Theophylline

Other names: 1,3-Dimethylxanthine (theophylline)

1,3-dimethylxanthine

1H-Purine-2,6-dione, 3,7-dihydro-1,3-dimethyl-1H-Purine-2,6-dione, 3,9-dihydro-1,3-dimethyl-3,7-dihydro-1,3-dimethyl-1H-purine-2,6-dione

Accurbron
Acet-theocin

Aerobin

Aerolate III

Diffumal

Diphyllin

Doraphyllin

Duraphyl

Elixex

Elixicon

Elixophyllin

Elixophylline

Euphylline

GS 2591A

00 200 .7 (

Lanophyllin

Liquophylline

Maphylline

Medaphyllin

NSC 2066

Nuelin

Optiphyllin

Parkophyllin

Physpa

Pseudotheophylline

PulmiDur

Purine-2,6(1H,3H)-dione, 1,3-dimethyl-

Quibron T/SR

Respbid

Slo-Bid

Slo-phyllin

Solosin

Synophylate-L.A. Cenules

Tefamin

Telbans

Teocen 200

Teofilina

Teofyllamin

Teolair

Teonova

Theacitin

Theal tabl.

Theo-11

Theo-Dur

Theocin

Theocontin

Theodel

Theofol

Theograd

Theolair

Theolix

Theona P

Theopek

Theophyl-225

Theophyline

Theophyllin

Theophylline, anhydrous

Theovent

Unicontin CR

Unifyl

Uniphyl

Uniphyllin

X 115

Xanthine, 1,3-dimethyl-

Xanthium

Xantivent

InChl=1S/C7H8N4O2/c1-10-5-4(8-3-9-5)6(12)11(2)7(10)13/h3H,1-2H3,(H,8,9)

InchiKey: ZFXYFBGIUFBOJW-UHFFFAOYSA-N

Formula: C7H8N4O2

SMILES: Cn1c(=O)c2[nH]cnc2n(C)c1=O

Mol. weight [g/mol]: 180.16 CAS: 58-55-9

Physical Properties

Property code Value Unit Source

hsub	135.00	kJ/mol	NIST Webbook
log10ws	-3.68		Crippen Method
logp	-1.522		Crippen Method
mcvol	122.230	ml/mol	McGowan Method
rinpol	1900.00		NIST Webbook
rinpol	1990.00		NIST Webbook
rinpol	1900.00		NIST Webbook
rinpol	1917.00		NIST Webbook
rinpol	1917.00		NIST Webbook
rinpol	1917.00		NIST Webbook
rinpol	1947.00		NIST Webbook
rinpol	1921.00		NIST Webbook
rinpol	1917.00		NIST Webbook
rinpol	1917.00		NIST Webbook
rinpol	1962.00		NIST Webbook
rinpol	1923.00		NIST Webbook
rinpol	1904.00		NIST Webbook
rinpol	1909.00		NIST Webbook
tf	544.70 ± 0.50	K	NIST Webbook
tf	545.18	K	Measurement and Correlation of Solubility of Theobromine, Theophylline, and Caffeine in Water and Organic Solvents at Various Temperatures
tf	544.50	К	The physicochemical properties and solubility of pharmaceuticals - Methyl xanthines

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
hfust	31.20	kJ/mol	543.70	NIST Webbook
hfust	28.20	kJ/mol	542.30	NIST Webbook
hfust	28.20	kJ/mol	544.00	NIST Webbook
hfust	19.00	kJ/mol	546.80	NIST Webbook
hsubt	126.00	kJ/mol	421.00	NIST Webbook
psub	7.20e-03	kPa	457.00	Fast scanning calorimetry: Sublimation thermodynamics

Sublimation
hermodynamics
of low volatile
and thermally
unstable
compounds

psub	0.01	kPa	459.00	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.01	kPa	460.40	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.01	kPa	466.70	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.02	kPa	468.90	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.02	kPa	469.80	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.03	kPa	476.50	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.04	kPa	478.70	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	

psub	0.04	kPa	479.20	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.05	kPa	486.20	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.07	kPa	488.60	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.08	kPa	488.60	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	6.10e-03	kPa	451.00	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.14	kPa	498.00	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.15	kPa	498.50	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	

psub	0.19	kPa	505.70	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.23	kPa	507.40	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.28	kPa	508.30	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.36	kPa	515.50	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.39	kPa	516.80	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.49	kPa	518.20	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.56	kPa	525.20	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	

psub	0.82	kPa	526.20	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.90	kPa	528.10	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	1.00	kPa	535.00	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	1.62	kPa	537.90	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	4.70e-03	kPa	449.10	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	3.30e-03	kPa	447.20	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	2.80e-03	kPa	441.60	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	

kPa 0.11 496.00 psub Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable

Sources

Volumetric, Viscometric and Spectroscopic Approach to Study the in Aqueous Solutions of NaCl at T = 584 455 164 165 kPa: molecules between aqueous and amino Scincere Method ionic liquids:

Volumetric, Viscometric, and 1H NMR Studies on Caffeine, Theophylline, and apd Organic Solvents at Various femiliary Sublimation https://www.doi.org/10.1016/j.tca.2019.05.008 thermodynamics of low volatile and subject Computations of https://www.doi.org/10.1021/acs.jced.8b00785 Isoniazid in Different Pure and Binary মিন্ধুরাজি পির্কার Systems from 283.15 K 16.35 স্পূর্বাধ্যা-7H-purine-2,6-dione মোন্টুর্নি পার্নাভ্যান বিশ্বাস্থ

Dioxide: Solid Liquid Equilibrium of Theophylline in Solvent Mixtures: The physicochemical properties and solubility of pharmaceuticals - Methyl xanthines:

https://www.doi.org/10.1021/acs.jced.6b00273

http://webbook.nist.gov/cgi/cbook.cgi?ID=C58559&Units=SI

compounds

https://www.doi.org/10.1016/j.ict.2013.02.011

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1021/acs.jced.7b00520

https://www.doi.org/10.1021/acs.jced.7b00065

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1021/acs.jced.8b00785

https://www.doi.org/10.1021/je900099m

https://www.chemeo.com/doc/models/crippen_log10ws

https://www.doi.org/10.1021/je400864f

https://www.doi.org/10.1016/j.jct.2014.05.005

Legend

hfust: Enthalpy of fusion at a given temperature

hsub: Enthalpy of sublimation at standard conditions hsubt: Enthalpy of sublimation at a given temperature

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: mcvol: McGowan's characteristic volume

psub: Sublimation pressure

rinpol: Non-polar retention indices tf: Normal melting (fusion) point

Latest version available from:

https://www.chemeo.com/cid/65-047-8/Theophylline.pdf

Generated by Cheméo on 2025-12-24 00:48:41.950465158 +0000 UTC m=+6285519.480505812.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.	