Theophylline

Other names:

1,3-Dimethylxanthine (theophylline) 1,3-dimethylxanthine 1H-Purine-2,6-dione, 3,7-dihydro-1,3-dimethyl-1H-Purine-2,6-dione, 3,9-dihydro-1,3-dimethyl-3,7-dihydro-1,3-dimethyl-1H-purine-2,6-dione Accurbron Acet-theocin Aerobin Aerolate III Diffumal Diphyllin Doraphyllin Duraphyl Elixex Elixicon Elixophyllin Elixophylline Euphylline GS 2591A Lanophyllin Liquophylline Maphylline Medaphyllin **NSC 2066** Nuelin Optiphyllin Parkophyllin Physpa Pseudotheophylline PulmiDur Purine-2,6(1H,3H)-dione, 1,3-dimethyl-Quibron T/SR Respbid Slo-Bid Slo-phyllin Solosin Synophylate-L.A. Cenules Tefamin Telbans Teocen 200

Teofilina Teofyllamin Teolair Teonova Theacitin Theal tabl. Theo-11 Theo-Dur Theocin Theocontin Theodel Theofol Theograd Theolair Theolix Theona P Theopek Theophyl-225 Theophyline Theophyllin Theophylline, anhydrous Theovent Unicontin CR Unifyl Uniphyl Uniphyllin X 115 Xanthine, 1,3-dimethyl-Xanthium **Xantivent** InChI=1S/C7H8N4O2/c1-10-5-4(8-3-9-5)6(12)11(2)7(10)13/h3H,1-2H3,(H,8,9) ZFXYFBGIUFBOJW-UHFFFAOYSA-N InchiKey: Formula: C7H8N4O2 SMILES: Cn1c(=O)c2[nH]cnc2n(C)c1=O Mol. weight [g/mol]: 180.16 58-55-9

Physical Properties

Inchi:

CAS:

Source

hsub	135.00	kJ/mol	NIST Webbook
log10ws	-3.68		Crippen Method
logp	-1.522		Crippen Method
mcvol	122.230	ml/mol	McGowan Method
rinpol	1900.00		NIST Webbook
rinpol	1990.00		NIST Webbook
rinpol	1900.00		NIST Webbook
rinpol	1917.00		NIST Webbook
rinpol	1917.00		NIST Webbook
rinpol	1917.00		NIST Webbook
rinpol	1947.00		NIST Webbook
rinpol	1921.00		NIST Webbook
rinpol	1917.00		NIST Webbook
rinpol	1917.00		NIST Webbook
rinpol	1962.00		NIST Webbook
rinpol	1923.00		NIST Webbook
rinpol	1904.00		NIST Webbook
rinpol	1909.00		NIST Webbook
tf	544.70 ± 0.50	К	NIST Webbook
tf	545.18	К	Measurement and Correlation of Solubility of Theobromine, Theophylline, and Caffeine in Water and Organic Solvents at Various Temperatures
tf	544.50	К	The physicochemical properties and solubility of pharmaceuticals - Methyl xanthines

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
hfust	19.00	kJ/mol	546.80	NIST Webbook
hfust	28.20	kJ/mol	544.00	NIST Webbook
hfust	28.20	kJ/mol	542.30	NIST Webbook
hfust	31.20	kJ/mol	543.70	NIST Webbook
hsubt	126.00	kJ/mol	421.00	NIST Webbook
psub	0.04	kPa	479.20	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds

psub	3.30e-03	kPa	447.20	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	4.70e-03	kPa	449.10	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	6.10e-03	kPa	451.00	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	7.20e-03	kPa	457.00	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.01	kPa	459.00	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.01	kPa	460.40	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.01	kPa	466.70	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	

psub	0.02	kPa	468.90	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.02	kPa	469.80	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.03	kPa	476.50	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.04	kPa	478.70	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	2.80e-03	kPa	441.60	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.05	kPa	486.20	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.07	kPa	488.60	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	

psub	0.08	kPa	488.60	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.11	kPa	496.00	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.14	kPa	498.00	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.15	kPa	498.50	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.19	kPa	505.70	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.23	kPa	507.40	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.28	kPa	508.30	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	

psub	0.36	kPa	515.50	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.39	kPa	516.80	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.49	kPa	518.20	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.56	kPa	525.20	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.82	kPa	526.20	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	0.90	kPa	528.10	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	
psub	1.00	kPa	535.00	Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds	

Sources

Solid Liquid Equilibrium of Theophylline in Solvent Mixtures: McGowan Method:

Solubility and Data Correlation of Isoniazid in Different Pure and Binary Mortelition of the systems from 283.15 K 1-33 Dimetry I-7H-purine-2,6-dione (The Bhysingelon state of the same physical system partitioning of drug results between partitioning of drug Animine of the second s

Measurement and Correlation of

https://www.doi.org/10.1021/je400864f http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1021/acs.jced.8b00785 https://www.doi.org/10.1021/je900099m https://www.doi.org/10.1016/j.jct.2014.05.005 https://www.doi.org/10.1016/j.jct.2013.02.011 https://www.doi.org/10.1021/acs.jced.7b00520 https://www.chemeo.com/doc/models/crippen_log10ws http://pubs.acs.org/doi/abs/10.1021/ci990307I https://www.doi.org/10.1021/acs.jced.7b00065 Solubility of Theobromine, Yheuphylina / jacenozinisi and the binagen with the binagen https://www.doi.org/10.1021/acs.jced.7b00003 https://www.doi.org/10.1021/acs.jced.6b00273 https://www.doi.org/10.1016/j.tca.2019.05.008 https://www.doi.org/10.1016/j.tca.2019.05.008 https://www.doi.org/10.1016/j.tca.2019.05.008 https://www.doi.org/10.1016/j.tca.2019.05.008 https://www.doi.org/10.1016/j.tca.2019.05.008 https://www.doi.org/10.1016/j.tca.2019.05.008 https://www.doi.org/10.1016/j.tca.2019.05.008

Legend

hfust:	Enthalpy of fusion at a given temperature
hsub:	Enthalpy of sublimation at standard conditions
hsubt:	Enthalpy of sublimation at a given temperature
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
psub:	Sublimation pressure
rinpol:	Non-polar retention indices
tf:	Normal melting (fusion) point

Latest version available from: https://www.chemeo.com/cid/65-047-8/Theophylline.pdf Generated by Cheméo on 2024-04-28 00:03:46.364804242 +0000 UTC m=+16551875.285381564. Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.