dl-Alanine

Other names:	(.+/)-Alanine ALANINE, «alpha» Alanine, DL- DL-«alpha»-Alanine
	dl-2-aminopropanoic acid
	dl-«alpha»-Aminopropionic acid
Inchi:	InChI=1S/C3H7NO2/c1-2(4)3(5)6/h2H,4H2,1H3,(H,5,6)
InchiKey:	QNAYBMKLOCPYGJ-UHFFFAOYSA-N
Formula:	C3H7NO2
SMILES:	CC(N)C(=O)O
Mol. weight [g/mol]:	89.09
CAS:	302-72-7

Physical Properties

Property code	Value	Unit	Source	
chs	-1633.60	kJ/mol	NIST Webbook	
chs	-1623.40 ± 0.20	kJ/mol	NIST Webbook	
chs	-1617.30 ± 0.59	kJ/mol	NIST Webbook	
chs	-1602.00 ± 2.90	kJ/mol	NIST Webbook	
gf	-227.35	kJ/mol	Joback Method	
hf	-341.55	kJ/mol	Joback Method	
hfs	-563.63 ± 0.59	kJ/mol	NIST Webbook	
hfs	-578.90 ± 2.90	kJ/mol	NIST Webbook	
hfus	10.89	kJ/mol	Joback Method	
hvap	55.95	kJ/mol	Joback Method	
log10ws	0.28		Crippen Method	
logp	-0.582		Crippen Method	
mcvol	70.550	ml/mol	McGowan Method	
рс	6046.69	kPa	Joback Method	
SS	132.20	J/mol×K	NIST Webbook	
tb	486.18	K	Joback Method	
tc	677.88	К	Joback Method	
tf	563.50	К	Thermophysical Study of Several alpha- and beta-Amino Acid Derivatives by Differential Scanning Calorimetry (DSC)	

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	151.30	J/mol×K	486.18	Joback Method
cpg	157.40	J/mol×K	518.13	Joback Method
cpg	163.22	J/mol×K	550.08	Joback Method
cpg	168.75	J/mol×K	582.03	Joback Method
cpg	174.01	J/mol×K	613.98	Joback Method
cpg	179.00	J/mol×K	645.93	Joback Method
cpg	183.73	J/mol×K	677.88	Joback Method
cps	114.00	J/mol×K	298.00	NIST Webbook
cps	113.80	J/mol×K	298.00	NIST Webbook
cps	121.60	J/mol×K	298.15	NIST Webbook
cps	121.71	J/mol×K	297.50	NIST Webbook

Sources

NIST Webbook:

Excess Volume of Water in Hydrate Complexes of Some alpha-Amino About frect of ammonium sulfate on the solubility of amino acids in water at Solubility of amino acids in water at Solubility and Shemics of d, I-Alanine and Shebility and Juscins Matanaias IQCI Solute Solvent Interactions of Some Amino acids in Asolubility Solitive provide and Postalistic Solitive Solutions at different temperatures: Effect of glycine DI -alanine and Effect of glycine, DL-alanine and DL-2-aminobutyric acid on the temporalyna on exact the independence of some amino acids and peptides with budge at temping and peptides with budge at temping and peptides with budge at temping and the temping Aminoputy is the temping and the temping Aminoputy is the temping and temping and the temping and temping and

http://webbook.nist.gov/cgi/cbook.cgi?ID=C302727&Units=SI https://www.doi.org/10.1021/je400415r https://www.doi.org/10.1016/j.jct.2008.09.019 https://www.doi.org/10.1021/acs.jced.5b00351 https://www.doi.org/10.1021/acs.jced.7b00647 https://www.doi.org/10.1016/j.fluid.2007.04.004 https://www.doi.org/10.1016/j.jct.2012.09.006 https://www.doi.org/10.1016/j.jct.2015.04.024 https://www.doi.org/10.1016/j.jct.2013.11.001 https://www.doi.org/10.1021/acs.jced.7b00433 Notified weight of the sector of the secto https://www.chemeo.com/doc/models/crippen_log10ws

Crippen Method:

behaviour of glycine, DL-alanine, and Wattine five builde of give puschange of Acid Solutions formation and https://www.doi.org/10.1021/je401034k Solutions formation coefficients of https://www.doi.org/10.1021/je401034k Amino Acids in Aqueous Solutions: Thermophysical Study of Several https://www.doi.org/10.1021/je200292z alpha- and beta-Amino Acid Derivatives yo Diffettianano Kianamercia Situkiany of goog Amino Acids in Aqueous yo Uttation Commetric Inoridef active 1988 Sebanio 150 Kaana angaande onoric naganayo yo Commencia and anoric naganayo yo Commencia and anoric naganayo yo Commencia and anoric naganayo yo Commencia anoric yo Commenci yo Commencia anoric yo Commencia anoric yo Commencia anori temperatures: Joback Method:

butylcarbamate in pure alkanols at Bavial Molap Halunes and Viscosities of Some r-Amino Acids in Micellar Solutions of Sodium Caprylate:

Legend

http://pubs.acs.org/doi/abs/10.1021/ci990307I Volumetric, ultrasonic, and viscometric https://www.doi.org/10.1016/j.jct.2008.09.008 https://www.doi.org/10.1021/je100909b https://www.doi.org/10.1016/j.jct.2005.04.011 https://www.doi.org/10.1016/j.jct.2006.08.010 http://link.springer.com/article/10.1007/BF02311772 https://en.wikipedia.org/wiki/Joback_method Solubility of triclosan and iodopropynyl https://www.doi.org/10.1016/j.fluid.2012.05.020 https://www.doi.org/10.1021/je049927v

chs:	Standard solid enthalpy of combustion
срд:	Ideal gas heat capacity
cps:	Solid phase heat capacity
gf:	Standard Gibbs free energy of formation
hf:	Enthalpy of formation at standard conditions
hfs:	Solid phase enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hvap:	Enthalpy of vaporization at standard conditions
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
pc:	Critical Pressure
SS:	Solid phase molar entropy at standard conditions
tb:	Normal Boiling Point Temperature
tc:	Critical Temperature
tf:	Normal melting (fusion) point
vc:	Critical Volume

Latest version available from:

https://www.chemeo.com/cid/65-539-2/dl-Alanine.pdf

Generated by Cheméo on 2024-04-29 08:08:32.992121707 +0000 UTC m=+16667361.912699022.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.