbook	
cpl	150.77	J/mol×K	298.15	NIST Webbook	
cpl	149.73	J/mol×K	298.15	NIST Webbook	
cpl	152.10	J/mol×K	303.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	151.00	J/mol×K	298.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	

cpl	150.00	J/mol×K	293.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model
cpl	146.70	J/mol×K	288.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model
cpl	147.90	J/mol×K	298.00	NIST Webbook
cpl	152.97	J/mol×K	298.20	NIST Webbook
cpl	146.00	J/mol×K	291.00	NIST Webbook
cpl	149.00	J/mol×K	298.00	NIST Webbook
cpl	149.00	J/mol×K	298.15	NIST Webbook
cpl	140.20	J/mol×K	298.00	NIST Webbook
dvisc	0.0011780	Paxs	298.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques
dvisc	0.0006400	Paxs	343.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K
dvisc	0.0008250	Paxs	323.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K

dvisc	0.0009460	Paxs	313.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K
dvisc	0.0011020	Paxs	303.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K
dvisc	0.0013120	Paxs	293.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K
dvisc	0.0015900	Paxs	283.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K
dvisc	0.0008909	Paxs	318.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques
dvisc	0.0007210	Paxs	333.15	Densities and Viscosities for Binary and Ternary Mixtures of 1, 4-Dioxane + 1-Hexanol + N,N-Dimethylaniline from T) (283.15 to 343.15) K

dvisc	0.0009985	Paxs	308.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques	
dvisc	0.0007991	Paxs	318.15	Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K	
dvisc	0.0009268	Paxs	308.15	Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K	
dvisc	0.0012236	Paxs	298.15	Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K	
dvisc	0.0009575	Paxs	313.15	Viscosities and Densities of Binary Mixtures of 1,4-Dioxane, Carbon Tetrachloride, and Butanol at 303.15 K, 308.15 K, and 313.15 K	
dvisc	0.0010295	Paxs	308.15	Viscosities and Densities of Binary Mixtures of 1,4-Dioxane, Carbon Tetrachloride, and Butanol at 303.15 K, 308.15 K, and 313.15 K	

dvisc	0.0010983	Paxs	303.15 Viscosities and Densities of Binary Mixtures of 1,4-Dioxane, Carbon Tetrachloride, and Butanol at 303.15 K, 308.15 K, and 313.15 K
dvisc	0.0010985	Paxs	303.15 Viscosities and Densities of Binary Mixtures of 1,4-Dioxane, Carbon Tetrachloride, and Butanol at 303.15 K, 308.15 K, and 313.15 K
dvisc	0.0005770	Paxs	353.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0006400	Paxs	343.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0007180	Paxs	333.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0008140	Paxs	323.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents
dvisc	0.0010870	Paxs	303.15 Viscosity of binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid with four organic solvents

dvisc	0.0011800	Paxs	298.15	Viscosity of	
			1-et	binary mixtures of hyl-3-methylimidazoli tetrafluoroborate ionic liquid with four organic solvents	um
dvisc	0.0012860	Paxs	293.15 1-eti	Viscosity of binary mixtures of hyl-3-methylimidazoli tetrafluoroborate ionic liquid with four organic solvents	um
dvisc	0.0010219	Paxs	308.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	
dvisc	0.0011065	Paxs	303.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	
dvisc	0.0012023	Paxs	298.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	
dvisc	0.0013111	Paxs	293.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	

dvisc	0.0014381	Paxs	288.15	Densities and	
				viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	
dvisc	0.0014400	Paxs	288.15	Viscosity Behavior of Some Oxygen Containing Compounds	
dvisc	0.0010290	Paxs	308.15	Viscosity Behavior of Some Oxygen Containing Compounds	
dvisc	0.0011850	Paxs	298.15	Viscosity Behavior of Some Oxygen Containing Compounds	
dvisc	0.0009477	Paxs	313.15	Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K	
dvisc	0.0009340	Paxs	313.15 1-e	Viscosity of binary mixtures of ethyl-3-methylimidazo tetrafluoroborate ionic liquid with four organic solvents	lium
econd	0.00	S/m	298.15	Micellar Properties and Related Thermodynamic Parameters of the 14-6-14, 2Br- Gemini Surfactant in Water + Organic Solvent Mixed Media	

econd	0.00	S/m	303.15	Micellar Properties and Related Thermodynamic Parameters of the 14-6-14, 2Br- Gemini Surfactant in Water + Organic Solvent Mixed Media	
econd	0.00	S/m	323.15	Micellar Properties and Related Thermodynamic Parameters of the 14-6-14, 2Br- Gemini Surfactant in Water + Organic Solvent Mixed Media	
econd	0.00	S/m	315.15	Micellar Properties and Related Thermodynamic Parameters of the 14-6-14, 2Br- Gemini Surfactant in Water + Organic Solvent Mixed Media	
hfust	11.88	kJ/mol	283.20	NIST Webbook	
hfust	2.35	kJ/mol	272.90	NIST Webbook	
hfust	12.84	kJ/mol	284.10	NIST Webbook	
hfust	12.84	kJ/mol	284.10	NIST Webbook	
hsubt	35.60	kJ/mol	254.50	NIST Webbook	
hvapt	34.16	kJ/mol	374.50	NIST Webbook	
hvapt	37.00	kJ/mol	318.00	NIST Webbook	
hvapt	38.00	kJ/mol	330.00	NIST Webbook	
hvapt	36.50	kJ/mol	350.50	NIST Webbook	
hvapt	37.30	kJ/mol	345.50	NIST Webbook	
hvapt	35.80	kJ/mol	273.00	NIST Webbook	
kvisc	0.000011	m2/s	298.15	Experimental and predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15K	

kvisc	0.0000009	m2/s	313.15	Experimental and predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15K	
pvap	2.38	kPa	285.11	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	2.92	kPa	288.66	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	19.54	kPa	328.15	Isothermal (vapour + liquid) equilibrium of (cyclic ethers + chlorohexane) mixtures: Experimental results and SAFT modelling	
pvap	4.90	kPa	298.15	Isothermal (vapour + liquid) equilibrium of (cyclic ethers + chlorohexane) mixtures: Experimental results and SAFT modelling	
pvap	19.54	kPa	328.15	Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane	
pvap	10.17	kPa	313.15	Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane	

pvap	4.90	kPa	298.15	Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane	
pvap	3.60	kPa	292.45	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	4.50	kPa	296.56	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	5.34	kPa	299.81	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	6.21	kPa	302.92	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	7.58	kPa	306.93	Vapor Pressure
ртар	7.00	ill a	000.00	and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	7.57	kPa	306.94	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	10.31	kPa	313.38	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	10.29	kPa	313.38	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	2.70	kPa	288.15	Vapor Pressures for 1,4-Dioxane + Tetrabutylammonium Nitrate, Water + Tetrabutylammonium Nitrate, and 1,4-Dioxane + Water + Tetrabutylammonium Nitrate

pvap	4.97	kPa	298.15	Vapor Pressures for 1,4-Dioxane + Tetrabutylammonium Nitrate, Water + Tetrabutylammonium Nitrate, and 1,4-Dioxane + Water + Tetrabutylammonium Nitrate
pvap	8.12	kPa	308.15	Vapor Pressures for 1,4-Dioxane + Tetrabutylammonium Nitrate, Water + Tetrabutylammonium Nitrate, and 1,4-Dioxane + Water + Tetrabutylammonium Nitrate
pvap	9.19	kPa	311.04	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	4.50	kPa	296.57	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
rfi	1.42200		293.10	Liquid-Liquid Equilibrium for the System Water + 1,4-Dioxane + 2,6-Dimethyloct-7-en-2-ol over the Temperature Range of (343.2 to 358.2) K

rfi	1.41170	318.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.41390	313.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.41610	308.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.41820	303.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	

rfi	1.42240	293.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K
rfi	1.42450	288.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K
rfi	1.41750	293.15	Solubilities of Phosphorus-Containing Compounds in Selected Solvents
rfi	1.41410	308.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K

rfi	1.41760	303.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K
rfi	1.41810	298.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K
rfi	1.41450	308.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of 1,4-Dioxane with Different Organic Liquids at (298.15, 303.15, and 308.15) K
rfi	1.41640	303.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of 1,4-Dioxane with Different Organic Liquids at (298.15, 303.15, and 308.15) K

rfi	1.42030	298.15	Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K	
rfi	1.42030	298.15	Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of 1,4-Dioxane with Different Organic Liquids at (298.15, 303.15, and 308.15) K	
rfi	1.41810	303.15	Thermodynamic Properties of Water + Tetrahydrofuran and Water + 1,4-Dioxane Mixtures at (303.15, 313.15, and 323.15) K	
rfi	1.41440	308.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethyl Acetoacetate, + Diethyl Oxalate, + Diethyl Phthalate, or + Dioctyl Phthalate at 298.15, 303.15, and 308.15 K	

rfi	1.41700	303.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethyl Acetoacetate, + Diethyl Oxalate, + Diethyl Phthalate, or + Dioctyl Phthalate at 298.15, 303.15, and 308.15 K	
rfi	1.42020	298.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethyl Acetoacetate, + Diethyl Oxalate, + Diethyl Phthalate, or + Dioctyl Phthalate at 298.15, 303.15, and 308.15 K	
rfi	1.42010	298.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethyl Acetoacetate, + Diethyl Oxalate, + Diethyl Phthalate, or + Dioctyl Phthalate at 298.15, 303.15, and 308.15 K	
rfi	1.41430	308.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethanediol, + Hexane, + Tributylamine, or + Triethylamine at (298.15, 303.15, and 308.15) K	

rfi	1.41700	303.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethanediol, + Hexane, + Tributylamine, or + Triethylamine at (298.15, 303.15, and 308.15) K	
rfi	1.42010	298.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethanediol, + Hexane, + Tributylamine, or + Triethylamine at (298.15, 303.15, and 308.15) K	
rfi	1.42030	298.15	Bubble Temperature Measurements on Binary Mixtures Formed by Cyclohexane at 94.7 kPa	
rfi	1.40840	318.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	
rfi	1.40920	318.20	A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures	

rfi	1.41430	308.20 A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures
rfi	1.42200	293.10 Liquid liquid phase equilibria of the ternary system of water/1,4-dioxane/dihydromyrcene
rfi	1.41995	298.15 Volumetric and refractive properties of binary mixtures containing 1,4-dioxane and chloroalkanes
rfi	1.41264	313.15 Volumetric and refractive properties of binary mixtures containing 1,4-dioxane and chloroalkanes
rfi	1.42000	298.20 A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures
rfi	1.41440	308.20 A thermodynamic study of solute solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures

rhol	1033.50	kg/m3	293.15 1-c	Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	1022.40	kg/m3	303.15	Unravelling various types of non-covalent interactions of benzyl amine with ethers in n-hexane at 303.15 K by ultrasonic and DFT methods
rhol	1027.88	kg/m3	298.15	(Vapour + liquid) equilibrium of binary mixtures (1,3-dioxolane or 1,4-dioxane + 2-methyl-1-propanol or 2-methyl-2-propanol) at isobaric conditions
rhol	1033.80	kg/m3	293.15	Volumetric properties of binary mixtures of (water + organic solvents) at temperatures between T = 288.15 K and T = 303.15 K at p = 0.1 MPa
rhol	1027.87	kg/m3	298.15	Surface study of mixtures containing cyclic ethers and isomeric chlorobutanes
rhol	1038.78	kg/m3	288.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory

rhol	1033.16	kg/m3	293.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory	
rhol	1027.51	kg/m3	298.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory	
rhol	1021.84	kg/m3	303.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory	
rhol	1005.24	kg/m3	318.15	Hydrogen bond interactions in the blends of 1,4-dioxane with some 1, 2-disubstituted ethanes at T = (298.15, 308.15 and 318.15) K	
rhol	1027.85	kg/m3	298.15	Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3-methylimidazlouim tetraflouroborate and octyl-3-methylimidazlouir tetraflouroborate with cyclic ethers	n
rhol	1016.78	kg/m3	308.15	Hydrogen bond interactions in the blends of 1,4-dioxane with some 1, 2-disubstituted ethanes at T = (298.15, 308.15 and 318.15) K	

rhol	1016.52	kg/m3	308.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	1010.83	kg/m3	313.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	1005.12	kg/m3	318.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3-methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	999.40	kg/m3	323.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3-methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers

 rhol	1022.30	kg/m3	303.15	Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. Haloalkanes and other polar solvents	
rhol	1033.59	kg/m3	293.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones	
rhol	1027.94	kg/m3	298.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones	
rhol	1022.28	kg/m3	303.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones	
rhol	1016.59	kg/m3	308.15	Thermodynamic Studies of Molecular Interactions in Mixtures Containing Tetrahydropyran, 1,4-dioxane and Cyclic ketones	
rhol	1027.87	kg/m3	298.15	Isothermal Vapor-Liquid Equilibria and Excess Gibbs Energies for Binary Mixtures of Cyclic Ethers with 1,2-Dichloroethane	

rhol	1039.12	kg/m3	288.15	Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling
rhol	1027.84	kg/m3	298.15	Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling
rhol	1016.57	kg/m3	308.15	Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling
rhol	1005.29	kg/m3	318.15	Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1-Propanol or 2-Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine-Flory-Patterson Modeling

rhol	1027.99	kg/m3	298.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	
rhol	1027.79	kg/m3	298.15	Hydrogen bond interactions in the blends of 1,4-dioxane with some 1, 2-disubstituted ethanes at T = (298.15, 308.15 and 318.15) K	
rhol	1016.66	kg/m3	308.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	
rhol	1010.98	kg/m3	313.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	
rhol	1005.28	kg/m3	318.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	

rhol	999.58	kg/m3	323.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	
rhol	1028.20	kg/m3	298.15	Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether	
rhol	1022.70	kg/m3	303.15	Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether	
rhol	1017.40	kg/m3	308.15	Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether	
rhol	1011.10	kg/m3	313.15	Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether	
rhol	1033.57	kg/m3	293.15 1-A	Density and Refractive Index of Binary Mixtures of Two lkyl-3-methylimidazo lonic Liquids with 1,4-Dioxane and Ethylene Glycol	lium

rhol	1027.92	kg/m3	298.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol 303.15 Density and
moi	1022.21	Ngmo	Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	1010.91	kg/m3	313.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	1027.90	kg/m3	298.15 Vapour liquid equilibrium of cyclic ethers with 1-chlorohexane: Experimental results and UNIFAC predictions
rhol	987.97	kg/m3	333.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	976.37	kg/m3	343.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
rhol	964.63	kg/m3	353.15 Density and Refractive Index of Binary Mixtures of Two 1-Alkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol

rhol	1027.90	kg/m3	298.15	Densities, Speeds of Sound, Excess Molar Enthalpies, and Heat Capacities of o-Chlorotoluene and Cyclic Ether Mixtures	
rhol	1022.30	kg/m3	303.15	Densities, Speeds of Sound, Excess Molar Enthalpies, and Heat Capacities of o-Chlorotoluene and Cyclic Ether Mixtures	
rhol	1016.60	kg/m3	308.15	Densities, Speeds of Sound, Excess Molar Enthalpies, and Heat Capacities of o-Chlorotoluene and Cyclic Ether Mixtures	
rhol	1027.82	kg/m3	298.15	Surface Tension and Surface Properties of Binary Mixtures of 1,4-Dioxane or N,N-Dimethyl Formamide with n-Alkyl Acetates	
rhol	1027.85	kg/m3	298.15	Experimental and predicted vapour liquid equilibrium of 1,4-dioxane with cycloalkanes and benzene	
rhol	1033.00	kg/m3	293.00	KDB	
rhol	1022.33	kg/m3	303.15	Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure	

rhol	1022.19	kg/m3	303.15	Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	999.49	kg/m3	323.15 1-A	Density and Refractive Index of Binary Mixtures of Two lkyl-3-methylimidazolium Ionic Liquids with 1,4-Dioxane and Ethylene Glycol
sdco	0.00	m2/s	307.92	Viscous Calibration Liquids for Self-diffusion Measurements
sdco	0.00	m2/s	358.49	Viscous Calibration Liquids for Self-diffusion Measurements
sdco	0.00	m2/s	358.25	Viscous Calibration Liquids for Self-diffusion Measurements
sdco	0.00	m2/s	347.97	Viscous Calibration Liquids for Self-diffusion Measurements
sdco	0.00	m2/s	347.87	Viscous Calibration Liquids for Self-diffusion Measurements
sdco	0.00	m2/s	338.13	Viscous Calibration Liquids for Self-diffusion Measurements
sdco	0.00	m2/s	338.12	Viscous Calibration Liquids for Self-diffusion Measurements

	sdco	0.00	m2/s	338.09	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	327.95	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	327.94	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	318.24	Viscous Calibration Liquids for Self-diffusion Measurements	
_	sdco	0.00	m2/s	317.85	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	308.06	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	303.12	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	298.20	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	298.18	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	298.17	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	298.13	Viscous Calibration Liquids for Self-diffusion Measurements	
	sdco	0.00	m2/s	293.11	Viscous Calibration Liquids for Self-diffusion Measurements	
-						

sdco	0.00	m2/s	288.33	Viscous Calibration Liquids for Self-diffusion Measurements	
sdco	0.00	m2/s	288.31	Viscous Calibration Liquids for Self-diffusion Measurements	
sfust	45.19	J/mol×K	284.10	NIST Webbook	
sfust	8.79	J/mol×K	272.90	NIST Webbook	
sfust	41.90	J/mol×K	283.20	NIST Webbook	
speedsl	1346.30	m/s	298.15	Compressibility Studies of Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T) 298.15 K	
speedsl	1343.60	m/s	298.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures	
speedsl	1278.80	m/s	313.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures	
speedsl	1344.80	m/s	298.15	Densities and speeds of sound for binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures 298.15 K and 313.15 K	

speedsl	1279.80	m/s	313.15	Densities and speeds of sound for binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures 298.15 K and 313.15 K	
speedsl	1367.20	m/s	293.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1344.70	m/s	298.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1323.10	m/s	303.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1301.20	m/s	308.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	

speedsl	1279.70	m/s	313.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1258.60	m/s	318.15	Physicochemical study of intermolecular interactions in 1,4-dioxane + aromatic hydrocarbons binary mixtures at different temperatures by using ultrasonic and viscometric methods	
speedsl	1409.60	m/s	283.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures	
speedsl	1357.70	m/s	295.15	Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K	
speedsl	1344.80	m/s	298.15	Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K	

speedsl	1331.90	m/s	301.15	Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K	
speedsl	1319.00	m/s	304.15	Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K	
speedsl	1306.20	m/s	307.15	Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K	
speedsl	1293.30	m/s	310.15	Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K	
speedsl	1280.40	m/s	313.15	Density, Speed of Sound, and Refractive Index Measurements for the Binary Mixture (1, 4-Dioxane + Isobutyric Acid) at T = (295.15, 298.15, 301.15, 304.15, 307.15, 310.15, and 313.15) K	

srf	0.04	N/m	283.15	Thermophysical study of 1,4-dioxane with cycloalkane mixtures	
srf	0.03	N/m	298.15	Thermophysical study of 1,4-dioxane with cycloalkane mixtures	
srf	0.03	N/m	313.15	Thermophysical study of 1,4-dioxane with cycloalkane mixtures	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tfp	285.08	K	101.30 N-r	(Solid + liquid) phase equilibria of binary mixtures containing methyl-2-pyrroliding and ethers at atmospheric pressure

Correlations

Information	Value
Information	value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.48111e+01
Coeff. B	-3.42606e+03
Coeff. C	-3.81740e+01
Temperature range (K), min.	274.07
Temperature range (K), max.	398.83

Information	Value
Intormation	value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	7.69176e+01

Coeff. B	-7.07594e+03
Coeff. C	-9.15152e+00
Coeff. D	5.90158e-06
Temperature range (K), min.	275.00
Temperature range (K), max.	587.00

Datasets

Mass density, kg/m3

Pressure, kPa - Liquid	Temperature, K - Liquid	Mass density, kg/m3 - Liquid
85.90	298.15	1027.93
Deference	http:	0.//www.doi.org/10.1016/i.fluid.2012.0F.001

Reference

https://www.doi.org/10.1016/j.fluid.2013.05.001

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
303.15	101.33	0.0010750
Reference		https://www.doi.org/10.1016/j.tca.2009.07.008

Temperature, K	Pressure, kPa	Viscosity, Pa*s
303.15	101.30	0.0010224

Reference

https://www.doi.org/10.1021/je034204h

Sources

Excess molar volumes and excess isentropic compressibilities of mixtures sometime definition of the image of

Determination and Correlation of https://www.doi.org/10.1021/je501011t Solubilities of 2-Isopropylthioxanthone Artivity Soesitomins at instanted at the months of the properties for synthesis of the properties for the properties for synthesis of the properties for the properties for the properties for synthesis of the properties for the proper https://www.doi.org/10.1016/j.jct.2012.05.017 ATKIYITY SOMEFICIONTEN ATT STUNION CELL PRION https://www.doi.org/10.1016/j.jct.2018.11.026
https://www.doi.org/10.1016/j.jct.2018.11.026
https://www.doi.org/10.1016/j.jct.2018.11.026
https://www.doi.org/10.1016/j.jct.2018.01.002
https://www.doi.org/10.1016/j.jct.2012.05.005
https://www.doi.org/10.1016/j.jct.2012.05.005
https://www.doi.org/10.1016/j.jct.2012.05.005
https://www.doi.org/10.1016/j.jct.2012.05.005
https://www.doi.org/10.1016/j.jct.2012.05.005
https://www.doi.org/10.1016/j.jct.2012.05.005
https://www.doi.org/10.1016/j.jct.2012.05.005
https://www.doi.org/10.1016/j.jct.2011.05.036
https://www.doi.org/10.1016/j.jct.2011.05.036
https://www.doi.org/10.1016/j.jct.2011.05.036
https://www.doi.org/10.1016/j.jct.2011.05.036
https://www.doi.org/10.1016/j.jct.2011.05.036
https://www.doi.org/10.1016/j.fluid.2004.11.006
https://www.doi.org/10.1016/j.fluid.2004.11.006
https://www.doi.org/10.1016/j.fluid.2004.11.006
https://www.doi.org/10.1016/j.fluid.2007.08.013
https://www.doi.org/10.1021/je9002114
https://www.doi.org/10.1021/je9002114
https://www.doi.org/10.1021/je900210
https://www.doi.org/10.1021/je900210
https://www.doi.org/10.1021/je9002114
https://www.doi.org/10.1021/je900210
https://www.doi.org/10.1021/je9002114
https://www.doi.org/10.1021/je9001198
https://www.doi.org/10.1021/je0601098
https://www.doi.org/10.1021/je0601098
https://www.doi.org/10.1021/je0601098
https://www.doi.org/10.1021/je0601098
https://www.doi.org/10.1021/je0601098 Compressibility Studies of Binary Solutions Involving Water as a Solute รวงในปี Water as a Solute solution of Later as a Solute solutio https://www.doi.org/10.1016/j.fluid.2005.09.010 Megastrom which descriptions and the second https://www.doi.org/10.1016/j.jct.2016.06.015 https://www.doi.org/10.1016/j.jct.2018.01.003 https://www.doi.org/10.1016/j.jct.2016.06.011 Segianidisvileas และเกาะ the hease nic diagramite the the terminate the https://www.doi.org/10.1021/acs.jced.7b00609 https://www.doi.org/10.1016/j.jct.2017.07.027 https://www.doi.org/10.1021/acs.jced.5b00201 https://www.doi.org/10.1016/j.jct.2017.03.038 https://www.doi.org/10.1021/acs.jced.9b00047 ropen-1-one https://www.doi.org/10.1021/acs.jced.8b01014 So Ry Ami in or fired or on works a new Binary to So Ry Ami in or fired or on works a new Binary to So Research https://www.doi.org/10.1021/acs.jced.6b00816 pearsonyamessurement and the Correlation of 1-Naphthaleneacetic Selidihinuid Equilibrium Solvivility, Bhernysynamic Propperii 97 and to Newsign Sphermysynamic Propperii 97 and, Excess Phenysign Sphermision Spund, Excess Phenysign Sphermision Spund Heat Gaparities 500 by the Walley of the Solvent Effect of Magnetic additional Phenysion, and Solvent Effect of Magnetic additional Phenysion Solvents. https://www.doi.org/10.1021/acs.jced.9b00362 https://www.doi.org/10.1021/je400722h https://www.doi.org/10.1021/acs.jced.8b01265 http://link.springer.com/article/10.1007/BF02311772 Solvents:

https://www.doi.org/10.1021/acs.jced.7b00585 Synthesis and Solubility of 5,5-Dimethyl-2-(phenyl(phenylamino)methyl)-1,3,2-dioxaphosphinane โรงที่เลยาจะไร้สุดสะไม่เลยาใช้สายะไม่อาณะตา https://www.doi.org/10.1021/jec https://www.doi.org/10.1021/je0301287 Pranto King Systems (1.4-Dioxane + Wiley Wife Systems (1.4-Dioxane + Wiley Wife Systems (1.4-Dioxane + Wiley Wife Shape Solvents: Example of Trigeminal Tricationic Ionic Liquids for Management Systems (1.4-Dioxane + Dioxane + https://www.doi.org/10.1021/je500396b https://www.doi.org/10.1021/je201129y https://www.chemeo.com/doc/models/crippen_log10ws Seipareni Methodalems: 4-Amino-3,6-dichloropyridazine https://www.doi.org/10.1021/je500286x Solubility Measurement and Correlation Solubility Measurement and Correlation Pensities Phiecoscies and Specifical Expensions Brown of Beneficial Properties of Phiese Specifical Phiese Specifical Properties of Beneficial Properties of Phiese Specifical Phiese Specifical Properties of Phiese Specifical Phiese Specifical Properties of Phiese Specifical Phiese Phie https://www.doi.org/10.1021/je400512u https://www.doi.org/10.1021/acs.jced.8b00292 https://www.doi.org/10.1021/acs.jced.9b00693 https://www.doi.org/10.1016/j.jct.2016.01.017 https://www.doi.org/10.1016/j.jct.2009.11.005 Partial molar volumes of organic solutes in water. XXII. Cyclic ethers at Renseigen witers and Sayud S Pifécient Rolyphos hat went as his end: https://www.doi.org/10.1016/j.jct.2017.03.004 hexane/hex-1-ene, Efficient data cyclosticate and https://www.doi.org/10.1016/j.jct.2008.05.012 eydonexanaroyedmexene and atherise translations are the state of the s https://www.doi.org/10.1021/acs.jced.9b00385 https://www.doi.org/10.1021/je200244p https://www.doi.org/10.1021/je101161d https://www.doi.org/10.1016/j.jct.2017.04.019 Fifteen Fortogery far Infinite Didution of Driegor of Sound in the Binary Magnet of Solvents and Speed of Sound in the Binary Magnet of Solvents at Driegor of Sound in the Binary Magnet of Solvents at Driegor of Sound in the Binary Magnet of Health of Solvents at Driegor of Sound in the Binary Magnet of S https://www.doi.org/10.1021/je800218g https://www.doi.org/10.1016/j.jct.2018.09.008 https://www.doi.org/10.1016/j.jct.2006.08.007 https://www.doi.org/10.1016/j.fluid.2014.11.020 https://www.doi.org/10.1021/je900351t https://www.doi.org/10.1021/je4010257 https://www.doi.org/10.1021/je0301489 https://www.doi.org/10.1016/j.jct.2012.03.005 Maaawegnents-Diagawey Engricents
at intigated by the grant of the gran

acetater baseshque haradepace chromatographic and solubility

measurements:

```
Thermodynamic Mixing Properties of Saledily 206 Peazage & Biokylik Acid in Sales Solvents:
                                                                                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/je060408x
                                                                                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1021/je400246s
     for 2-Benzoyl-3-chlorobenzoic Acid and Ticking almonia and selective and Ticking and selective and ticking a separation based on activity seministing a selective and sele
                                                                                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2018.05.017
                                                                                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1021/acs.jced.7b01134
                                                                                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.fluid.2015.06.041
The process of 1,2-discurses the firming of the properties for social branch of the modynamic aspect of d-aspartic the modynamic and 
                                                                                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2012.01.019
         the graph of the solvents from the control of the graph of the solvents from the control of the solvents from the control of t
                                                                                                                                                                                                                                                                                                                                                                                                                                                           http://webbook.nist.gov/cgi/cbook.cgi?ID=C123911&Units=SI
 Trimetazidine Hydrochioride in 12
Memoser lative driveneshi strues of the transformer lative of 
     indomethacin in 1,4-dioxane + water Experimental and theoretical excess molar properties of imidazolium based ionaqle with molecular organic
                                                                                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.jct.2013.11.027
                                                                                                                                                                                                                                                                                                                                                                                                                                                           https://en.wikipedia.org/wiki/Joback_method
       solvents I. 1-Hexyl-3-
incertivity (1920-line and holyent Effects)
https://www.doi.org/10.1021/acs.jced.8b00430
of Allowuring in Allower Salar Solvents:
https://www.doi.org/10.1016/j.jct.2012.09.033
activity (1920-line is at infilling diffition)
         โรงใชม่ผู้ส่นาเดียรัตแทยของเกาเคลเดีย in a novel https://www.doi.org/10.1016/j.jct.2016.08.007
   ### Indicated Interest Intere
            1-dodécyl-3-methylimidzolium
```

https://www.doi.org/10.1021/acs.jced.9b00406

Solubility Determination and

bis(trifluoromethylsulfonyl) imide:

Density and Refractive Index of Binary https://www.doi.org/10.1021/je400659p Mixtures of Two https://www.doi.org/10.1016/j.jct.2014.04.024 Thankypelynemiamaddzeativityonic conficients at in initial difference of the conficients of the conficients of the conficient of the co https://www.cheric.org/files/research/kdb/mol/mol1047.mol https://www.doi.org/10.1016/j.fluid.2007.01.003 https://www.doi.org/10.1021/je060311a Studies on Thermodynamic and Studies on Thermodynamic and Transport Properties of Binary Mixtures Thaceochinae in its line of Wherethers Intermetions in Mixtures the resident in its line of Wherethers in the resident in pervents/rother-te-(255/13 to 15.15) k the tage were the action of the test of test of the test of tes https://www.doi.org/10.1016/j.jct.2015.02.024 https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure In the state of th THE SHAPE OF THE PROPERTY OF T https://www.doi.org/10.1021/acs.jced.9b00661 https://www.doi.org/10.1021/acs.jced.8b00902 https://www.doi.org/10.1021/je060033f Containing for English and Containing and Containing for Containing for Containing Conta https://www.doi.org/10.1021/je4001894 https://www.doi.org/10.1021/acs.jced.5b00167 https://www.doi.org/10.1016/j.jct.2018.03.010 https://www.doi.org/10.1016/j.jct.2016.09.036 https://www.doi.org/10.1021/acs.jced.9b00844 https://www.doi.org/10.1016/j.fluid.2016.02.004 https://www.doi.org/10.1016/j.jct.2017.01.016 https://www.doi.org/10.1021/acs.jced.9b00778 https://www.doi.org/10.1016/j.jct.2015.05.014 https://www.doi.org/10.1021/je900711h https://www.doi.org/10.1016/j.jct.2006.10.003 Suggice study of mixtures containing cyclic ethers and isomeric thermodynamic Parameters of a New https://www.doi.org/10.1021/acs.jced.8b00601 Synthesized Tricationic Ionic Liquid ฟระสอนาราชากระยะประการใส่ยะเวลร์binary พลายการเขียงสุดหมู่ไปอย่าง of isomeric องในเหมืองพลายาราชย์กษณะกระยะการเกาะ in https://www.doi.org/10.1016/j.fluid.2007.11.002 https://www.doi.org/10.1016/j.jct.2017.02.008 fourteen organic solvents from T = Solvents: Solvents from T = Sol https://www.doi.org/10.1021/acs.jced.8b01126 https://www.doi.org/10.1021/acs.jced.8b00931 Thermodynamic Model Correlation and Peakianicing Symposium of Symposiu Experimental betermination in the content of the c https://www.doi.org/10.1016/j.fluid.2011.09.033

```
Study of Ether-, Alcohol-, or
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je900838a
       Cyano-Functionalized Ionic Liquids
                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1021/je700426k
    Oglubility@68-GaEtonlognz@d)agnzoic
    Acid in Eleven Organic Solvents
Selweity27555877 Hhd 134949 m.in a
                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1021/je1003934
   Range of Solvents:
Solubility of Acetoguanamine in Twelve https://www.doi.org/10.1021/acs.jced.9b00593
   Neat Solvents from 283.15 to 323.15 K:
    Activity Coefficients at Infinite Dilution
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.5b00980
   of Organic Solutes and Water in
หัวเรียงใสยการที่สุดธรรมสอดิสเลเ
                                                                                                                                                                                                                                                                                                       https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1047
  Diethylphosphate Using Gas Liquid EKC653 Ediffallic The Modulation of the Constitution of the Constitution
                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/je900547w
                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1021/acs.jced.9b00286
when the particular for the state of the property cyclic which is a possible of the property o
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2007.05.013
  https://www.doi.org/10.1021/acs.jced.6b00349
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/je700296x
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2018.02.014
                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2016.07.017
    by dros and sulphur compounds it applied to the second sulphur compounds to a second sulphur compound sulphur
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2019.05.004
  https://www.doi.org/10.1016/j.jct.2019.05.004
https://www.doi.org/10.1016/j.jct.2019.05.004
https://www.doi.org/10.1021/je3010535
https://www.doi.org/10.1021/je3010535
https://www.doi.org/10.1016/j.jct.2016.06.028
https://www.doi.org/10.1016/j.jct.2016.06.028
https://www.doi.org/10.1016/j.jct.2016.06.028
https://www.doi.org/10.1016/j.jct.2016.06.028
https://www.doi.org/10.1016/j.jct.2013.08.030
https://www.doi.org/10.1016/j.jct.2013.08.030
https://www.doi.org/10.1016/j.jct.2013.08.030
https://www.doi.org/10.1016/j.jct.2013.08.030
https://www.doi.org/10.1016/j.jct.2013.08.030
https://www.doi.org/10.1016/j.jct.2013.08.030
https://www.doi.org/10.1016/j.jct.2013.08.030
https://www.doi.org/10.1016/j.jct.2013.08.030
https://www.doi.org/10.1016/j.jct.2013.08.030
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2018.09.024
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.9b00490
Separation of diagram winds in the interior of all many winds in the political interior in the control of the property of the 
    ទិស្សាតាដាខែស្អាលខែង ង្កែកស របង្គាស់អាកុន្យាសុខភាព on https://www.doi.org/10.1016/j.jct.2017.12.012
                                                                                                                                                                                                                                                                                                       https://www.doi.org/10.1016/j.jct.2011.11.025
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.fluid.2013.05.001
                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2018.08.028
                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1021/acs.jced.6b00630
      อิญแล่เป็นงัดคุมเปลนเอากาเหย ionic liquid
Schality ចំនុំចេញ a tien in the innic liquid That model in the innic liquid Milling Innic liquid That is the innic liquid That is the
```

properties of solutions:

Thermodynamic modelling for https://www.doi.org/10.1016/j.jct.2016.10.006 solubility of Solubility of Solubility of Solubility of Solubility of Solubility of Paternal action and Solubility of Solubilities of So https://www.doi.org/10.1021/acs.jced.9b00229 https://www.doi.org/10.1016/j.jct.2004.03.014 https://www.doi.org/10.1016/j.fluid.2009.03.017 https://www.doi.org/10.1016/j.jct.2011.11.005 Tetrafluoroborate Using Gas-Liguid

https://www.doi.org/10.1016/j.jct.2011.11.005

https://www.doi.org/10.1016/j.jct.2011.11.005

https://www.doi.org/10.1021/je900077g

https://www.doi.org/10.1021/je900077g

https://www.doi.org/10.1021/je900077g

https://www.doi.org/10.1021/je900077g

https://www.doi.org/10.1021/je900704b

https://www.doi.org/10.1016/j.tca.2011.11.025

https://www.doi.org/10.1016/j.tca.2011.11.025

https://www.doi.org/10.1021/je900704b

https://www.doi.org/10.1021/je900704b

https://www.doi.org/10.1021/je900704b

https://www.doi.org/10.1021/je900704b

https://www.doi.org/10.1021/je900704b

https://www.doi.org/10.1021/je900704b Tetrafluoroborate Using Gas-Liquid Introduction by Some Tetraalkylammonium lodides in Brankingstalkees werden by Gas-Liquid Introduction by Some Tetraalkylammonium lodides in Brankingstalkees werden by Garankingstalkees Molar Corralations of Excess Molar Bathatkies of Introduction by Molar Bathatkies of Introduction by Molar Bathatkies of Molar https://www.doi.org/10.1021/je7004787 https://www.doi.org/10.1021/je9010097 https://www.doi.org/10.1016/j.jct.2015.05.022 https://www.doi.org/10.1021/acs.jced.9b00294
https://www.doi.org/10.1021/acs.jced.8b01101
https://www.doi.org/10.1021/acs.jced.8b01101
https://www.doi.org/10.1016/j.jct.2017.11.017 https://www.doi.org/10.1016/j.jct.2017.11.017
https://www.doi.org/10.1016/j.jct.2017.11.017
https://www.doi.org/10.1021/je5010627
https://www.doi.org/10.1021/je5010627
https://www.doi.org/10.1021/je5010627
https://www.doi.org/10.1016/j.jct.2014.12.027
https://www.doi.org/10.1016/j.jct.2014.12.027
https://www.doi.org/10.1016/j.jct.2014.12.027
https://www.doi.org/10.1016/j.jct.2014.12.027
https://www.doi.org/10.1016/j.jct.2014.12.027
https://www.doi.org/10.1016/j.jct.2014.12.027
https://www.doi.org/10.1016/j.jct.2014.12.027
https://www.doi.org/10.1016/j.jct.2014.12.027
https://www.doi.org/10.1016/j.fluid.2018.09.023
https://www.doi.org/10.1016/j.fluid.2018.07.026
https://www.doi.org/10.1016/j.fluid.2018.07.026
https://www.doi.org/10.1016/j.fluid.2018.08.00
https://www.doi.org/10.1016/j.fluid.2018.08.00
https://www.doi.org/10.1016/j.fluid.2018.08.00
https://www.doi.org/10.1016/j.fluid.2018.08.00
https://www.doi.org/10.1016/j.fluid.2018.08.00
https://www.doi.org/10.1016/j.fluid.2018.08.00
https://www.doi.org/10.1016/j.fluid.2018.06.012
https://www.doi.org/10.1016/j.fluid.2018.06.012
https://www.doi.org/10.1021/je9003178 https://www.doi.org/10.1021/acs.jced.8b01205 https://www.doi.org/10.1016/j.fluid.2018.07.028 https://www.doi.org/10.1016/j.fluid.2018.08.001 https://www.doi.org/10.1016/j.fluid.2018.06.013 https://www.doi.org/10.1021/je9003178 https://www.doi.org/10.1021/je049852v https://www.doi.org/10.1016/j.jct.2016.09.038 https://www.doi.org/10.1016/j.jct.2016.05.027 the firm of the first of the fi https://www.doi.org/10.1016/j.fluid.2009.01.010 and physicochemical properties for https://www.doi.org/10.1016/j.jct.2016.07.023 Settlibity of a test aims the ionic The state of the s https://www.doi.org/10.1021/acs.jced.8b00080 https://www.doi.org/10.1016/j.jct.2012.03.015 https://www.doi.org/10.1016/j.tca.2008.11.009 of binary mixtures of cyclic ethers with tres://www.doi.org/10.1010/j.tca.2008. The binary mixtures of cyclic ethers with the state of cyclic ethers. The state of cyclic ethers with the state of cyclic ethers with the state of cyclic ethers with the state of cyclic ethers. https://www.doi.org/10.1021/acs.jced.8b00067 Belly 所語 and Excess Molar Volumes for the Binary and Ternary Systems of Expedimental 和wobjean of herrary systems of Expedimental 和wobjean of Angrecies of Missurass and Indiana and India https://www.doi.org/10.1021/je0602723 https://www.doi.org/10.1021/acs.jced.8b01226

Thermodynamic Functions for Solubility of 1-Hydroxybenzotriazole in Solubility of 1-Hydroxybenzotriazole in Britisties and miserclessis sound for from prins the street of the street on activity coefficients at illimite Briteronination and Modeling of distribution and Modeling of distribution and Modeling of distribution and Modeling of distribution and Modeling of the Coefficient of V.S. STREET GOD CORRECT STREET STREET STREET for cyclic ethers with 1-chloropentane: Measurement and modelling of econazole nitrate in twelve pure econazole nitrate in twelve pure sogtamensulvenov zietrinberuilletarend Erreges Ciebes Enengies for Binary britieren Schriften of Schri

https://www.doi.org/10.1021/acs.jced.7b00316 https://www.doi.org/10.1016/j.jct.2004.07.015 https://www.doi.org/10.1016/j.jct.2013.01.007 https://www.doi.org/10.1021/je0504109 https://www.doi.org/10.1021/je030196t https://www.doi.org/10.1016/j.jct.2005.09.004 https://www.doi.org/10.1016/j.jct.2013.10.038 https://www.doi.org/10.1021/je700512a https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1047 https://www.doi.org/10.1016/j.jct.2017.10.003 https://www.doi.org/10.1021/acs.jced.9b00659 https://www.doi.org/10.1021/acs.jced.9b00381 https://www.doi.org/10.1016/j.jct.2007.09.007 https://www.doi.org/10.1007/s10765-010-0860-3 https://www.doi.org/10.1016/j.jct.2016.07.043 https://www.doi.org/10.1021/acs.jced.7b01091

> https://www.doi.org/10.1016/j.tca.2004.08.013 https://www.doi.org/10.1016/j.jct.2016.10.019 https://www.doi.org/10.1016/j.jct.2011.04.018

∟egend

Acentric Factor af: Proton affinity affp:

Autoignition Temperature aigt:

basg: Gas basicity

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacity cpl: Liquid phase heat capacity

dm: **Dipole Moment** dvisc: Dynamic viscosity econd: Electrical conductivity fII: Lower Flammability Limit flu: Upper Flammability Limit fpc: Flash Point (Closed Cup Method)fpo: Flash Point (Open Cup Method)

gf: Standard Gibbs free energy of formation

gyrad: Radius of Gyration

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsubt: Enthalpy of sublimation at a given temperaturehvap: Enthalpy of vaporization at standard conditionshvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energykvisc: Kinematic viscosity

log10ws:Log10 of Water solubility in mol/llogp:Octanol/Water partition coefficientmcvol:McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressurerfi: Refractive Indexrhoc: Critical densityrhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices sdco: Self diffusion coefficient

sfust: Entropy of fusion at a given temperature **sg:** Molar entropy at standard conditions

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

tfp: Melting point

tt: Triple Point Temperature

vc: Critical Volume

zc: Critical Compressibility
zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/64-012-7/1-4-Dioxane.pdf

Generated by Cheméo on 2025-12-22 15:58:58.921218122 +0000 UTC m=+6167336.451258789.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.