dl-Alanine

Other names: (.+/-.)-Alanine

ALANINE, «alpha»

Alanine, DL-

DL-«alpha»-Alanine

dl-2-aminopropanoic acid

dl-«alpha»-Aminopropionic acid

Inchi: InChl=1S/C3H7NO2/c1-2(4)3(5)6/h2H,4H2,1H3,(H,5,6)

InchiKey: QNAYBMKLOCPYGJ-UHFFFAOYSA-N

 Formula:
 C3H7NO2

 SMILES:
 CC(N)C(=0)O

Mol. weight [g/mol]: 89.09 CAS: 302-72-7

Physical Properties

Property code	Value	Unit	Source	
chs	-1602.00 ± 2.90	kJ/mol	NIST Webbook	
chs	-1623.40 ± 0.20	kJ/mol	NIST Webbook	
chs	-1617.30 ± 0.59	kJ/mol	NIST Webbook	
chs	-1633.60	kJ/mol	NIST Webbook	
gf	-227.35	kJ/mol	Joback Method	
hf	-341.55	kJ/mol	Joback Method	
hfs	-578.90 ± 2.90	kJ/mol	NIST Webbook	
hfs	-563.63 ± 0.59	kJ/mol	NIST Webbook	
hfus	10.89	kJ/mol	Joback Method	
hvap	55.95	kJ/mol	Joback Method	
log10ws	0.28		Crippen Method	
logp	-0.582		Crippen Method	
mcvol	70.550	ml/mol	McGowan Method	
рс	6046.69	kPa	Joback Method	
SS	132.20	J/mol×K	NIST Webbook	
tb	486.18	K	Joback Method	
tc	677.88	K	Joback Method	
tf	563.50	К	Thermophysical Study of Several alpha- and beta-Amino Acid Derivatives by Differential Scanning Calorimetry (DSC)	

0.252 m3/kmol Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	163.22	J/mol×K	550.08	Joback Method
cpg	168.75	J/mol×K	582.03	Joback Method
cpg	174.01	J/mol×K	613.98	Joback Method
cpg	179.00	J/mol×K	645.93	Joback Method
cpg	151.30	J/mol×K	486.18	Joback Method
cpg	157.40	J/mol×K	518.13	Joback Method
cpg	183.73	J/mol×K	677.88	Joback Method
cps	114.00	J/mol×K	298.00	NIST Webbook
cps	113.80	J/mol×K	298.00	NIST Webbook
cps	121.60	J/mol×K	298.15	NIST Webbook
cps	121.71	J/mol×K	297.50	NIST Webbook

Sources

Interactions of some ex-amino acids with tetra-n-alkylammonium bromides The repostys and sain the sactions of same sanine acids and peptides with delacity with the same sain amount of the same sain acids and peptides with delacity with the sain acids and peptides with the sain acids and peptides with the sain acids and peptides with the sain acids acids and peptides with the sain acids and peptides with the sain acids aci and tetradecyltrimethylammonium
Walfilde tivity in Aqueous Amino Acid
Solutions Containing Ammonium
Sturties and security in Aqueous Solutions:
Crippen Method:

https://www.doi.org/10.1021/je049582g
https://www.doi.org/10.1021/je049582g
http://pubs.acs.org/doi/abs/10.1021/ci99

Solubility of salicylic acid in pure alcohols at different temperatures: McGowan Method:

Crippen Method:

Partial Molar Volumes and Viscosities of Some r-Amino Acids in Micellar Surfaren Sur **Partial Molar Volumes and Viscosities** the ternary (dl-alanine/+d(-)-fructose + Waltern estimated in dl-a-aminobutyric acid in aqueous solutions at temperatures between 288.15 and 303.15 K:

https://www.doi.org/10.1016/j.jct.2006.08.010

https://www.doi.org/10.1016/j.jct.2013.11.001

https://en.wikipedia.org/wiki/Joback_method

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1016/j.jct.2012.09.006

http://link.springer.com/article/10.1007/BF02311772

https://www.chemeo.com/doc/models/crippen_log10ws

https://www.doi.org/10.1021/je049927v

https://www.doi.org/10.1016/j.fluid.2006.10.012

Phase Equilibrium System of Cadmium https://www.doi.org/10.1021/je900845g Chloride + dl-Alanine + Water at 298.15

http://webbook.nist.gov/cgi/cbook.cgi?ID=C302727&Units=SI NISTOVER HORSE MOIAT Enthalpy of

Formation of Cd3(Ala)2Cl6*4H2O: Thermophysical Study of Several https://www.doi.org/10.1021/je200292z alpha- and beta-Amino Acid Derivatives solutility and selections of a Calorimetry insembles of annuning and at the molecular at the solutility of annuning and insurant at https://www.doi.org/10.1021/je5007899

https://www.doi.org/10.1016/j.jct.2008.09.019 in the second of the line of t

https://www.doi.org/10.1016/j.jct.2003.11.001
wolumetric and viscometric properties
by the series present and is a present and series and viscometric studies of some Amino Acids in Aqueous
selubility and Interned the series and ser

Solutions:

Legend

Standard solid enthalpy of combustion chs:

Ideal gas heat capacity cpg: cps: Solid phase heat capacity

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions

hfs: Solid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions

Enthalpy of vaporization at standard conditions hvap:

log10ws: Log10 of Water solubility in mol/l logp: Octanol/Water partition coefficient McGowan's characteristic volume mcvol:

Critical Pressure pc:

Solid phase molar entropy at standard conditions SS:

Normal Boiling Point Temperature tb:

tc: Critical Temperature

tf: Normal melting (fusion) point

Critical Volume vc:

Latest version available from:

https://www.chemeo.com/cid/65-539-2/dl-Alanine.pdf

Generated by Cheméo on 2025-12-05 14:37:50.548563926 +0000 UTC m=+4693668.078604590.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.