Hexadecanoic acid, methyl ester

Other names: Acide hexadecanoique methyl ester

Emery 2216

Metholene 2216

Methyl hexadecanoate Methyl n-hexadecanoate

Methyl palmitate

Palmitic acid, methyl ester

Radia 7120 Uniphat A60

n-Hexadecanoic acid methyl ester

InChl=1S/C17H34O2/c1-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17(18)19-2/h3-16H2,1-2H3

InchiKey: FLIACVVOZYBSBS-UHFFFAOYSA-N

Formula: C17H34O2

SMILES: CCCCCCCCCCCC(=0)OC

Mol. weight [g/mol]: 270.45 CAS: 112-39-0

Physical Properties

Property code	Value	Unit	Source
chl	-10107.00 ± 3.80	kJ/mol	NIST Webbook
chs	-10669.00 ± 0.40	kJ/mol	NIST Webbook
gf	-141.66	kJ/mol	Joback Method
hf	-639.01	kJ/mol	Joback Method
hfl	-1441.80 ± 3.80	kJ/mol	NIST Webbook
hfus	60.04	kJ/mol	Heat Capacity Measurements of 13 Methyl Esters of n-Carboxylic Acids from Methyloctanoate to Methyleicosanoate between 5 K and 350 K
hvap	93.20	kJ/mol	NIST Webbook
hvap	96.40	kJ/mol	NIST Webbook
hvap	96.80 ± 0.60	kJ/mol	NIST Webbook
log10ws	-5.80		Crippen Method
logp	5.641		Crippen Method
mcvol	257.830	ml/mol	McGowan Method
рс	1271.87	kPa	Joback Method
rinpol	1927.00		NIST Webbook

rinpol	1911.00	NIST Webbook
rinpol	1915.75	NIST Webbook
rinpol	1904.00	NIST Webbook
rinpol	1898.00	NIST Webbook
rinpol	1927.30	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	321.34	NIST Webbook
rinpol	1925.90	NIST Webbook
rinpol	1912.00	NIST Webbook
rinpol	1907.00	NIST Webbook
rinpol	1924.00	NIST Webbook
rinpol	1908.00	NIST Webbook
rinpol	1906.00	NIST Webbook
rinpol	1925.00	NIST Webbook
rinpol	1910.00	NIST Webbook
rinpol	1923.00	NIST Webbook
rinpol	1934.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1928.00	NIST Webbook
rinpol	1909.00	NIST Webbook
rinpol	1920.00	NIST Webbook
rinpol	321.34	NIST Webbook
rinpol	321.34	NIST Webbook
rinpol	321.19	NIST Webbook
rinpol	331.30	NIST Webbook
rinpol	331.20	NIST Webbook
rinpol	331.20	NIST Webbook
rinpol	1937.00	NIST Webbook
rinpol	322.66	NIST Webbook
rinpol	319.52	NIST Webbook
rinpol	1908.00	NIST Webbook
rinpol	1907.00	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1935.00	NIST Webbook
rinpol	1908.00	NIST Webbook
rinpol	1917.00	NIST Webbook
rinpol	1908.00	NIST Webbook
rinpol	1938.00	NIST Webbook
rinpol	1911.00	NIST Webbook
rinpol	1928.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1911.00	NIST Webbook
rinpol	1911.00	NIST Webbook
rinpol	1911.00	NIST Webbook

rinpol	1927.00	NIST Webbook
rinpol	1922.00	NIST Webbook
rinpol	1933.00	NIST Webbook
rinpol	1939.00	NIST Webbook
rinpol	1922.00	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1909.00	NIST Webbook
rinpol	1904.10	NIST Webbook
rinpol	1905.20	NIST Webbook
rinpol	1906.40	NIST Webbook
rinpol	1907.60	NIST Webbook
rinpol	1908.90	NIST Webbook
rinpol	1910.20	NIST Webbook
rinpol	1911.50	NIST Webbook
rinpol	1912.00	NIST Webbook
rinpol	1915.00	NIST Webbook
rinpol	1902.00	NIST Webbook
rinpol	1902.00	NIST Webbook
rinpol	1913.00	NIST Webbook
rinpol	1913.00	NIST Webbook
rinpol	1910.00	NIST Webbook
rinpol	1909.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1921.00	NIST Webbook
rinpol	1894.00	NIST Webbook
rinpol	1909.00	NIST Webbook
rinpol	1909.00	NIST Webbook
rinpol	1918.00	NIST Webbook
rinpol	1917.00	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1933.00	NIST Webbook
rinpol	1915.00	NIST Webbook
rinpol	1916.00	NIST Webbook
rinpol	1928.10	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1908.00	NIST Webbook
rinpol	1910.00	NIST Webbook
rinpol	1909.00	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1920.00	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1916.00	NIST Webbook
rinpol	1927.00	NIST Webbook

rinpol	1927.30	NIST Webbook
rinpol	1927.70	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1898.00	NIST Webbook
rinpol	1910.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1924.00	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1925.00	NIST Webbook
rinpol	1920.00	NIST Webbook
rinpol	1929.00	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1907.00	NIST Webbook
rinpol	1907.00	NIST Webbook
rinpol	1908.00	NIST Webbook
rinpol	1908.78	NIST Webbook
rinpol	1909.00	NIST Webbook
rinpol	1904.00	NIST Webbook
rinpol	1905.00	NIST Webbook
rinpol	1907.32	NIST Webbook
rinpol	1908.17	NIST Webbook
rinpol	1908.87	NIST Webbook
rinpol	1915.75	NIST Webbook
rinpol	1909.61	NIST Webbook
rinpol	1914.72	NIST Webbook
rinpol	1908.65	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1911.00	NIST Webbook
rinpol	1925.90	NIST Webbook
rinpol	1926.40	NIST Webbook
rinpol	1929.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1913.00	NIST Webbook
rinpol	1908.00	NIST Webbook
rinpol	1924.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1914.00	NIST Webbook
rinpol	1909.00	NIST Webbook
rinpol	1908.00	NIST Webbook
rinpol	1920.00	NIST Webbook
rinpol	1917.00	NIST Webbook

rinpol	1927.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1908.00	NIST Webbook
rinpol	1909.00	NIST Webbook
rinpol	1910.00	NIST Webbook
rinpol	1910.00	NIST Webbook
rinpol	1920.00	NIST Webbook
rinpol	1928.00	NIST Webbook
rinpol	1928.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1910.00	NIST Webbook
rinpol	1925.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1912.00	NIST Webbook
rinpol	1921.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1922.00	NIST Webbook
rinpol	1931.00	NIST Webbook
rinpol	1939.00	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1924.00	NIST Webbook
rinpol	1934.00	NIST Webbook
rinpol	1929.00	NIST Webbook
rinpol	1907.00	NIST Webbook
rinpol	1924.00	NIST Webbook
rinpol	1900.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1902.00	NIST Webbook
rinpol	1923.00	NIST Webbook
rinpol	1923.00	NIST Webbook
rinpol	1928.00	NIST Webbook
rinpol	1931.00	NIST Webbook
rinpol	1930.00	NIST Webbook
rinpol	1924.00	NIST Webbook
rinpol	1910.00	NIST Webbook
rinpol	1925.00	NIST Webbook
rinpol	1930.00	NIST Webbook
rinpol	1928.10	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1925.00	NIST Webbook
rinpol	1925.00	NIST Webbook

rinpol 192	7.00 NIST Webbook
rinpol 192	7.00 NIST Webbook
rinpol 192	7.00 NIST Webbook
rinpol 192	7.00 NIST Webbook
rinpol 190	5.00 NIST Webbook
rinpol 191	0.00 NIST Webbook
rinpol 191	3.00 NIST Webbook
rinpol 191	5.00 NIST Webbook
rinpol 191	5.00 NIST Webbook
rinpol 191	0.00 NIST Webbook
rinpol 192	1.00 NIST Webbook
rinpol 192	1.00 NIST Webbook
rinpol 192	1.00 NIST Webbook
rinpol 192	9.00 NIST Webbook
rinpol 192	3.00 NIST Webbook
rinpol 192	S.00 NIST Webbook
rinpol 190	4.00 NIST Webbook
rinpol 192	4.00 NIST Webbook
rinpol 192	2.00 NIST Webbook
rinpol 192	7.00 NIST Webbook
rinpol 192	S.00 NIST Webbook
rinpol 191	4.00 NIST Webbook
•	9.00 NIST Webbook
rinpol 192	5.00 NIST Webbook
rinpol 190	3.00 NIST Webbook
rinpol 190	9.00 NIST Webbook
	9.00 NIST Webbook
<u> </u>	9.00 NIST Webbook
	3.00 NIST Webbook
,	4.00 NIST Webbook
	5.00 NIST Webbook
· ·	4.00 NIST Webbook
	3.00 NIST Webbook
·	1.00 NIST Webbook
•	3.00 NIST Webbook
,	S.00 NIST Webbook
•	9.00 NIST Webbook
,	5.00 NIST Webbook
•	9.00 NIST Webbook
•	7.00 NIST Webbook
<u> </u>	1.00 NIST Webbook
	3.00 NIST Webbook
·	0.00 NIST Webbook
rinpol 191	1.00 NIST Webbook

rinpol	1912.00	NIST Webbook
rinpol	1905.00	NIST Webbook
rinpol	1910.00	NIST Webbook
rinpol	1925.00	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1924.00	NIST Webbook
rinpol	1925.00	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1933.00	NIST Webbook
rinpol	1903.00	NIST Webbook
rinpol	1904.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1930.00	NIST Webbook
rinpol	1933.00	NIST Webbook
rinpol	1910.00	NIST Webbook
rinpol	1922.00	NIST Webbook
rinpol	1926.00	NIST Webbook
rinpol	1919.00	NIST Webbook
rinpol	1927.00	NIST Webbook
rinpol	1927.00	NIST Webbook
ripol	2203.00	NIST Webbook
ripol	2205.00	NIST Webbook
ripol	2205.00	NIST Webbook
ripol	2202.00	NIST Webbook
ripol	2238.00	NIST Webbook
ripol	2216.00	NIST Webbook
ripol	2214.00	NIST Webbook
ripol	2207.00	NIST Webbook
ripol	2175.00	NIST Webbook
ripol	2226.00	NIST Webbook
ripol	2226.00	NIST Webbook
ripol	2204.00	NIST Webbook
ripol	2226.00	NIST Webbook
ripol	2207.00	NIST Webbook
ripol	2216.00	NIST Webbook
ripol	2226.00	NIST Webbook
ripol	2208.00	NIST Webbook
ripol	2208.00	NIST Webbook
ripol	2243.00	NIST Webbook
ripol	2254.00	NIST Webbook
ripol	2180.00	NIST Webbook
ripol	2210.00	NIST Webbook
ripol	2178.00	NIST Webbook

tb	664.65	K	Joback Method
SS	495.09	J/mol×K	NIST Webbook
ripol	2213.00		NIST Webbook
ripol	2202.00		NIST Webbook
ripol	2170.00		NIST Webbook
ripol	2177.00		NIST Webbook
ripol	2202.00		NIST Webbook
ripol	2223.00		NIST Webbook
ripol	2190.00		NIST Webbook
ripol	2170.00		NIST Webbook
ripol	2191.00		NIST Webbook
ripol	2210.00		NIST Webbook
ripol	2213.00		NIST Webbook
ripol	2217.00		NIST Webbook
ripol	2217.00		NIST Webbook
ripol	2191.00		NIST Webbook
ripol	2251.00		NIST Webbook
ripol	2218.00		NIST Webbook
ripol	2223.00		NIST Webbook
ripol	2218.00		NIST Webbook
ripol	2210.00		NIST Webbook
ripol	2233.00		NIST Webbook
ripol	2233.00		NIST Webbook
ripol	2171.00		NIST Webbook
ripol	2190.00		NIST Webbook
ripol	2202.00		NIST Webbook
ripol	2213.00		NIST Webbook
ripol	2202.00		NIST Webbook
ripol	2206.00		NIST Webbook
ripol	2220.00		NIST Webbook
ripol	2205.00		NIST Webbook
ripol	2182.00		NIST Webbook
ripol	2218.00		NIST Webbook
ripol	2245.00		NIST Webbook
ripol	2226.00		NIST Webbook
ripol	2198.00		NIST Webbook
ripol	2198.00		NIST Webbook
ripol	2202.00		NIST Webbook
ripol	2202.00		NIST Webbook
ripol	2205.00		NIST Webbook
ripol	2198.00		NIST Webbook
ripol	2220.00		NIST Webbook
ripol	2198.00		NIST Webbook
ripol	2225.00		NIST Webbook

tc	760.00	К	Vapor-liquid critical point measurements of fifteen compounds by the pulse-heating method
tf	302.00 ± 2.00	K	NIST Webbook
tf	304.00 ± 1.00	K	NIST Webbook
tf	303.05 ± 0.35	K	NIST Webbook
tf	302.74 ± 0.10	K	NIST Webbook
VC	1.012	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	784.95	J/mol×K	748.46	Joback Method
cpg	816.25	J/mol×K	804.33	Joback Method
cpg	830.80	J/mol×K	832.26	Joback Method
cpg	768.17	J/mol×K	720.52	Joback Method
cpg	750.62	J/mol×K	692.59	Joback Method
cpg	732.28	J/mol×K	664.65	Joback Method
cpg	800.97	J/mol×K	776.39	Joback Method
cps	474.47	J/mol×K	298.15	NIST Webbook
dvisc	0.0023360	Paxs	333.15	Group Contribution Model for Predicting Viscosity of Fatty Compounds
dvisc	0.0037640	Paxs	313.15	Group Contribution Model for Predicting Viscosity of Fatty Compounds
dvisc	0.0015499	Paxs	363.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters
dvisc	0.0042122	Paxs	308.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters
dvisc	0.0016659	Paxs	358.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters
dvisc	0.0017960	Paxs	353.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters

dvisc	0.0019421	Paxs	348.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters	
dvisc	0.0037551	Paxs	313.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters	
dvisc	0.0033682	Paxs	318.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters	
dvisc	0.0030378	Paxs	323.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters	
dvisc	0.0029310	Paxs	323.15	Group Contribution Model for Predicting Viscosity of Fatty Compounds	
dvisc	0.0021073	Paxs	343.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters	
dvisc	0.0027540	Paxs	328.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters	
dvisc	0.0025083	Paxs	333.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters	
dvisc	0.0019460	Paxs	343.15	Group Contribution Model for Predicting Viscosity of Fatty Compounds	
dvisc	0.0022947	Paxs	338.15	Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters	
hfust	14.97	kJ/mol	302.20	NIST Webbook	
hfust	56.00	kJ/mol	305.20	NIST Webbook	
hfust	68.16	kJ/mol	307.20	NIST Webbook	
hsubt	152.00 ± 2.00	kJ/mol	296.00	NIST Webbook	
hvapt	96.20	kJ/mol	298.15	the vaporization enthaplies and vapor pressures of a series of unstaurated fatty acid methyl esters by correlation gas chromatography	
				<u> </u>	

hvapt	101.80	kJ/mol	298.00	A Comparison of Results by Correlation Gas Chromatography with Another Gas Chromatographic Retention Time Technique. The Effects of Retention Time Coincidence on Vaporization Enthalpy and Vapor Pressure	
hvapt	78.20	kJ/mol	498.00	NIST Webbook	
hvapt	82.40	kJ/mol	477.00	NIST Webbook	
hvapt	71.40	kJ/mol	448.50	NIST Webbook	
hvapt	93.40	kJ/mol	350.00	NIST Webbook	
hvapt	83.30 ± 0.40	kJ/mol	397.00	NIST Webbook	
hvapt	82.60	kJ/mol	411.50	NIST Webbook	
pvap	5.11e-03	kPa	361.55	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	2.15e-04	kPa	326.56	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	2.38e-04	kPa	327.52	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	2.35e-04	kPa	327.52	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	2.68e-04	kPa	328.98	Fatty acids methyl esters:	
				Complementary measurements and	
				comprehensive analysis of vaporization thermodynamics	
pvap	2.97e-04	kPa	329.96	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	3.40e-04	kPa	331.42	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	3.76e-04	kPa	332.37	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	3.77e-04	kPa	332.37	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	4.29e-04	kPa	333.83	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	4.70e-04	kPa	334.83	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	5.48e-04	kPa	336.28	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	6.04e-04	kPa	337.23	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	5.99e-04	kPa	337.23	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	6.83e-04	kPa	338.69	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	7.52e-04	kPa	339.69	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	8.56e-04	kPa	341.14	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	9.46e-04	kPa	342.09	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	9.34e-04	kPa	342.09	Fatty acids methyl esters:	
				Complementary measurements and	
				comprehensive analysis of vaporization thermodynamics	
рvар	1.07e-03	kPa	343.55	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.18e-03	kPa	344.55	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.23e-03	kPa	345.01	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.33e-03	kPa	346.00	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.46e-03	kPa	346.95	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.46e-03	kPa	346.95	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	1.66e-03	kPa	348.41	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.82e-03	kPa	349.41	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.89e-03	kPa	349.87	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	2.05e-03	kPa	350.86	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	2.26e-03	kPa	351.82	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	2.53e-03	kPa	353.27	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	2.77e-03	kPa	354.29	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	2.88e-03	kPa	354.73	Fatty acids methyl esters:	
				Complementary measurements and	
				comprehensive analysis of vaporization thermodynamics	
pvap	3.11e-03	kPa	355.73	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	3.41e-03	kPa	356.67	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	3.81e-03	kPa	358.13	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	4.17e-03	kPa	359.16	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	4.33e-03	kPa	359.59	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	4.29e-03	kPa	359.63	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	4.67e-03	kPa	360.59	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.85e-04	kPa	325.11	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	5.65e-03	kPa	363.00	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	6.17e-03	kPa	364.02	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	6.38e-03	kPa	364.45	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	6.32e-03	kPa	364.49	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.66e-04	kPa	324.12	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	7.47e-03	kPa	366.41	Fatty acids methyl esters:	
				Complementary measurements and	
				comprehensive analysis of vaporization thermodynamics	
pvap	8.23e-03	kPa	367.87	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	8.93e-03	kPa	368.87	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	9.21e-03	kPa	369.32	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	0.01	kPa	371.29	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	0.01	kPa	371.74	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	0.01	kPa	372.64	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	0.01	kPa	372.73	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	4.00	kPa	486.57	Vapor liquid equilibrium of fatty acid ethyl esters determined using DSC	
pvap	0.13	kPa	407.12	Measurements and Correlations of the Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate	
pvap	0.21	kPa	414.26	Measurements and Correlations of the Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate	
pvap	0.24	kPa	418.18	Measurements and Correlations of the Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate	
pvap	0.27	kPa	422.34	Measurements and Correlations of the Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate	
pvap	0.30	kPa	424.68	Measurements and Correlations of the Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate	
pvap	0.36	kPa	427.54	Measurements and Correlations of the Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate	

pvap	0.41	kPa	429.32	Measurements and Correlations of the Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate	
pvap	0.42	kPa	432.32	Measurements and Correlations of the Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate	
pvap	0.52	kPa	434.18	Measurements and Correlations of the Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate	
pvap	0.55	kPa	437.30	Measurements and Correlations of the Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate	
pvap	0.56	kPa	438.44	Measurements and Correlations of the Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate	
pvap	0.65	kPa	439.60	Measurements and Correlations of the Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate	
pvap	0.66	kPa	441.00	Measurements and Correlations of the Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate	
pvap	0.84	kPa	445.36	Measurements and Correlations of the Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate	
pvap	0.85	kPa	447.06	Measurements and Correlations of the Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate	

pvap	0.02	kPa	373.15	Isothermal Vapor Pressures of Three Binary Systems: n-Tetradecane + Methyl Dodecanoate, Methyl Tetradecanoate, or Methyl Hexadecanoate between 353.15 and 453.15 K	
pvap	0.03	kPa	383.15	Isothermal Vapor Pressures of Three Binary Systems: n-Tetradecane + Methyl Dodecanoate, Methyl Tetradecanoate, or Methyl Hexadecanoate between 353.15 and 453.15 K	
pvap	0.05	kPa	393.15	Isothermal Vapor Pressures of Three Binary Systems: n-Tetradecane + Methyl Dodecanoate, Methyl Tetradecanoate, or Methyl Hexadecanoate between 353.15 and 453.15 K	
pvap	0.10	kPa	403.15	Isothermal Vapor Pressures of Three Binary Systems: n-Tetradecane + Methyl Dodecanoate, Methyl Tetradecanoate, or Methyl Hexadecanoate between 353.15 and 453.15 K	

pvap	0.16	kPa	413.15	Isothermal Vapor Pressures of Three Binary Systems: n-Tetradecane + Methyl Dodecanoate, Methyl Tetradecanoate, or Methyl Hexadecanoate between 353.15 and 453.15 K	
pvap	0.28	kPa	423.15	Isothermal Vapor Pressures of Three Binary Systems: n-Tetradecane + Methyl Dodecanoate, Methyl Tetradecanoate, or Methyl Hexadecanoate between 353.15 and 453.15 K	
pvap	0.46	kPa	433.15	Isothermal Vapor Pressures of Three Binary Systems: n-Tetradecane + Methyl Dodecanoate, Methyl Tetradecanoate, or Methyl Hexadecanoate between 353.15 and 453.15 K	
pvap	0.76	kPa	443.15	Isothermal Vapor Pressures of Three Binary Systems: n-Tetradecane + Methyl Dodecanoate, Methyl Tetradecanoate, or Methyl Hexadecanoate between 353.15 and 453.15 K	
pvap	1.21	kPa	453.15	Isothermal Vapor Pressures of Three Binary Systems: n-Tetradecane + Methyl Dodecanoate, Methyl Tetradecanoate, or Methyl Hexadecanoate between 353.15 and 453.15 K	

pvap	0.10	kPa	408.30	Isobaric Vapor Liquid Equilibrium of the Mixture of Methyl Palmitate and Methyl Stearate at 0.1 kPa, 1 kPa, 5 kPa, and 10 kPa	
pvap	1.00	kPa	450.90	Isobaric Vapor Liquid Equilibrium of the Mixture of Methyl Palmitate and Methyl Stearate at 0.1 kPa, 1 kPa, 5 kPa, and 10 kPa	
pvap	5.00	kPa	490.80	Isobaric Vapor Liquid Equilibrium of the Mixture of Methyl Palmitate and Methyl Stearate at 0.1 kPa, 1 kPa, 5 kPa, and 10 kPa	
pvap	10.00	kPa	511.25	Isobaric Vapor Liquid Equilibrium of the Mixture of Methyl Palmitate and Methyl Stearate at 0.1 kPa, 1 kPa, 5 kPa, and 10 kPa	
pvap	1.44e-04	kPa	322.67	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.43e-04	kPa	322.66	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	1.28e-04	kPa	321.71	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	1.12e-04	kPa	320.26	Fatty acids methyl esters:	
				Complementary measurements and comprehensive	
				analysis of vaporization thermodynamics	
pvap	1.00e-04	kPa	319.27	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	8.76e-05	kPa	317.82	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	8.23e-05	kPa	317.81	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	7.59e-05	kPa	316.85	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	6.90e-05	kPa	315.40	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	6.00e-05	kPa	314.42	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	4.82e-05	kPa	312.97	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	5.32e-05	kPa	312.96	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	4.57e-05	kPa	312.00	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	2.81e-05	kPa	308.12	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	
pvap	0.77	kPa	444.15	Measurement and correlation of the density, viscosity and vapor pressure of fatty acid 2-ethyhexyl esters	
pvap	0.62	kPa	440.15	Measurement and correlation of the density, viscosity and vapor pressure of fatty acid 2-ethyhexyl esters	
pvap	0.58	kPa	438.45	Measurement and correlation of the density, viscosity and vapor pressure of fatty acid 2-ethyhexyl esters	

pvap	0.53	kPa	436.25	Measurement and correlation of the density, viscosity and vapor pressure of fatty acid 2-ethyhexyl esters	
pvap	0.45	kPa	433.35	Measurement and correlation of the density, viscosity and vapor pressure of fatty acid 2-ethyhexyl esters	
pvap	0.42	kPa	432.25	Measurement and correlation of the density, viscosity and vapor pressure of fatty acid 2-ethyhexyl esters	
pvap	0.40	kPa	430.75	Measurement and correlation of the density, viscosity and vapor pressure of fatty acid 2-ethyhexyl esters	
pvap	0.35	kPa	428.35	Measurement and correlation of the density, viscosity and vapor pressure of fatty acid 2-ethyhexyl esters	
pvap	0.31	kPa	425.25	Measurement and correlation of the density, viscosity and vapor pressure of fatty acid 2-ethyhexyl esters	
pvap	0.28	kPa	423.15	Measurement and correlation of the density, viscosity and vapor pressure of fatty acid 2-ethyhexyl esters	

pvap	0.21	kPa	419.15	Measurement and correlation of the density, viscosity and vapor pressure of fatty acid 2-ethyhexyl esters	
pvap	1.20	kPa	452.65	Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate	
pvap	0.73	kPa	442.67	Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate	
pvap	0.45	kPa	432.68	Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate	

рvар	0.27	kPa	422.44	Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate	
pvap	0.16	kPa	412.54	Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate	
рvар	0.09	kPa	402.41	Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate	

pvap	0.05	kPa	392.48	Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate	
pvap	0.03	kPa	382.55	Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate	
pvap	0.70	kPa	442.35	Measurement and correlation of the density, viscosity and vapor pressure of fatty acid 2-ethyhexyl esters	
pvap	6.84e-03	kPa	365.45	Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics	

pvap	0.01	kPa	372.35	Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate	
speedsl	1250.00	m/s	333.15	Density and Speed of Sound Measurements on Five Fatty Acid Methyl Esters at 83 kPa and Temperatures from (278.15 to 338.15) K	
speedsl	1268.00	m/s	328.15	Density and Speed of Sound Measurements on Five Fatty Acid Methyl Esters at 83 kPa and Temperatures from (278.15 to 338.15) K	
speedsl	1285.00	m/s	323.15	Density and Speed of Sound Measurements on Five Fatty Acid Methyl Esters at 83 kPa and Temperatures from (278.15 to 338.15) K	
speedsl	1303.00	m/s	318.15	Density and Speed of Sound Measurements on Five Fatty Acid Methyl Esters at 83 kPa and Temperatures from (278.15 to 338.15) K	

speedsl	1320.00	m/s	313.15	Density and Speed of Sound Measurements on Five Fatty Acid Methyl Esters at 83 kPa and Temperatures from (278.15 to 338.15) K	
speedsl	1338.00	m/s	308.15	Density and Speed of Sound Measurements on Five Fatty Acid Methyl Esters at 83 kPa and Temperatures from (278.15 to 338.15) K	
speedsl	1233.00	m/s	338.15	Density and Speed of Sound Measurements on Five Fatty Acid Methyl Esters at 83 kPa and Temperatures from (278.15 to 338.15) K	

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbrp	436.70	K	0.50	NIST Webbook

Correlations

Information	Value
Property code	pvap
Equation	In(Pvp) = A + B/(T + C)
Coeff. A	1.50314e+01
Coeff. B	-5.16468e+03
Coeff. C	-1.09270e+02
Temperature range (K), min.	459.57
Temperature range (K), max.	640.62

Datasets

Speed of sound, m/s

Pressure, kPa - Liquid	Temperature, K - Liquid	Speed of sound, m/s - Liquid
100.00	313.15	1317.2
10000.00	313.15	1365.4
20000.00	313.15	1411.5
30000.00	313.15	1454.4
40000.00	313.15	1494.8
100.00	323.15	1283.4
10000.00	323.15	1333.7
20000.00	323.15	1381.1
30000.00	323.15	1425.2
40000.00	323.15	1467.4
50000.00	323.15	1506.9
100.00	343.15	1215.3
10000.00	343.15	1270.1
20000.00	343.15	1319.7
30000.00	343.15	1366.8
40000.00	343.15	1410.5
50000.00	343.15	1450.6
100.00	363.15	1150.1
10000.00	363.15	1208.9
20000.00	363.15	1262.5
30000.00	363.15	1311.1
40000.00	363.15	1355.7
50000.00	363.15	1400.9
100.00	383.15	1087.2
10000.00	383.15	1150.3
20000.00	383.15	1207.5
30000.00	383.15	1259.3
40000.00	383.15	1310.8
50000.00	383.15	1358.3
100.00	393.15	1056.9
10000.00	393.15	1121.2
20000.00	393.15	1180.4
30000.00	393.15	1234.2

Reference

https://www.doi.org/10.1021/je400122k

Sources

Group Contribution Model for Predicting Viscosity of Fatty Expesimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Meia wen Meisters (FAMEs): Methyl hexanoate, methyl octanoate, methyl delaffoate, methyl delaffoate, methyl dodecanoate, delethoate, inlethyl dodecanoate, methyl tetradecanoate and methyl complete and methyl and methyl and an antique and antique antique and antique antique and antique an

Vapor liquid equilibrium of fatty acid ethyl esters determined using DSC: Isobaric vapor liquid equilibrium for binary system of methyl myristate +
thethoppelinatian enth splins and vancea:
pressures of a series of unstaurated
they accuments. gas chromatography: Phase behaviour of high molecular mass methyl esters in supercritical the Mixture of Methyl Palmitate and Manyliguesh activation of the Police of Methyl Palmitate and Manyliguesh activation of the Reaction of the Reaction Nexistics and originals:

Methyliguesh activation of the Reaction Nexistics and originals:

Methyliguesh activation of the Reaction Nexistics and originals:

Methyliguesh activation of the density, viscosity and vapor pressure weakly exempted for the Density, Viscosity, and Vapor Pressure to the Density, Viscosity, and Vapor Pressure to the Density of the De Persálesanoate, or Methyl Par removalo rice nelvsyntess instand akamasa gasification process. (Liquid + Hexadecanoare perweer 233.13 and 4 pages gasification process. (Liquid + https://www.doi.org/10.1016/j.fluid.2016.05.007 pages/jreine/aport/pages/

temperatures and pressures:

https://www.doi.org/10.1021/je600552b https://www.doi.org/10.1016/j.jct.2016.07.024

http://link.springer.com/article/10.1007/BF02311772

https://www.chemeo.com/doc/models/crippen_log10ws

https://www.doi.org/10.1016/j.jct.2019.01.007

https://www.doi.org/10.1021/acs.iced.5b00444

https://www.doi.org/10.1021/je8003854

https://www.doi.org/10.1021/je0499364

https://www.doi.org/10.1021/acs.jced.6b00857

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1021/je400122k

https://www.doi.org/10.1021/je301348z

https://www.doi.org/10.1021/je700293s

https://en.wikipedia.org/wiki/Joback_method

https://www.doi.org/10.1016/j.tca.2010.10.002

https://www.doi.org/10.1016/j.fluid.2014.09.006

https://www.doi.org/10.1016/j.tca.2007.02.008

http://webbook.nist.gov/cgi/cbook.cgi?ID=C112390&Units=SI

https://www.doi.org/10.1016/j.fluid.2011.08.015

https://www.doi.org/10.1021/je3003699

https://www.doi.org/10.1021/acs.jced.5b00545

https://www.doi.org/10.1021/acs.jced.7b00099

https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

https://www.doi.org/10.1016/j.jct.2011.12.009

Legend

chl: Standard liquid enthalpy of combustionchs: Standard solid enthalpy of combustion

cpg: Ideal gas heat capacitycps: Solid phase heat capacity

dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsubt: Enthalpy of sublimation at a given temperaturehvap: Enthalpy of vaporization at standard conditionshvapt: Enthalpy of vaporization at a given temperature

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressure

rinpol: Non-polar retention indices
ripol: Polar retention indices
speedsl: Speed of sound in fluid

ss: Solid phase molar entropy at standard conditions

tb: Normal Boiling Point Temperaturetbrp: Boiling point at reduced pressure

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/65-315-0/Hexadecanoic-acid-methyl-ester.pdf

Generated by Cheméo on 2024-04-29 12:26:26.138199987 +0000 UTC m=+16682835.058777297.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.