Piperidine, 1-methyl-

Other names: 1-Methylpiperidine

1-pipecoline

N-Methylpiperidine

UN 2399 pipecoline

piperidine, N-methyl-

Inchi: InChl=1S/C6H13N/c1-7-5-3-2-4-6-7/h2-6H2,1H3

InchiKey: PAMIQIKDUOTOBW-UHFFFAOYSA-N

Formula: C6H13N

SMILES: CN1CCCC1

Mol. weight [g/mol]: 99.17 **CAS:** 626-67-5

Physical Properties

Property code	Value	Unit	Source
affp	971.10	kJ/mol	NIST Webbook
basg	940.10	kJ/mol	NIST Webbook
hvap	36.70 ± 0.10	kJ/mol	NIST Webbook
hvap	36.80 ± 0.60	kJ/mol	NIST Webbook
hvap	36.80 ± 0.60	kJ/mol	NIST Webbook
ie	8.29	eV	NIST Webbook
ie	8.35	eV	NIST Webbook
ie	8.29 ± 0.02	eV	NIST Webbook
ie	8.29 ± 0.05	eV	NIST Webbook
ie	8.29 ± 0.02	eV	NIST Webbook
ie	7.74 ± 0.05	eV	NIST Webbook
ie	7.80 ± 0.05	eV	NIST Webbook
log10ws	0.23		Aqueous Solubility Prediction Method
logp	1.102		Crippen Method
mcvol	94.520	ml/mol	McGowan Method
rinpol	769.00		NIST Webbook
rinpol	760.00		NIST Webbook
rinpol	750.00		NIST Webbook
rinpol	779.00		NIST Webbook
rinpol	769.00		NIST Webbook
rinpol	766.00		NIST Webbook

rinpol	749.00		NIST Webbook
rinpol	763.00		NIST Webbook
rinpol	750.00		NIST Webbook
rinpol	766.00		NIST Webbook
rinpol	769.00		NIST Webbook
rinpol	763.00		NIST Webbook
ripol	981.00		NIST Webbook
ripol	928.00		NIST Webbook
ripol	934.00		NIST Webbook
ripol	1020.00		NIST Webbook
ripol	959.00		NIST Webbook
ripol	999.00		NIST Webbook
ripol	1003.00		NIST Webbook
ripol	967.00		NIST Webbook
ripol	957.00		NIST Webbook
ripol	986.00		NIST Webbook
tb	380.20	K	NIST Webbook
tb	379.05 ± 0.50	K	NIST Webbook
tb	379.65 ± 0.50	K	NIST Webbook
tb	390.15 ± 3.00	K	NIST Webbook
tb	378.85 ± 0.20	K	NIST Webbook

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
срІ	184.90	J/mol×K	298.00	NIST Webbook	
cpl	175.40	J/mol×K		Excess Molar Enthalpies and Heat Capacities of [2-Methylpiperidine Water} and N-Methylpiperidine Water} Systems of Low to Moderate Amine Compositions	
cpl	181.50	J/mol×K		Excess Molar Enthalpies and Heat Capacities of [2-Methylpiperidine Water} and N-Methylpiperidine Water} Systems of Low to Moderate Amine Compositions	

cpl	183.50	J/mol×K	303.16	Excess Molar Enthalpies and Heat Capacities of {2-Methylpiperidine Water} and {N-Methylpiperidine Water} Systems of Low to Moderate Amine Compositions
cpl	185.50	J/mol×K	308.15	Excess Molar Enthalpies and Heat Capacities of {2-Methylpiperidine Water} and {N-Methylpiperidine Water} Systems of Low to Moderate Amine Compositions
cpl	187.50	J/mol×K	313.16	Excess Molar Enthalpies and Heat Capacities of {2-Methylpiperidine Water} and {N-Methylpiperidine Water} Systems of Low to Moderate Amine Compositions
cpl	189.10	J/mol×K	318.15	Excess Molar Enthalpies and Heat Capacities of {2-Methylpiperidine Water} and {N-Methylpiperidine Water} Systems of Low to Moderate Amine Compositions
срІ	191.20	J/mol×K	323.15	Excess Molar Enthalpies and Heat Capacities of {2-Methylpiperidine Water} and {N-Methylpiperidine Water} Systems of Low to Moderate Amine Compositions

onl	192.70	1/m al. 1/	220.45	Evene Maler
cpl	192.70	J/mol×K	328.15	Excess Molar Enthalpies and Heat Capacities of {2-Methylpiperidine Water} and {N-Methylpiperidine Water} Systems of Low to Moderate Amine Compositions
cpl	194.60	J/mol×K	333.15	Excess Molar Enthalpies and Heat Capacities of {2-Methylpiperidine Water} and {N-Methylpiperidine Water} Systems of Low to Moderate Amine Compositions
cpl	179.50	J/mol×K	293.15	Excess Molar Enthalpies and Heat Capacities of {2-Methylpiperidine Water} and {N-Methylpiperidine Water} Systems of Low to Moderate Amine Compositions
cpl	177.60	J/mol×K	288.15	Excess Molar Enthalpies and Heat Capacities of {2-Methylpiperidine Water} and {N-Methylpiperidine Water} Systems of Low to Moderate Amine Compositions
hvapt	36.50	kJ/mol	320.50	NIST Webbook
hvapt	37.30	kJ/mol	326.50	NIST Webbook
pvap	9.86	kPa	313.47	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols

pvap	7.95	kPa	308.47	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	6.16	kPa	302.86	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	5.49	kPa	300.35	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	3.92	kPa	293.51	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	3.75	kPa	292.70	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	2.90	kPa	287.85	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	2.23	kPa	282.90	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	4.96	kPa	298.15	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	1.24	kPa	273.18	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
rhol	803.61	kg/m3	308.15	Determination of Infinite Dilution Partial Molar Excess Enthalpies and Volumes for Some Ionic Liquid Precursors in Water and Methanol Using Tandem Flow Mixing Calorimetry and Vibrating-Tube Densimetry	

rhol	808.16	kg/m3	303.15	Determination of Infinite Dilution Partial Molar Excess Enthalpies and Volumes for Some Ionic Liquid Precursors in Water and Methanol Using Tandem Flow Mixing Calorimetry and Vibrating-Tube Densimetry
rhol	812.62	kg/m3	298.15	Determination of Infinite Dilution Partial Molar Excess Enthalpies and Volumes for Some Ionic Liquid Precursors in Water and Methanol Using Tandem Flow Mixing Calorimetry and Vibrating-Tube Densimetry
rhol	821.53	kg/m3	288.15	Determination of Infinite Dilution Partial Molar Excess Enthalpies and Volumes for Some Ionic Liquid Precursors in Water and Methanol Using Tandem Flow Mixing Calorimetry and Vibrating-Tube Densimetry
rhol	781.62	kg/m3	338.15	Temperatures of liquid-liquid separation and excess molar volumes of {N-methylpiperidine-water} and {2-methylpiperidine-water} systems
rhol	785.64	kg/m3	328.15	Temperatures of liquid-liquid separation and excess molar volumes of {N-methylpiperidine-water} and {2-methylpiperidine-water} systems

rhol	796.93	kg/m3	318.15	Temperatures of liquid-liquid separation and excess molar volumes of {N-methylpiperidine-water} and {2-methylpiperidine-water} systems
rhol	803.85	kg/m3	308.15	Temperatures of liquid-liquid separation and excess molar volumes of {N-methylpiperidine-water} and {2-methylpiperidine-water} systems
rhol	810.89	kg/m3	298.15	Temperatures of liquid-liquid separation and excess molar volumes of {N-methylpiperidine-water} and {2-methylpiperidine-water} systems
rhol	822.24	kg/m3	288.15	Temperatures of liquid-liquid separation and excess molar volumes of {N-methylpiperidine-water} and {2-methylpiperidine-water} systems
rhol	817.22	kg/m3	293.15	Determination of Infinite Dilution Partial Molar Excess Enthalpies and Volumes for Some Ionic Liquid Precursors in Water and Methanol Using Tandem Flow Mixing Calorimetry and Vibrating-Tube Densimetry

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)

Coeff. A	1.42259e+01
Coeff. B	-3.20286e+03
Coeff. C	-4.68320e+01
Temperature range (K), min.	276.62
Temperature range (K), max.	406.12

Sources

NIST Webbook: http://webbook.nist.gov/cgi/cbook.cgi?ID=C626675&Units=SI

The Yaws Handbook of Vapor https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

Pressure: Temperatures of liquid-liquid https://www.doi.org/10.1016/j.fluid.2010.05.001

nttps://www.doi.org/10.1016/j.fiuld.2010
separation and excess molar volumes
betarmically of children death of the properties of the language and yolkses
by separation and excess molar volumes
betarmically of the language and yolkses
by separation with the language and yolkses
by separation with the language and yolkses
by separation and continuous for the language and yolkses
by separation and excess molar volumes
by separation and excess mol

https://www.doi.org/10.1021/je5008444

https://www.doi.org/10.1021/acs.jced.6b00576

Ethers, and Cyclic and Open Chain Secondary Alconois:

http://link.springer.com/article/10.1007/BF02311772

Crippen Method:

http://pubs.acs.org/doi/abs/10.1021/ci990307l

Liquid-liquid phase separation of {amine e H2O e CO2} systems: New methods for key data:

https://www.doi.org/10.1016/j.fluid.2016.10.010

Legend

Proton affinity affp: Gas basicity basg:

cpl: Liquid phase heat capacity

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

Ionization energy ie:

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: McGowan's characteristic volume mcvol:

Vapor pressure pvap: rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

Normal Boiling Point Temperature tb:

Latest version available from:

https://www.chemeo.com/cid/65-688-7/Piperidine-1-methyl.pdf

Generated by Cheméo on 2025-12-06 02:40:57.802152817 +0000 UTC m=+4737055.332193479.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.