Formamide

Other names: Amid kyseliny mravenci

CARBAMALDEHYDE FORMIMIDIC ACID

HCONH2

METHANAMIDE

Inchi:InChI=1S/CH3NO/c2-1-3/h1H,(H2,2,3)InchiKey:ZHNUHDYFZUAESO-UHFFFAOYSA-N

Formula: CH3NO SMILES: NC=O Mol. weight [g/mol]: 45.04 CAS: 75-12-7

Physical Properties

Property code	Value	Unit	Source
affp	822.20	kJ/mol	NIST Webbook
basg	791.20	kJ/mol	NIST Webbook
ea	0.02	eV	NIST Webbook
gf	-75.53	kJ/mol	Joback Method
hf	-186.00	kJ/mol	NIST Webbook
hfl	-251.00	kJ/mol	NIST Webbook
hfus	5.83	kJ/mol	Joback Method
hsub	71.70	kJ/mol	NIST Webbook
hvap	60.20	kJ/mol	NIST Webbook
hvap	64.98	kJ/mol	NIST Webbook
hvap	60.15	kJ/mol	NIST Webbook
ie	10.16 ± 0.03	eV	NIST Webbook
ie	10.25 ± 0.02	eV	NIST Webbook
ie	10.13	eV	NIST Webbook
ie	10.16 ± 0.06	eV	NIST Webbook
ie	9.95	eV	NIST Webbook
ie	10.15	eV	NIST Webbook
ie	10.15	eV	NIST Webbook
ie	10.30	eV	NIST Webbook
ie	10.40	eV	NIST Webbook
ie	10.24	eV	NIST Webbook
ie	10.50 ± 0.05	eV	NIST Webbook
ie	10.00	eV	NIST Webbook

log10ws	0.55		Crippen Method
logp	-0.898		Crippen Method
mcvol	36.500	ml/mol	McGowan Method
рс	7145.47	kPa	Joback Method
ripol	1772.00		NIST Webbook
ripol	1791.00		NIST Webbook
ripol	1772.00		NIST Webbook
ripol	1791.00		NIST Webbook
tb	343.47	K	Joback Method
tc	536.54	K	Joback Method
tf	275.54	К	Solid liquid equilibrium in the ternary system acetic acid propanoic acid formamide
tf	275.70 ± 1.50	K	NIST Webbook
tf	275.00 ± 1.50	K	NIST Webbook
tf	275.70 ± 0.10	K	NIST Webbook
tf	275.70	K	KDB
tt	275.72 ± 0.02	K	NIST Webbook
tt	275.60 ± 0.02	K	NIST Webbook
VC	0.138	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	74.61	J/mol×K	536.54	Joback Method	
cpg	72.25	J/mol×K	504.36	Joback Method	
cpg	69.78	J/mol×K	472.19	Joback Method	
cpg	67.21	J/mol×K	440.01	Joback Method	
cpg	64.52	J/mol×K	407.83	Joback Method	
cpg	58.79	J/mol×K	343.47	Joback Method	
cpg	61.71	J/mol×K	375.65	Joback Method	
cpl	105.20	J/mol×K	293.00	NIST Webbook	
cpl	107.62	J/mol×K	298.15	NIST Webbook	
cpl	107.00	J/mol×K	298.15	NIST Webbook	
cpl	108.11	J/mol×K	298.15	NIST Webbook	
cpl	107.90	J/mol×K	298.15	NIST Webbook	
cpl	107.61	J/mol×K	298.15	NIST Webbook	
cpl	107.60	J/mol×K	298.00	NIST Webbook	
cpl	108.11	J/mol×K	298.15	NIST Webbook	

dvisc	0.0022187	Paxs	318.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study
dvisc	0.0014900	Pa×s	348.15	Viscosity of Ammonium Nitrate + Formamide Mixtures
dvisc	0.0015800	Paxs	338.15	Viscosity of Ammonium Nitrate + Formamide Mixtures
dvisc	0.0025420	Paxs	308.15	Viscosity, Density, and Speed of Sound for the Binary Mixtures of Formamide with 2-Methoxyethanol, Acetophenone, Acetonitrile, 1,2-Dimethoxyethane, and Dimethylsulfoxide at Different Temperatures
dvisc	0.0020010	Paxs	318.15	Viscosity, Density, and Speed of Sound for the Binary Mixtures of Formamide with 2-Methoxyethanol, Acetophenone, Acetonitrile, 1,2-Dimethoxyethane, and Dimethylsulfoxide at Different Temperatures
dvisc	0.0033220	Paxs	298.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study

dvisc	0.0029663	Paxs	303.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study
dvisc	0.0016900	Paxs	333.15	Viscosity of Ammonium Nitrate + Formamide Mixtures
dvisc	0.0018200	Paxs	328.15	Viscosity of Ammonium Nitrate + Formamide Mixtures
dvisc	0.0019900	Paxs	323.15	Viscosity of Ammonium Nitrate + Formamide Mixtures
dvisc	0.0022000	Paxs	318.15	Viscosity of Ammonium Nitrate + Formamide Mixtures
dvisc	0.0024300	Paxs	313.15	Viscosity of Ammonium Nitrate + Formamide Mixtures
dvisc	0.0033020	Pa×s	298.15	Viscosity, Density, and Speed of Sound for the Binary Mixtures of Formamide with 2-Methoxyethanol, Acetophenone, Acetonitrile, 1,2-Dimethoxyethane, and Dimethylsulfoxide at Different Temperatures
dvisc	0.0026700	Paxs	308.15	Viscosity of Ammonium Nitrate + Formamide Mixtures

dvisc	0.0026531	Paxs	308.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study	
dvisc	0.0015200	Paxs	343.15	Viscosity of Ammonium Nitrate + Formamide Mixtures	
dvisc	0.0024039	Paxs	313.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study	
dvisc	0.0029500	Paxs	303.15	Viscosity of Ammonium Nitrate + Formamide Mixtures	
dvisc	0.0032300	Paxs	298.15	Viscosity of Ammonium Nitrate + Formamide Mixtures	
dvisc	0.0036542	Paxs	293.15	Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study	
hfust	8.67	kJ/mol	275.60	NIST Webbook	
hfust	7.98	kJ/mol	275.70	NIST Webbook	
hfust	7.98	kJ/mol	275.72	NIST Webbook	
hfust	7.98	kJ/mol	275.70	NIST Webbook	
hfust	8.67	kJ/mol	275.60	NIST Webbook	
hfust	8.67	kJ/mol	275.60	NIST Webbook	
hsubt	72.40	kJ/mol	262.00	NIST Webbook	

hsubt	71.70	kJ/mol	276.00	NIST Webbook	
hvapt	70.80	kJ/mol	335.00	NIST Webbook	
hvapt	64.00	kJ/mol	413.00	NIST Webbook	
hvapt	61.20	kJ/mol	440.50	NIST Webbook	
pvap	0.01	kPa	303.40	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	
pvap	26.70	kPa	444.50	Density, Viscosity, Refractive Index, Excess Molar Volume, Viscosity, and Refractive Index Deviations and Their Correlations for the (Formamide + Water) System. Isobaric (Vapor + Liquid) Equilibrium at 2.5 kPa	
pvap	0.02	kPa	308.20	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	
pvap	0.03	kPa	313.20	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	
pvap	0.05	kPa	318.20	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	
pvap	0.06	kPa	323.20	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	

pvap	0.09	kPa	328.20	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	
pvap	0.12	kPa	333.20	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	
pvap	0.17	kPa	338.20	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	
pvap	13.33	kPa	425.30	Density, Viscosity, Refractive Index, Excess Molar Volume, Viscosity, and Refractive Index Deviations and Their Correlations for the (Formamide + Water) System. Isobaric (Vapor + Liquid) Equilibrium at 2.5 kPa	
pvap	0.23	kPa	343.20	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	
pvap	0.31	kPa	348.20	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	

pvap	5.33	kPa	401.80	Density,	
				Viscosity, Refractive Index, Excess Molar Volume, Viscosity, and Refractive Index Deviations and Their Correlations for the (Formamide + Water) System. Isobaric (Vapor + Liquid) Equilibrium at 2.5 kPa	
рvар	2.67	kPa	386.30	Density, Viscosity, Refractive Index, Excess Molar Volume, Viscosity, and Refractive Index Deviations and Their Correlations for the (Formamide + Water) System. Isobaric (Vapor + Liquid) Equilibrium at 2.5 kPa	
pvap	2.50	kPa	384.50	Density, Viscosity, Refractive Index, Excess Molar Volume, Viscosity, and Refractive Index Deviations and Their Correlations for the (Formamide + Water) System. Isobaric (Vapor + Liquid) Equilibrium at 2.5 kPa	
pvap	1.30	kPa	371.70	Density, Viscosity, Refractive Index, Excess Molar Volume, Viscosity, and Refractive Index Deviations and Their Correlations for the (Formamide + Water) System. Isobaric (Vapor + Liquid) Equilibrium at 2.5 kPa	

pvap	0.28	kPa	348.40	Density, Viscosity, Refractive Index, Excess Molar Volume, Viscosity, and Refractive Index Deviations and Their Correlations for the (Formamide + Water) System. Isobaric (Vapor + Liquid) Equilibrium at 2.5 kPa	
pvap	0.45	kPa	353.30	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	
pvap	0.55	kPa	358.20	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	
pvap	0.78	kPa	363.20	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	
pvap	0.99	kPa	368.10	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	
pvap	0.99	kPa	368.10	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	
pvap	1.27	kPa	373.20	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	

pvap	1.48	kPa	376.00	Thermochemical Properties of Formamide Revisited: New Experiment and Quantum Mechanical Calculations	
pvap	8.00	kPa	411.90	Density, Viscosity, Refractive Index, Excess Molar Volume, Viscosity, and Refractive Index Deviations and Their Correlations for the (Formamide + Water) System. Isobaric (Vapor + Liquid) Equilibrium at 2.5 kPa	
pvap	0.65	kPa	359.30	Density, Viscosity, Refractive Index, Excess Molar Volume, Viscosity, and Refractive Index Deviations and Their Correlations for the (Formamide + Water) System. Isobaric (Vapor + Liquid) Equilibrium at 2.5 kPa	
rfi	1.44590		303.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K	

rfi	1.44670	298.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K
rfi	1.44750	293.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K
rfi	1.44610	298.15	Molar excess enthalpies and molar excess volumes of formamide + 1-propanol or 2-propanol and thermodynamic modeling by Prigogine-Flory-Patterson theory and Treszczanowicz-Benson association model
rfi	1.44330	318.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K

rfi	1.44510		308.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K	
rfi	1.44420		313.15	Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of Formamide + 1-Butanol, + 2-Butanol, + 1,3-Butanediol, and + 1,4-Butanediol at Temperatures from (293.15 to 318.15) K	
rhol	1133.00	kg/m3	293.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	1121.22	kg/m3	308.15	Densities and Molar Isobaric Thermal Expansions of the Water + Formamide Mixture over the Temperature Range from 274.15 to 333.15 K at Atmospheric Pressure	
rhol	1108.46	kg/m3	323.15	Densities and Molar Isobaric Thermal Expansions of the Water + Formamide Mixture over the Temperature Range from 274.15 to 333.15 K at Atmospheric Pressure	

rhol	1099.88	kg/m3	333.15	Densities and Molar Isobaric Thermal Expansions of the Water + Formamide Mixture over the Temperature Range from 274.15 to 333.15 K at Atmospheric Pressure	
rhol	1137.91	kg/m3	288.15	Solutions of Urea and Tetramethylurea in Formamide and Water: A Comparative Analysis of Volume Characteristics and Solute-Solute Interaction Parameters at Temperatures from 288.15 to 328.15 K and Ambient Pressure	
rhol	1129.49	kg/m3	298.15	Solutions of Urea and Tetramethylurea in Formamide and Water: A Comparative Analysis of Volume Characteristics and Solute-Solute Interaction Parameters at Temperatures from 288.15 to 328.15 K and Ambient Pressure	
rhol	1129.73	kg/m3	298.15	Densities and Molar Isobaric Thermal Expansions of the Water + Formamide Mixture over the Temperature Range from 274.15 to 333.15 K at Atmospheric Pressure	

rhol	1112.55	kg/m3	318.15	Solutions of Urea and Tetramethylurea in Formamide and Water: A Comparative Analysis of Volume Characteristics and Solute-Solute Interaction Parameters at Temperatures from 288.15 to 328.15 K and Ambient Pressure	
rhol	1104.04	kg/m3	328.15	Solutions of Urea and Tetramethylurea in Formamide and Water: A Comparative Analysis of Volume Characteristics and Solute-Solute Interaction Parameters at Temperatures from 288.15 to 328.15 K and Ambient Pressure	
rhol	1138.17	kg/m3	288.15	Densities and Molar Isobaric Thermal Expansions of the Water + Formamide Mixture over the Temperature Range from 274.15 to 333.15 K at Atmospheric Pressure	
rhol	1146.62	kg/m3	278.15	Densities and Molar Isobaric Thermal Expansions of the Water + Formamide Mixture over the Temperature Range from 274.15 to 333.15 K at Atmospheric Pressure	
rhol	1105.47	kg/m3	323.15	Intermolecular interactions in Formamide +2-Alkoxyethanols: Viscometric study	

rhol	1110.95	kg/m3	318.15 Intermolecular interactions in Formamide +2-Alkoxyethanols: Viscometric study
rhol	1115.22	kg/m3	313.15 Intermolecular interactions in Formamide +2-Alkoxyethanols: Viscometric study
rhol	1120.19	kg/m3	308.15 Intermolecular interactions in Formamide +2-Alkoxyethanols: Viscometric study
rhol	1121.04	kg/m3	308.15 Solutions of Urea and Tetramethylurea in Formamide and Water: A Comparative Analysis of Volume Characteristics and Solute-Solute Interaction Parameters at Temperatures from 288.15 to 328.15 K and Ambient Pressure
rhol	1124.57	kg/m3	303.15 Intermolecular interactions in Formamide +2-Alkoxyethanols: Viscometric study
rhol	1120.75	kg/m3	308.15 Solution behavior of {(formamide/N-methylformamide/ N,N-dimethylformamide) + CsCl + water} ternary systems at multiple temperatures
rhol	1129.18	kg/m3	298.15 Solution behavior of {(formamide/N-methylformamide/ N,N-dimethylformamide) + CsCl + water} ternary systems at multiple temperatures
rhol	1137.80	kg/m3	288.15 Solution behavior of {(formamide/N-methylformamide/ N,N-dimethylformamide) + CsCl + water} ternary systems at multiple temperatures

rhol	1121.00	kg/m3	308.15	Topological and thermodynamic investigations of mixtures containing o-chlorotoluene and lower amides	
rhol	1125.20	kg/m3	303.15	Topological and thermodynamic investigations of mixtures containing o-chlorotoluene and lower amides	
rhol	1129.50	kg/m3	298.15	Topological and thermodynamic investigations of mixtures containing o-chlorotoluene and lower amides	
rhol	1116.85	kg/m3	313.15	Densities and viscosities of the mixtures (formamide + 2-alkanol): Experimental and theoretical approaches	
rhol	1120.98	kg/m3	308.15	Densities and viscosities of the mixtures (formamide + 2-alkanol): Experimental and theoretical approaches	
rhol	1129.00	kg/m3	298.15	Densities and viscosities of the mixtures (formamide + 2-alkanol): Experimental and theoretical approaches	
rhol	1113.00	kg/m3	318.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	1117.00	kg/m3	313.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	

rhol	1121.00	kg/m3	308.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	1125.00	kg/m3	303.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	1129.00	kg/m3	298.15	Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K	
rhol	1134.10	kg/m3	293.15	Volumetric properties of binary mixtures of (water + organic solvents) at temperatures between T = 288.15 K and T = 303.15 K at p = 0.1 MPa	
rhol	1120.90	kg/m3	308.15	Liquid-liquid phase equilibrium for ternary mixtures of formamide (or ethylene glycol, or monoethanolamine) + indole + 2-methylnaphthalene at 308.15 K	
rhol	1111.70	kg/m3	313.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data	

rhol	1121.00	kg/m3	308.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data	
rhol	1125.00	kg/m3	303.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data	
rhol	1129.00	kg/m3	298.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data	
rhol	1132.00	kg/m3	293.15	Interpretation of Association Behavior and Molecular Interactions in Binary Mixtures from Thermoacoustics and Molecular Compression Data	
rhol	1129.22	kg/m3	298.15	Exploration of Solvation Consequence of Ionic Liquid [Bu4PCH3SO3] in Various Solvent Systems by Conductance and FTIR Study	
rhol	1125.10	kg/m3	303.15	Densities and viscosities of the mixtures (formamide + 2-alkanol): Experimental and theoretical approaches	
sfust	28.94	J/mol×K	275.72	NIST Webbook	
sfust	31.45	J/mol×K	275.60	NIST Webbook	

speedsl	1565.40	m/s	313.15	Acoustic, volumetric, and spectroscopic studies of formamide with 2-alkoxyethanols at different temperatures	
speedsl	1588.10	m/s	303.15	Acoustic, volumetric, and spectroscopic studies of formamide with 2-alkoxyethanols at different temperatures	
speedsl	1597.28	m/s	298.15	Isentropic compressibilities of (amide + water) mixtures: A comparative study	
speedsl	1542.70	m/s	323.15	Acoustic, volumetric, and spectroscopic studies of formamide with 2-alkoxyethanols at different temperatures	

Correlations

Information Value

Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.55723e+01
Coeff. B	-4.63442e+03
Coeff. C	-6.99160e+01
Temperature range (K), min.	373.12
Temperature range (K), max.	521.58

Information Value

pvap
$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
5.02136e+01
-8.66196e+03
-4.60543e+00
2.69617e-06

Temperature range (K), min.	275.70
Temperature range (K), max.	493.00

Datasets

Mass density, kg/m3

Pressure, kPa - Liquid	Temperature, K - Liquid	Mass density, kg/m3 - Liquid
100.00	298.15	1129.22

Reference

https://www.doi.org/10.1021/je400536f

Sources

Determination and Correlation of Solubility of N-tertbutylacrylamide in mixtures (formamide + 2-alkanol): Expendental dependence of the pair Experimental article resource particle and hydrogenino solicities and hydr Conductance and FTIR Study: Refractive Indices and Deviations in **Refractive Indices for Binary Mixtures** Mortece Haminderaction main chipary Butanol. https://www.cheric.org/files/research/kdb/mol/r
k.4-butanediol at different
http://www.cheric.org/files/research/kdb/mol/r
k.4-butanediol at different
https://www.cheric.org/files/research/kdb/mol/r
k.4-butanediol at different
https://www.doi.org/10.1021/acs.jced.7b00978
https://www.sciencedirect.com/book/97801280
https://www.doi.org/10.1016/j.fluid.2015.04.00
https://www.doi.org/10.1016/j.fluid.2015.04.00
https://www.doi.org/10.1021/je400536f
https://www.doi.org/10.1021/je400536f
https://www.doi.org/10.1021/je400536f
https://www.doi.org/10.1021/acs.jced.5b00484
https://www.doi.org/10.1021/acs.jced.5b00484
https://www.doi.org/10.1021/acs.jced.5b00484
https://www.doi.org/10.1021/acs.jced.5b00484
https://www.doi.org/10.1021/acs.jced.7b00978
https://www.doi.org/10.1016/j.jct.2007.05.015 water) mixtures: A comparative study: Acoustic, volumetric, and spectroscopic studies of formamide Winter enressenthalises and memorar enresses and enresses of formamide + 1-propanol or 2-propanol and thermodynamic modeling by Prigogine-Flory-Patterson theory and

Treszczanowicz-Benson association

model:

https://www.doi.org/10.1021/acs.jced.5b00135

https://www.doi.org/10.1021/acs.jced.6b00786

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1016/j.jct.2016.07.014

https://www.doi.org/10.1016/j.jct.2006.01.015

https://en.wikipedia.org/wiki/Joback_method

https://www.doi.org/10.1016/j.jct.2013.09.043

https://www.doi.org/10.1016/j.tca.2005.05.012

https://www.doi.org/10.1021/acs.jced.5b00670

https://www.chemeo.com/doc/models/crippen_log10ws

https://www.doi.org/10.1021/je7007632

https://www.doi.org/10.1016/j.fluid.2007.12.007

https://www.doi.org/10.1021/acs.jced.7b00978

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.doi.org/10.1016/j.fluid.2015.04.001

https://www.doi.org/10.1007/s10765-016-2096-3

https://www.doi.org/10.1021/acs.jced.5b00484

https://www.doi.org/10.1016/j.jct.2012.04.024

https://www.doi.org/10.1016/j.tca.2013.02.010

NIST Webbook:

http://webbook.nist.gov/cgi/cbook.cgi?ID=C75127&Units=SI

Solubility of Sodium Cefotaxime in

Different Solvents:
Density, Viscosity, Refractive Index,
Excess Molar Volume, Viscosity, and
Refractive Indexity But Index
Refractive Index
R

tighid) Equilibrium at 2.5 blubility of

Temperature dependents blibility of sodium cyclamate in selected pure Solvaines and Urea annotationethylatera in Formany da and Water: A comparitive and specific solvents) https://www.doi.org/10.1016/j.jct.2005.07 https://www.doi.org/10.1016/j.jct.2005.07 https://www.doi.org/10.1016/j.jct.2012.07 https://www.doi.org/10.1016/j.jct.2012.07 https://www.doi.org/10.1016/j.jct.2012.07 https://www.doi.org/10.1016/j.jct.2012.07 https://www.doi.org/10.1016/j.jct.2012.07 https://www.doi.org/10.1016/j.jct.2012.07 https://www.doi.org/10.1021/je0501989 https://www.doi.org/10.1021/je0501989 https://www.doi.org/10.1021/je0501989 https://www.doi.org/10.1016/j.jct.2013.12 investigations of mixtures containing

investigations of mixtures containing **Exthalpiesi générater con a main paeci**ds

Tomorphismental provided and the second from water to aqueous solutions of Manattie: Properties of Glycine, I-Alanine, and I-Serine in Formamide Water makeries at 12 2000 et ints of Formamide Revisited: New Experiment self columnia from the self-columnia from the self-column system acetic acid propanoic acid

modeling of ternary (liquid + liquid) Ediling in the extense part of ethanol from diethoxymethane solution with Herstins and volumetric properties of (formamide + ethanol, or 1-propanol, or 1,2-ethanediol, or 1,2-propanediol)

mixtures at temperatures between 293.15 K and 318.15 K:

Legend

https://www.doi.org/10.1021/je600564q

https://www.doi.org/10.1021/je700517f

https://www.doi.org/10.1016/j.tca.2007.10.006

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1016/j.fluid.2015.01.012

https://www.doi.org/10.1021/acs.jced.9b00794

https://www.doi.org/10.1016/j.jct.2005.07.012

https://www.doi.org/10.1016/j.jct.2014.05.013

https://www.doi.org/10.1016/j.tca.2012.03.001

https://www.doi.org/10.1016/j.jct.2013.12.006

https://www.doi.org/10.1016/j.tca.2005.04.002

https://www.doi.org/10.1021/je5003797

https://www.doi.org/10.1021/je200683f

https://www.doi.org/10.1016/j.fluid.2007.07.065

https://www.doi.org/10.1016/j.jct.2017.03.014

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1374

https://www.doi.org/10.1016/j.jct.2006.07.021

Proton affinity affp: Gas basicity basg:

Ideal gas heat capacity cpg: cpl: Liquid phase heat capacity

Dynamic viscosity dvisc: ea: Electron affinity

Standard Gibbs free energy of formation qf: hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsub: Enthalpy of sublimation at standard conditions hsubt: Enthalpy of sublimation at a given temperature hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressurerfi: Refractive Indexrhol: Liquid Density

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

speedsl: Speed of sound in fluid

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/64-799-5/Formamide.pdf

Generated by Cheméo on 2025-12-22 19:30:52.712261682 +0000 UTC m=+6180050.242302348.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.