Tetrahydrofuran

Other names: 1,4-epoxybutane

Butane «alpha», «delta»-oxide

Butane «alpha»,«delta»-oxide

Butane, 1,4-epoxy-

Cyclotetramethylene oxide

Diethylene oxide Dynasolve 150 Furan, tetrahydro-

Furanidine Hydrofuran NCI-C60560 NSC 57858

Oxacyclopentane

Oxolane

Rcra waste number U213

THF

THF (tetrahydrofuran)
Tetrahydrofurana
Tetrahydrofurane
Tetrahydrofuranne
Tetraidrofurano

Tetramethylene oxide

UN 2056

Inchi: InChl=1S/C4H8O/c1-2-4-5-3-1/h1-4H2
InchiKey: WYURNTSHIVDZCO-UHFFFAOYSA-N

Formula: C4H8O

SMILES: C1CCOC1

Mol. weight [g/mol]: 72.11

CAS: 109-99-9

Physical Properties

Property code	Value	Unit	Source
affp	822.10	kJ/mol	NIST Webbook
basg	794.70	kJ/mol	NIST Webbook
chg	-2533.20 ± 0.67	kJ/mol	NIST Webbook
chl	-2505.80 ± 2.10	kJ/mol	NIST Webbook

chl	-2501.20 ± 0.84	kJ/mol	NIST Webbook
dvisc	0.0004750	Pa×s	A volumetric and viscosity study for the binary mixtures of 1-hexyl-3-methylimidazolium tetrafluoroborate with some molecular solvents
gf	-59.06	kJ/mol	Joback Method
hf	-184.20 ± 0.71	kJ/mol	NIST Webbook
hfus	6.96	kJ/mol	Joback Method
hvap	32.00	kJ/mol	NIST Webbook
hvap	32.90	kJ/mol	NIST Webbook
hvap	32.00	kJ/mol	NIST Webbook
hvap	32.16	kJ/mol	NIST Webbook
ie	9.38 ± 0.05	eV	NIST Webbook
ie	9.38	eV	NIST Webbook
ie	9.41	eV	NIST Webbook
ie	9.42 ± 0.01	eV	NIST Webbook
ie	9.40 ± 0.02	eV	NIST Webbook
ie	9.74	eV	NIST Webbook
ie	9.71	eV	NIST Webbook
ie	9.65	eV	NIST Webbook
ie	9.53	eV	NIST Webbook
ie	9.57 ± 0.02	eV	NIST Webbook
ie	9.54	eV	NIST Webbook
log10ws	0.49		Estimated Solubility Method
logp	0.797		Crippen Method
mcvol	62.230	ml/mol	McGowan Method
pc	5190.00 ± 50.66	kPa	NIST Webbook
rinpol	626.00		NIST Webbook
rinpol	640.00		NIST Webbook
rinpol	618.00		NIST Webbook
rinpol	612.90		NIST Webbook
rinpol	618.00		NIST Webbook
rinpol	631.00		NIST Webbook
rinpol	620.00		NIST Webbook
rinpol	626.00		NIST Webbook
rinpol	631.00		NIST Webbook
rinpol	630.00		NIST Webbook
rinpol	611.00		NIST Webbook
rinpol	609.80		NIST Webbook
rinpol	609.90		NIST Webbook
rinpol	617.00		NIST Webbook
rinpol	621.00		NIST Webbook
rinpol	609.00		NIST Webbook
-			

rinpol	619.00	NIST Webbook
rinpol	610.00	NIST Webbook
rinpol	632.00	NIST Webbook
rinpol	629.00	NIST Webbook
rinpol	617.00	NIST Webbook
rinpol	624.00	NIST Webbook
rinpol	622.00	NIST Webbook
rinpol	623.00	NIST Webbook
rinpol	638.00	NIST Webbook
rinpol	627.00	NIST Webbook
rinpol	629.00	NIST Webbook
rinpol	612.00	NIST Webbook
rinpol	622.00	NIST Webbook
rinpol	608.00	NIST Webbook
rinpol	638.00	NIST Webbook
rinpol	615.00	NIST Webbook
rinpol	624.00	NIST Webbook
rinpol	615.00	NIST Webbook
rinpol	636.00	NIST Webbook
rinpol	619.00	NIST Webbook
rinpol	618.00	NIST Webbook
rinpol	615.00	NIST Webbook
rinpol	633.00	NIST Webbook
rinpol	620.00	NIST Webbook
rinpol	618.00	NIST Webbook
rinpol	623.20	NIST Webbook
rinpol	614.00	NIST Webbook
rinpol	630.00	NIST Webbook
rinpol	624.00	NIST Webbook
rinpol	620.00	NIST Webbook
rinpol	620.00	NIST Webbook
rinpol	629.00	NIST Webbook
rinpol	638.00	NIST Webbook
rinpol	640.00	NIST Webbook
ripol	898.00	NIST Webbook
ripol	888.00	NIST Webbook
ripol	907.00	NIST Webbook
ripol	915.00	NIST Webbook
ripol	887.00	NIST Webbook
ripol	829.00	NIST Webbook
ripol	900.00	NIST Webbook
ripol	868.00	NIST Webbook
ripol	872.00	NIST Webbook
	3.2.00	

ripol sg sl sl sl sl tb	895.00 854.00 829.00 857.00 854.00 867.00 866.00 861.00 868.00 903.00 868.00 900.00 301.70 ± 1.70 203.90 203.80 203.90 337.65 ± 2.00 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	J/mol×K J/mol×K J/mol×K K K K K	NIST Webbook
ripol sg sl sl sl tb	829.00 857.00 854.00 867.00 866.00 861.00 868.00 903.00 868.00 900.00 301.70 ± 1.70 203.90 203.80 203.90 337.65 ± 2.00 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	J/mol×K J/mol×K J/mol×K K K	NIST Webbook
ripol sg sl sl sl sl tb	857.00 854.00 867.00 866.00 861.00 868.00 903.00 868.00 900.00 301.70 ± 1.70 203.90 203.80 203.90 337.65 ± 2.00 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	J/mol×K J/mol×K J/mol×K K K	NIST Webbook
ripol ripol ripol ripol ripol ripol ripol ripol ripol sg sl sl sl sl tb	854.00 867.00 866.00 861.00 868.00 903.00 868.00 900.00 301.70 ± 1.70 203.90 203.80 203.80 203.90 337.65 ± 2.00 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	J/mol×K J/mol×K J/mol×K K K	NIST Webbook
ripol ripol ripol ripol ripol ripol ripol ripol sg sl sl sl sl tb	867.00 866.00 861.00 868.00 903.00 868.00 900.00 301.70 ± 1.70 203.90 203.80 203.90 337.65 ± 2.00 337.65 ± 2.00 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	J/mol×K J/mol×K J/mol×K K K	NIST Webbook
ripol ripol ripol ripol ripol ripol ripol sg sl sl sl tb	866.00 861.00 868.00 903.00 868.00 900.00 301.70 ± 1.70 203.90 203.80 203.90 337.65 ± 2.00 337.65 ± 2.00 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	J/mol×K J/mol×K J/mol×K K K	NIST Webbook
ripol ripol ripol ripol ripol sg sl sl sl tb	861.00 868.00 903.00 868.00 900.00 301.70 ± 1.70 203.90 203.80 203.90 337.65 ± 2.00 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	J/mol×K J/mol×K J/mol×K K K	NIST Webbook
ripol ripol ripol ripol sg sl sl sl tb	868.00 903.00 868.00 900.00 301.70 ± 1.70 203.90 203.80 203.90 337.65 ± 2.00 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	J/mol×K J/mol×K J/mol×K K K	NIST Webbook
ripol ripol ripol sg sl sl sl tb	903.00 868.00 900.00 301.70 ± 1.70 203.90 203.80 203.90 337.65 ± 2.00 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	J/mol×K J/mol×K J/mol×K K K	NIST Webbook
ripol ripol sg sl sl sl tb	868.00 900.00 301.70 ± 1.70 203.90 203.80 203.90 337.65 ± 2.00 337.65 ± 2.00 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	J/mol×K J/mol×K J/mol×K K K	NIST Webbook
ripol sg sl sl sl sl tb	900.00 301.70 ± 1.70 203.90 203.80 203.90 337.65 ± 2.00 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	J/mol×K J/mol×K J/mol×K K K	NIST Webbook
sg sl sl sl sl tb	301.70 ± 1.70 203.90 203.80 203.90 337.65 ± 2.00 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	J/mol×K J/mol×K J/mol×K K K	NIST Webbook
sg sl sl sl sl tb	203.90 203.80 203.90 337.65 ± 2.00 337.65 ± 0.30 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	J/mol×K J/mol×K J/mol×K K K	NIST Webbook NIST Webbook NIST Webbook NIST Webbook NIST Webbook NIST Webbook
sl sl sl sl tb	203.80 203.90 337.65 ± 2.00 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	J/mol×K J/mol×K K K	NIST Webbook NIST Webbook NIST Webbook NIST Webbook NIST Webbook
sl tb	203.90 337.65 ± 2.00 337.65 ± 2.00 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	J/mol×K K K K	NIST Webbook NIST Webbook NIST Webbook NIST Webbook
tb t	337.65 ± 2.00 337.65 ± 2.00 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	К К К	NIST Webbook NIST Webbook NIST Webbook
tb t	337.65 ± 2.00 339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	K K	NIST Webbook NIST Webbook
tb t	339.65 ± 0.30 339.10 ± 0.20 340.00 ± 2.00	K	NIST Webbook
tb	339.10 ± 0.20 340.00 ± 2.00		
tb	340.00 ± 2.00	K	
tb			NIST Webbook
tb tb tb tb tb tb tb tb tb		K	NIST Webbook
tb tb tb tb tb tb tb	339.00 ± 2.00	K	NIST Webbook
tb tb tb tb tb tb	337.90 ± 0.50	K	NIST Webbook
tb tb tb tb	340.15 ± 2.00	K	NIST Webbook
tb tb tb	338.90 ± 0.15	K	NIST Webbook
tb tb	339.10	K	NIST Webbook
tb tb	340.20	K	NIST Webbook
tb	339.20 ± 0.50	K	NIST Webbook
	339.15 ± 0.10	K	NIST Webbook
tb	338.90	K	NIST Webbook
	339.20	К	Experimental Isobaric Vapor-Liquid Equilibrium Data for Binary Mixtures of Cyclic Ethers with (1-Methylethyl)benzene
tb	339.12	К	Isobaric Vapor-Liquid Equilibrium for Binary System of Tetrahydrofuran + 1,4-Butanediol and gamma-Butyrolactone at 50.0 and 70.0 kPa
tb	338.65	К	Measurement and correlation of isobaric vapor-liquid equilibria of methanol + tetrahydrofuran + 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide at 101.3 kPa

tb	339.12	K	Study of isobaric vapour liquid equilibrium of some cyclic ethers with 1-chloropropane: Experimental results and SAFT-VR modelling
tb	339.35 ± 0.50	K	NIST Webbook
tb	330.15 ± 2.00	K	NIST Webbook
tb	339.05 ± 0.30	K	NIST Webbook
tc	541.00 ± 1.50	K	NIST Webbook
tc	540.10 ± 0.30	K	NIST Webbook
tc	540.20	K	NIST Webbook
tf	164.05 ± 0.40	K	NIST Webbook
tf	164.63 ± 0.20	K	NIST Webbook
tf	164.15 ± 1.00	K	NIST Webbook
tf	165.10 ± 0.50	K	NIST Webbook
tt	164.76 ± 0.02	K	NIST Webbook
tt	164.76 ± 0.02	K	NIST Webbook
tt	164.76 ± 0.05	K	NIST Webbook
VC	0.225 ± 0.003	m3/kmol	NIST Webbook
volm	8.17e-05	m3/mol	Excess Gibbs Energies of the Ternary System 2-Methoxyethanol + Tetrahydrofuran + Cyclohexane and Other Relevant Binaries at 298.15 K
volm	8.17e-05	m3/mol	Excess Gibbs energies and volumes of the ternary system chloroform + tetrahydrofuran + cyclohexane at 298.15 K

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	133.68 ± 0.27	J/mol×K	500.15	NIST Webbook
cpg	120.39 ± 0.24	J/mol×K	449.15	NIST Webbook
cpg	106.12 ± 0.21	J/mol×K	399.15	NIST Webbook
cpg	91.36 ± 0.18	J/mol×K	349.15	NIST Webbook
cpg	85.13 ± 0.17	J/mol×K	328.15	NIST Webbook
cpl	106.70	J/mol×K	210.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry

cpl	124.50	J/mol×K	305.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	123.10	J/mol×K	300.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	121.70	J/mol×K	295.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	120.30	J/mol×K	290.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	119.20	J/mol×K	285.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	120.50	J/mol×K	298.00	NIST Webbook	
cpl	120.00	J/mol×K	298.15	NIST Webbook	
cpl	123.90	J/mol×K	298.15	NIST Webbook	
cpl	123.56	J/mol×K	298.15	NIST Webbook	
cpl	122.92	J/mol×K	298.15	NIST Webbook	
cpl	124.10	J/mol×K	298.15	NIST Webbook	
cpl	124.10	J/mol×K	298.15	NIST Webbook	
cpl	126.00	J/mol×K	310.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	135.20	J/mol×K	318.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	128.80	J/mol×K	320.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	

cpl	133.20	J/mol×K	313.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	131.40	J/mol×K	308.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	128.50	J/mol×K	303.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	136.60	J/mol×K	323.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	126.40	J/mol×K	298.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	123.80	J/mol×K	293.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	
cpl	121.10	J/mol×K	288.15	Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model	

cpl	115.50	J/mol×K	270.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
срІ	130.50	J/mol×K	325.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	105.50	J/mol×K	180.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	105.60	J/mol×K	185.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	105.80	J/mol×K	190.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	106.00	J/mol×K	195.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	106.30	J/mol×K	200.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	117.90	J/mol×K	280.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	116.60	J/mol×K	275.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	107.90	J/mol×K	225.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	

cpl	114.40	J/mol×K	265.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry
cpl	113.40	J/mol×K	260.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry
cpl	112.40	J/mol×K	255.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry
cpl	111.50	J/mol×K	250.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry
cpl	110.60	J/mol×K	245.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry
cpl	109.80	J/mol×K	240.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry
cpl	109.20	J/mol×K	235.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry
cpl	108.50	J/mol×K	230.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry
cpl	106.50	J/mol×K	205.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry
cpl	107.60	J/mol×K	220.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry
cpl	123.90	J/mol×K	298.15	NIST Webbook

cpl	127.30	J/mol×K	315.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
cpl	107.20	J/mol×K	215.15	Measurement of heat capacities of ionic liquids by differential scanning calorimetry	
dvisc	0.0004540	Paxs	298.15	Excess molar volume, viscosity, and refractive index study for the ternary mixture {2-methyl-2-butanol (1) + tetrahydrofuran (2) + propylamine (3)} at different temperatures. Application of the ERAS-model and Peng Robinson Stryjek Vera equation of state	
dvisc	0.0004276	Paxs	308.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques	
dvisc	0.0004631	Paxs	298.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques	

dvisc	0.0003902	Paxs	318.15	Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K	
dvisc	0.0004277	Paxs	308.15	Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K	
dvisc	0.0004630	Paxs	298.15	Densities, Viscosities, and Sound Speeds of Some Acetate Salts in Binary Mixtures of Tetrahydrofuran and Methanol at (303.15, 313.15, and 323.15) K	
dvisc	0.0004631	Paxs	298.15	Densities and Viscosities of the Binary Mixtures of Tetrahydrofuran with Isomeric Chlorobutanes at 298.15 K and 313.15 K	
dvisc	0.0003992	Paxs	313.15	Excess Enthalpy, Excess Volume, Viscosity Deviation, and Speed of Sound Deviation for the Mixture Tetrahydrofuran + 2,2,2-Trifluoroethano at (283.15, 298.15, and 313.15) K	ol .

dvisc	0.0004645	Paxs	298.15	Excess Enthalpy, Excess Volume, Viscosity Deviation, and Speed of Sound Deviation for the Mixture Tetrahydrofuran + 2,2,2-Trifluoroethanol at (283.15, 298.15, and 313.15) K
dvisc	0.0005438	Paxs	283.15	Excess Enthalpy, Excess Volume, Viscosity Deviation, and Speed of Sound Deviation for the Mixture Tetrahydrofuran + 2,2,2-Trifluoroethanol at (283.15, 298.15, and 313.15) K
dvisc	0.0004172	Pa×s	308.15	Excess molar volume, viscosity, and refractive index study for the ternary mixture {2-methyl-2-butanol (1) + tetrahydrofuran (2) + propylamine (3)} at different temperatures. Application of the ERAS-model and Peng Robinson Stryjek Vera equation of state
dvisc	0.0003903	Paxs	318.15	Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques

dvisc	0.0004991	Paxs	288.15	Excess molar volume, viscosity, and refractive index study for the ternary mixture {2-methyl-2-butanol (1) + tetrahydrofuran (2) + propylamine (3)} at different temperatures. Application of the ERAS-model and Peng Robinson Stryjek Vera equation of state
dvisc	0.0004125	Paxs	308.15	Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at different temperatures
dvisc	0.0004580	Paxs	298.15	Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at different temperatures
dvisc	0.0003900	Paxs	313.00	Ultrasonic velocity, viscosity and excess properties of binary mixture of tetrahydrofuran with 1-propanol and 2-propanol
dvisc	0.0004200	Paxs	303.00	Ultrasonic velocity, viscosity and excess properties of binary mixture of tetrahydrofuran with 1-propanol and 2-propanol

dvisc	0.0004700	Paxs	293.00	Ultrasonic velocity, viscosity and excess properties of binary mixture of tetrahydrofuran with 1-propanol and 2-propanol	
dvisc	0.0004900	Paxs	293.00	Ultrasonic velocity, viscosity and excess properties of binary mixture of tetrahydrofuran with 1-propanol and 2-propanol	
dvisc	0.0004260	Paxs	308.15	Viscosity Behavior of Some Oxygen Containing Compounds	
dvisc	0.0004620	Paxs	298.15	Viscosity Behavior of Some Oxygen Containing Compounds	
dvisc	0.0005080	Paxs	288.15	Viscosity Behavior of Some Oxygen Containing Compounds	
dvisc	0.0003979	Paxs	313.15	Densities and Viscosities of the Binary Mixtures of Tetrahydrofuran with Isomeric Chlorobutanes at 298.15 K and 313.15 K	
dvisc	0.0003762	Paxs	318.15	Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at different temperatures	
hfust	8.54	kJ/mol	164.80	NIST Webbook	
hfust	8.54	kJ/mol	164.76	NIST Webbook	
hfust	8.54	kJ/mol	164.80	NIST Webbook	
hfust	8.54	kJ/mol	164.76	NIST Webbook	
hvapt	33.10	kJ/mol	306.00	NIST Webbook	
hvapt	30.80	kJ/mol	320.50	NIST Webbook	
hvapt	32.50 ± 0.20	kJ/mol	287.50	NIST Webbook	

hvapt	29.60	kJ/mol	504.00	NIST Webbook	
hvapt	29.00	kJ/mol	439.00	NIST Webbook	
hvapt	31.90	kJ/mol	334.50	NIST Webbook	
hvapt	32.30	kJ/mol	314.50	NIST Webbook	
hvapt	29.81	kJ/mol	339.10	NIST Webbook	
hvapt	32.80	kJ/mol	290.50	NIST Webbook	
hvapt	33.00	kJ/mol	293.00	NIST Webbook	
hvapt	31.80	kJ/mol	303.00	NIST Webbook	
kvisc	0.0000005	m2/s	313.15	Experimental and predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15K	
kvisc	0.0000005	m2/s	298.15	Experimental and predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15K	
kvisc	0.000006	m2/s	283.15	Experimental and predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15K	
pvap	11.68	kPa		Vapor pressures and activity coefficients of binary mixtures of thyl-3-methylimidazoli ifluoromethylsulfonyl)i with acetonitrile and tetrahydrofuran	

pvap	21.60	kPa	298.15 Isothermal (vapour + liquid) equilibrium for binary mixtures of (tetrahydrofuran + 1,1,2,2-tetrachloroethane or tetrachloroethene) at nine temperatures
pvap	17.25	kPa	293.15 Isothermal (vapour + liquid) equilibrium for binary mixtures of (tetrahydrofuran + 1,1,2,2-tetrachloroethane or tetrachloroethene) at nine temperatures
pvap	13.67	kPa	288.15 Isothermal (vapour + liquid) equilibrium for binary mixtures of (tetrahydrofuran + 1,1,2,2-tetrachloroethane or tetrachloroethene) at nine temperatures
pvap	10.73	kPa	283.15 Isothermal (vapour + liquid) equilibrium for binary mixtures of (tetrahydrofuran + 1,1,2,2-tetrachloroethane or tetrachloroethene) at nine temperatures
pvap	101.30	kPa	338.65 Measurement and correlation of isobaric vapor-liquid equilibria of methanol + tetrahydrofuran + 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide at 101.3 kPa
pvap	70.61	kPa	328.15 Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane

	40.00		040.45
pvap	40.62	kPa	313.15 Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane
pvap	21.61	kPa	298.15 Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane
pvap	8.61	kPa	279.41 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	26.81	kPa	303.15 Isothermal (vapour + liquid) equilibrium for binary mixtures of (tetrahydrofuran + 1,1,2,2-tetrachloroethane or tetrachloroethene)
			at nine temperatures
pvap	32.94	kPa	308.15 Isothermal (vapour + liquid) equilibrium for binary mixtures of (tetrahydrofuran +
			1,1,2,2-tetrachloroethane or tetrachloroethene) at nine temperatures
pvap	40.21	kPa	313.15 Isothermal (vapour + liquid) equilibrium for binary mixtures of (tetrahydrofuran
			1,1,2,2-tetrachloroethane or tetrachloroethene) at nine temperatures

pvap	48.68	kPa	318.15 Isothermal (vapour + liquid) equilibrium for binary mixtures of (tetrahydrofuran +
			1,1,2,2-tetrachloroethane or
			tetrachloroethene)
			at nine temperatures
pvap	58.54	kPa	323.15 Isothermal (vapour + liquid) equilibrium for binary mixtures of
			(tetrahydrofuran
			1,1,2,2-tetrachloroethane
			or tetrachloroethene)
			at nine temperatures
pvap	13.79	kPa	288.50 Vapor pressures
			and activity coefficients of binary mixtures
			of 1-ethyl-3-methylimidazolium
			bis(trifluoromethylsulfonyl)imide with acetonitrile
			and tetrahydrofuran
pvap	21.61	kPa	298.15 Isothermal (vapour + liquid)
			equilibrium of
			(cyclic ethers + chlorohexane)
			mixtures: Experimental
			results and SAFT modelling
pvap	14.00	kPa	289.00 Vapor pressures
F 1 3 4			and activity coefficients of
			binary mixtures
			of 1-ethyl-3-methylimidazolium
			bis(trifluoromethylsulfonyl)imide with acetonitrile
			and tetrahydrofuran
pvap	14.48	kPa	289.66 Vapor pressures
			and activity coefficients of
			binary mixtures of
			1-ethyl-3-methylimidazolium
			bis(trifluoromethylsulfonyl)imide with acetonitrile
			and tetrahydrofuran
			•

pvap	15.65	kPa	291.04 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	16.65	kPa	292.31 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	17.43	kPa	293.30 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	19.72	kPa	296.05 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	20.37	kPa	296.84 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	20.65	kPa	297.09 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

pvap	21.50	kPa	298.15 1-eth bis(trifl	Vapor pressures and activity coefficients of binary mixtures of nyl-3-methylimidazolium luoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	22.24	kPa	298.72 1-eth bis(trifl	Vapor pressures and activity coefficients of binary mixtures of nyl-3-methylimidazolium luoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	70.61	kPa	328.15	Isothermal (vapour + liquid) equilibrium of (cyclic ethers + chlorohexane) mixtures: Experimental results and SAFT modelling
pvap	25.28	kPa	301.73 1-eth bis(trifl	Vapor pressures and activity coefficients of binary mixtures of nyl-3-methylimidazolium luoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	26.87	kPa		Vapor pressures and activity coefficients of binary mixtures of nyl-3-methylimidazolium luoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	27.79	kPa		Vapor pressures and activity coefficients of binary mixtures of nyl-3-methylimidazolium luoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

pvap	7.10	kPa	275.99 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	7.56	kPa	276.53 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and
			tetrahydrofuran
pvap	7.84	kPa	277.76 Vapor pressures and activity coefficients of binary mixtures of
			1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	8.33	kPa	278.19 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	12.44	kPa	286.55 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	9.04	kPa	279.86 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

pvap	8.93	kPa	280.16 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	9.96	kPa	281.95 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	10.55	kPa	283.07 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	10.32	kPa	283.15 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	10.90	kPa	283.36 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	29.43	kPa	305.35 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

pvap	30.77	kPa	306.54 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	32.49	kPa	308.07 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and
pvap	35.55	kPa	tetrahydrofuran 310.20 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	36.65	kPa	310.86 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	38.54	kPa	311.90 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	40.13	kPa	313.12 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

pvap	40.09	kPa	313.18 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	44.65	kPa	315.86 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	47.86	kPa	317.71 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	51.31	kPa	319.58 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	55.34	kPa	321.57 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	59.46	kPa	323.59 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

pvap	6.59	kPa	273.60	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	8.38	kPa	278.30	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	11.81	kPa	285.02	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	13.02	kPa	286.97	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	14.89	kPa	289.75	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	17.00	kPa	292.65	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	21.27	kPa	297.57	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	26.67	kPa	302.75	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	32.88	kPa	307.83	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	26.67	kPa	303.04 1,1,1,2,3	Double Azeotropy in Binary Mixtures ,4,4,5,5,5-Decafluoropentane High-Boiling Diastereomer + Tetrahydrofuran
pvap	26.68	kPa	303.05 1,1,1,2,3	Double Azeotropy in Binary Mixtures ,4,4,5,5,5-Decafluoropentane High-Boiling Diastereomer + Tetrahydrofuran

pvap	29.09	kPa	305.11 Double Azeotropy in Binary Mixtures 1,1,1,2,3,4,4,5,5,5-Decafluoropentane High-Boiling Diastereomer + Tetrahydrofuran
pvap	34.50	kPa	309.28 Double Azeotropy in Binary Mixtures 1,1,1,2,3,4,4,5,5,5-Decafluoropentane High-Boiling Diastereomer + Tetrahydrofuran
pvap	40.15	kPa	313.11 Double Azeotropy in Binary Mixtures 1,1,1,2,3,4,4,5,5,5-Decafluoropentane High-Boiling Diastereomer + Tetrahydrofuran
pvap	45.51	kPa	316.36 Double Azeotropy in Binary Mixtures 1,1,1,2,3,4,4,5,5,5-Decafluoropentane High-Boiling Diastereomer + Tetrahydrofuran
pvap	48.62	kPa	318.10 Double Azeotropy in Binary Mixtures 1,1,1,2,3,4,4,5,5,5-Decafluoropentane High-Boiling Diastereomer + Tetrahydrofuran
pvap	23.84	kPa	300.57 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran
pvap	26.62	kPa	302.96 Vapor pressures and activity coefficients of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with acetonitrile and tetrahydrofuran

rfi	1.40720	298.15	Bubble temperature	
			measurements on the binary mixtures formed by decane with a variety of compounds at 95.8 kPa	
rfi	1.39510	318.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.39750	313.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.39990	308.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.40230	303.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.40460	298.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	
rfi	1.40700	293.15	Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K	

rfi	1.40940	288.15 Refractive Indices of Binary Mixtures of Tetrahydrofuran with Aromatic Hydrocarbon at Temperatures from (288.15 to 318.15) K
rfi	1.40500	298.15 Viscosity, Density, Speed of Sound, and Refractive Index of Binary Mixtures of Organic Solvent + Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate at 298.15 K
rfi	1.40520	298.15 Acoustic and Volumetric Properties of Binary Mixtures of Ionic Liquid 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide with Acetonitrile and Tetrahydrofuran
rfi	1.40610	298.15 Vapor Liquid Equilibrium for Ternary and Binary Mixtures of Tetrahydrofuran, Cyclohexane, and 1,2-Propanediol at 101.3 kPa
rfi	1.40500	293.15 Solubilities of Phosphorus-Containing Compounds in Selected Solvents
rfi	1.40470	298.15 Solubilities of Bis (2,2,6,6-Tetramethyl-4-Piperidinyl) Maleate in Hexane, Heptane, Octane, m-Xylene and Tetrahydrofuran from (253.15 to 310.15) K
rfi	1.40480	303.15 Thermodynamic Properties of Water + Tetrahydrofuran and Water + 1,4-Dioxane Mixtures at (303.15, 313.15, and 323.15) K

rfi	1.40260	303.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Tri-n-butylamine + Triethylamine, + Tetrahydrofuran, + Tetradecane, + Tetrachloroethylene, + Pyridine, or + Trichloroethylene at (298.15, 303.15, and 308.15) K
rfi	1.39980	308.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Tri-n-butylamine + Triethylamine, + Tetrahydrofuran, + Tetradecane, + Tetrachloroethylene, + Pyridine, or + Trichloroethylene at (298.15, 303.15, and 308.15) K
rfi	1.40490	298.15	Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Tri-n-butylamine + Triethylamine, + Tetrahydrofuran, + Tetradecane, + Tetrachloroethylene, + Pyridine, or + Trichloroethylene at (298.15, 303.15, and 308.15) K

rfi	1.40720		293.15	Bubble-Temperature Measurements on Some Binary Mixtures Formed by Tetrahydrofuran or Amyl Alcohol with Hydrocarbons, Chlorohydrocarbons, or Butanols at (94.6 or 95.8) kPa
rfi	1.40280		303.15	Densities, speeds of sound, isentropic compressibilities, refractive indexes, and viscosities of tetrahydrofuran with haloalkane or alkyl ethanoate at T = 303.15 K
rfi	1.40480		298.15	To the issue of temperature-dependent behavior of standard molar volumes of components in the binary system (water + tetrahydrofuran) at ambient pressure
rhol	882.00	kg/m3	298.15	Vapour liquid equilibrium of cyclic ethers with 1-chlorohexane: Experimental results and UNIFAC predictions
rhol	878.00	kg/m3	303.00	Densities, ultrasonic speeds and refractive indices of phenetole with N-methyl-2-pyrrolidone, N,N-dimethylformamide and tetrahydrofuran binary mixtures at different temperatures

rhol	882.00	kg/m3	298.00	Densities,
IIIOI	002.00	Ng/IIIO	290.00	ultrasonic speeds and refractive indices of phenetole with N-methyl-2-pyrrolidone, N,N-dimethylformamide and tetrahydrofuran binary mixtures at different temperatures
rhol	855.46	kg/m3	323.15	Investigation on thermophysical and excess properties of binary mixtures of imidazolium based ionic liquids at temperatures (293.15 to 323.15) K: III [Cnmim][PF6] (n = 4, 6, 8) + THF
rhol	874.00	kg/m3	308.00	Densities, ultrasonic speeds and refractive indices of phenetole with N-methyl-2-pyrrolidone, N,N-dimethylformamide and tetrahydrofuran binary mixtures at different temperatures
rhol	887.01	kg/m3	293.15	Temperature and concentration dependence of volumetric properties of (tetrahydrofuran + methyl acrylate, or + ethyl acrylate, or + n-butyl acrylate, or + tert-butyl acrylate) binary mixtures
rhol	882.05	kg/m3	298.15	Temperature and concentration dependence of volumetric properties of (tetrahydrofuran + methyl acrylate, or + ethyl acrylate, or + n-butyl acrylate, or + tert-butyl acrylate) binary mixtures

rhol	872.14	kg/m3	308.15	Temperature and concentration dependence of volumetric properties of (tetrahydrofuran + methyl acrylate, or + ethyl acrylate, or + n-butyl acrylate, or + tert-butyl acrylate) binary mixtures	
rhol	867.19	kg/m3	313.15	Temperature and concentration dependence of volumetric properties of (tetrahydrofuran + methyl acrylate, or + ethyl acrylate, or + n-butyl acrylate, or + tert-butyl acrylate) binary mixtures	
rhol	877.10	kg/m3	303.15	Temperature and concentration dependence of volumetric properties of (tetrahydrofuran + methyl acrylate, or + ethyl acrylate, or + n-butyl acrylate, or + tert-butyl acrylate) binary mixtures	
rhol	882.00	kg/m3	298.15 1-B	Volumetric Properties of the Ionic Liquid, utyl-3-methylimidazo Tetrafluoroborate, in Organic Solvents at T = 298.15 K	lium
rhol	882.09	kg/m3	298.15	Excess Enthalpies of the Ternary Mixtures: Tetrahydrofuran + (Hexane or Cyclohexane) + Decane at 298.15K	

rhol	882.06	kg/m3	298.15	Excess Molar volumes and Surface Tensions of Trimethylbenzene with Tetrahydrofuran Tetrachloromethane and Dimethylsulfoxide at 298.15 K	
rhol	882.10	kg/m3	298.15	Study of the Surface Tension of Chlorocyclohexane or Bromocyclohexane with Some Cyclic Ethers	
rhol	887.41	kg/m3	293.15	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	881.98	kg/m3	298.15	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	876.47	kg/m3	303.13	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	870.96	kg/m3	308.15	Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents	
rhol	882.08	kg/m3	298.15	Excess Molar Enthalpies of Dipropyl Ether + Dibutyl Ether + (1-Hexene or Tetrahydrofuran) at 298.15 K	

rhol	881.50	kg/m3	298.15	Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether	
rhol	878.70	kg/m3	303.15	Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether	
rhol	873.00	kg/m3	308.15	Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether	
rhol	866.90	kg/m3	313.15	Densities, Viscosities, and Sound Speed of Binary Mixtures of Hexyl Acetate with Tetrahydrofuran, 1,4-Dioxane, Anisole, and Butyl Vinyl Ether	
rhol	887.52	kg/m3	293.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory	
rhol	861.11	kg/m3	318.15	Investigation on thermophysical and excess properties of binary mixtures of imidazolium based ionic liquids at temperatures (293.15 to 323.15) K: III [Cnmim][PF6] (n = 4, 6, 8) + THF	

rhol	866.71	kg/m3	313.15	Investigation on thermophysical and excess properties of binary mixtures of imidazolium based ionic liquids at temperatures (293.15 to 323.15) K: III [Cnmim][PF6] (n = 4, 6, 8) + THF
rhol	872.28	kg/m3	308.15	Investigation on thermophysical and excess properties of binary mixtures of imidazolium based ionic liquids at temperatures (293.15 to 323.15) K: III [Cnmim][PF6] (n = 4, 6, 8) + THF
rhol	877.81	kg/m3	303.15	Investigation on thermophysical and excess properties of binary mixtures of imidazolium based ionic liquids at temperatures (293.15 to 323.15) K: III [Cnmim][PF6] (n = 4, 6, 8) + THF
rhol	883.30	kg/m3	298.15	Investigation on thermophysical and excess properties of binary mixtures of imidazolium based ionic liquids at temperatures (293.15 to 323.15) K: III [Cnmim][PF6] (n = 4, 6, 8) + THF
rhol	888.77	kg/m3	293.15	Investigation on thermophysical and excess properties of binary mixtures of imidazolium based ionic liquids at temperatures (293.15 to 323.15) K: III [Cnmim][PF6] (n = 4, 6, 8) + THF

rhol	859.96	kg/m3	318.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	871.16	kg/m3	308.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3-methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	882.21	kg/m3	298.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3-methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	855.29	kg/m3	323.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers

rhol	860.96	kg/m3	318.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3-methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	866.58	kg/m3	313.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3-methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	872.16	kg/m3	308.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3-methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers
rhol	877.70	kg/m3	303.15 Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3-methylimidazlouim tetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers

rhol	882.21	kg/m3	298.15 1-c	Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and ctyl-3-methylimidazlouim tetraflouroborate with cyclic ethers	
rhol	888.69	kg/m3	293.15 1-c	Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents I. 1-Hexyl-3- methylimidazlouim tetraflouroborate and ctyl-3-methylimidazlouim tetraflouroborate with cyclic ethers	
rhol	882.15	kg/m3	298.15	Densities, speeds of sound and viscosities of binary mixtures of tetrahydrofuran with 1-hexanol, 1-octanol and 1-decanol at T = (298.15 to 313.15) K	
rhol	866.23	kg/m3	313.15	Volumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran, 2-butanone and ethylacetate from (293.15 to 313.15) K	
rhol	872.02	kg/m3	308.15	Volumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran, 2-butanone and ethylacetate from (293.15 to 313.15) K	

rhol	877.60	kg/m3	303.15	Volumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran, 2-butanone and ethylacetate from (293.15 to 313.15) K
rhol	883.24	kg/m3	298.15	Volumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran, 2-butanone and ethylacetate from (293.15 to 313.15) K
rhol	888.73	kg/m3	293.15	Volumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran, 2-butanone and ethylacetate from (293.15 to 313.15) K
rhol	859.84	kg/m3	318.15	Phenomenon of "negative partial molar expansibility" of water in tetrahydrofuran: How plausible is it? Discussion on the paper "Volumetric properties on the (tetrahydrofuran + water) and (tetra-n-butylammonium bromide + water) systems: Experimental measurements and correlations" by Veronica Belandria, Ammir H. Mohammadi and Dominique Richon [J. Chem. Thermodyn. 41 (2009) 1382 1386]

rhol	871.01	kg/m3	298.15	Phenomenon of "negative partial molar expansibility" of water in tetrahydrofuran: How plausible is it? Discussion on the paper "Volumetric properties on the (tetrahydrofuran + water) and (tetra-n-butylammonium bromide + water) systems: Experimental measurements and correlations" by Veronica Belandria, Ammir H. Mohammadi and Dominique Richon [J. Chem. Thermodyn. 41 (2009) 1382 1386] Phenomenon of
rnoi	882.04	kg/m3	298.15	Pnenomenon of

rhol 882.04 kg/m3 298.15 Phenomenon of "negative partial molar expansibility" of water in tetrahydrofuran: How plausible is it? Discussion on the paper "Volumetric properties on the (tetrahydrofuran + water) and (tetra-n-butylammonium bromide + water) systems: Experimental measurements and correlations" by Veronica Belandria, Ammir H. Mohammadi and Dominique Richon [J. Chem.
Thermodyn. 41 (2009) 1382

rhol	892.94	kg/m3	288.15	Phenomenon of "negative partial molar expansibility" of water in tetrahydrofuran: How plausible is it? Discussion on the paper "Volumetric properties on the (tetrahydrofuran + water) and (tetra-n-butylammonium bromide + water) systems: Experimental measurements and correlations" by Veronica Belandria, Ammir H. Mohammadi and Dominique Richon [J. Chem. Thermodyn. 41 (2009) 1382 1386]
rhol	903.71	kg/m3	278.15	Phenomenon of "negative partial molar expansibility" of water in tetrahydrofuran: How plausible is it? Discussion on the paper "Volumetric properties on the (tetrahydrofuran + water) and (tetra-n-butylammonium bromide + water) systems: Experimental measurements and correlations" by Veronica Belandria, Ammir H. Mohammadi and Dominique Richon [J. Chem. Thermodyn. 41 (2009) 1382 1386]
rhol	876.54	kg/m3	303.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory

rhol	882.04	kg/m3	298.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory
rhol	881.95	kg/m3	298.15	Surface Tension of Mixtures of Tetrahydrofuran or
				Tetrahydropyran with Isomeric Chlorobutanes
rhol	892.86	kg/m3	288.15	Volumetric properties of binary mixtures of ethers and acetonitrile: Experimental results and application of the Prigogine Flory Patterson theory
rhol	882.09	kg/m3	298.15	Excess molar enthalpies of the ternary mixtures (1-hexene + tetrahydrofuran or
				2-methyltetrahydrofuran + methyl tert-butyl ether) at the temperature 298.15K.
rhol	882.00	kg/m3	298.15 1-n	Volumetric and compressibility behaviour of ionic liquid, a-butyl-3-methylimidazolium hexafluorophosphate and tetrabutylammonium hexafluorophosphate in organic solvents at T = 298.15 K
rhol	882.09	kg/m3	298.15	Excess molar enthalpies of the ternary mixtures: (tetrahydrofuran or 2-methyltetrahydrofuran + methyl tert-butyl ether + n-octane) at the temperature 298.15 K

		. , .		
rhol	882.09	kg/m3	298.15	Excess molar enthalpies of the ternary mixtures: {tetrahydrofuran or 2-methyltetrahydrofuran + methyl tert-butyl ether + n-dodecane} at the temperature 298.15 K
rhol	882.01	kg/m3	298.15	Standard partial molar volumes of some electrolytes in ethylene carbonate based mixtures
rhol	876.50	kg/m3	303.15	Unravelling various types of non-covalent interactions of benzyl amine with ethers in n-hexane at 303.15 K by ultrasonic and DFT methods
rhol	884.99	kg/m3	298.15	Quaternary isothermal vapor-liquid equilibrium of the model biofuel 2-butanone + n-heptane + tetrahydrofuran + cyclohexane using Raman spectroscopic characterization
rhol	854.56	kg/m3	323.15	Volumetric and viscometric behavior of the binary systems ethyl lactate + 1,2- propanediol, + 1,3-propanediol, + tetrahydrofuran and + tetraethylene glycol dimethyl ether. New UNIFAC-VISCO and ASOG-VISCO parameters determination

rhol	860.21	kg/m3	318.15	Volumetric and viscometric behavior of the binary systems ethyl lactate + 1,2- propanediol, + 1,3-propanediol, + tetrahydrofuran and + tetraethylene glycol dimethyl ether. New UNIFAC-VISCO and ASOG-VISCO parameters determination	
rhol	865.82	kg/m3	313.15	Volumetric and viscometric behavior of the binary systems ethyl lactate + 1,2- propanediol, + 1,3-propanediol, + tetrahydrofuran and + tetraethylene glycol dimethyl ether. New UNIFAC-VISCO and ASOG-VISCO parameters determination	
rhol	871.38	kg/m3	308.15	Volumetric and viscometric behavior of the binary systems ethyl lactate + 1,2- propanediol, + tetrahydrofuran and + tetraethylene glycol dimethyl ether. New UNIFAC-VISCO and ASOG-VISCO parameters determination	

rhol	876.91	kg/m3	303.15	Volumetric and viscometric behavior of the binary systems ethyl lactate + 1,2- propanediol, + 1,3-propanediol, + tetrahydrofuran and + tetraethylene glycol dimethyl ether. New UNIFAC-VISCO and ASOG-VISCO parameters determination
rhol	882.40	kg/m3	298.15	Volumetric and viscometric behavior of the binary systems ethyl lactate + 1,2- propanediol, + 1,3-propanediol, + tetrahydrofuran and + tetraethylene glycol dimethyl ether. New UNIFAC-VISCO and ASOG-VISCO parameters determination
rhol	887.87	kg/m3	293.15	Volumetric and viscometric behavior of the binary systems ethyl lactate + 1,2- propanediol, + 1,3-propanediol, + tetrahydrofuran and + tetraethylene glycol dimethyl ether. New UNIFAC-VISCO and ASOG-VISCO parameters determination

rhol	893.29	kg/m3	288.15	Volumetric and viscometric behavior of the binary systems ethyl lactate + 1,2- propanediol, + 1,3-propanediol, + tetrahydrofuran and + tetraethylene glycol dimethyl ether. New UNIFAC-VISCO and ASOG-VISCO parameters determination	
rhol	862.23	kg/m3	318.15	Temperature and concentration dependence of volumetric properties of (tetrahydrofuran + methyl acrylate, or + ethyl acrylate, or + tert-butyl acrylate) binary mixtures	
sfust	51.80	J/mol×K	164.76	NIST Webbook	
sfust	51.83	J/mol×K	164.76	NIST Webbook	
speedsl	1207.00	m/s	313.15	Thermodynamic and acoustic properties of binary mixtures of ethers. V. Diisopropyl ether or oxolane with 2- or 3-chloroanilines at 303.15, 313.15 and 323.15 K	
speedsl	1229.61	m/s	308.15 1-E Ti	Ultrasonic and Volumetric Properties of Ethyl-3-methylimidazo rifluoromethanesulfonationic Liquid with 2-Propanol or Tetrahydrofuran at Several Temperatures	lium ate
speedsl	1277.37	m/s		Ultrasonic and Volumetric Properties of Ethyl-3-methylimidazol rifluoromethanesulfonation lonic Liquid with 2-Propanol or Tetrahydrofuran at Several Temperatures	

speedsl	1325.78	m/s	288.15 Ultrasonic and Volumetric Properties of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with 2-Propanol or Tetrahydrofuran at Several Temperatures
speedsl	1374.98	m/s	278.15 Ultrasonic and Volumetric Properties of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with 2-Propanol or Tetrahydrofuran at Several Temperatures
speedsl	1280.20	m/s	298.15 Compressibility Studies of Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T) 298.15 K
speedsl	1165.00	m/s	323.15 Thermodynamic and acoustic properties of binary mixtures of ethers. V. Diisopropyl ether or oxolane with 2- or 3-chloroanilines at 303.15, 313.15 and 323.15 K
speedsl	1182.37	m/s	318.15 Ultrasonic and Volumetric Properties of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with 2-Propanol or Tetrahydrofuran at Several Temperatures
speedsl	1254.00	m/s	303.15 Thermodynamic and acoustic properties of binary mixtures of ethers. V. Diisopropyl ether or oxolane with 2- or 3-chloroanilines at 303.15, 313.15 and 323.15 K

speedsl	1165.00	m/s	323.15	Thermodynamic and acoustic
				properties of binary mixtures of ethers. IV. Diisopropyl ether or oxolane with N,N-dimethylaniline
				or N,Ndiethylaniline at 303.15, 313.15 and 323.15 K
speedsl	1207.00	m/s	313.15	Thermodynamic and acoustic properties of binary mixtures of ethers. IV. Diisopropyl ether or oxolane with N,N-dimethylaniline or N,Ndiethylaniline at 303.15, 313.15 and 323.15 K
speedsl	1254.00	m/s	303.15	Thermodynamic and acoustic properties of binary mixtures of ethers. IV. Diisopropyl ether or oxolane with N,N-dimethylaniline or N,Ndiethylaniline at 303.15, 313.15 and 323.15 K
speedsl	1165.00	m/s	323.15	Thermodynamic and acoustic properties of binary mixtures of ethers. III. Diisopropyl ether or oxolane with o- or m-toluidines at 303.15, 313.15 and 323.15 K
speedsl	1256.00	m/s	303.15	Thermodynamic and acoustic properties of binary mixtures of oxolane with aniline and substituted anilines at 303.15, 313.15 and 323.15 K

speedsl	1254.00	m/s	303.15	Thermodynamic and acoustic properties of binary mixtures of ethers. III. Diisopropyl ether or oxolane with o- or m-toluidines at 303.15, 313.15 and 323.15 K	
speedsl	1171.00	m/s	323.15	Thermodynamic and acoustic properties of binary mixtures of oxolane with aniline and substituted anilines at 303.15, 313.15 and 323.15 K	
speedsl	1212.00	m/s	313.15	Thermodynamic and acoustic properties of binary mixtures of oxolane with aniline and substituted anilines at 303.15, 313.15 and 323.15 K	
speedsl	1207.00	m/s	313.15	Thermodynamic and acoustic properties of binary mixtures of ethers. III. Diisopropyl ether or oxolane with o- or m-toluidines at 303.15, 313.15 and 323.15 K	
srf	0.03	N/m	293.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide	
srf	0.03	N/m	308.15	Densities, Viscosities, Refractive Indexes, and Surface Tensions for Binary and Ternary Mixtures of Tetrahydofuran, 2-Propanol, and 2,2,4-Trimethylpentan	e

srf	0.03	N/m	298.15 Densities, Viscosities, Refractive Indexes, and Surface Tensions for Binary and Ternary Mixtures of Tetrahydofuran, 2-Propanol, and 2,2,4-Trimethylpentane
srf	0.03	N/m	288.15 Densities, Viscosities, Refractive Indexes, and Surface Tensions for Binary and Ternary Mixtures of Tetrahydofuran, 2-Propanol, and 2,2,4-Trimethylpentane
srf	0.03	N/m	308.15 Surface Tensions and the Gibbs Excess Surface Concentration of Binary Mixtures of the Ionic Liquid 1-Ethyl-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imide with Tetrahydrofuran and Acetonitrile
srf	0.03	N/m	298.15 Surface Tensions and the Gibbs Excess Surface Concentration of Binary Mixtures of the Ionic Liquid 1-Ethyl-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imide with Tetrahydrofuran and Acetonitrile
srf	0.03	N/m	293.15 Surface Tensions and the Gibbs Excess Surface Concentration of Binary Mixtures of the Ionic Liquid 1-Ethyl-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imide with Tetrahydrofuran and Acetonitrile

srf	0.03	N/m	308.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide
srf	0.03	N/m	303.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide
srf	0.03	N/m	298.15	Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide
srf	0.03	N/m		Surface Tensions and the Gibbs Excess Surface Concentration of Binary Mixtures of the Ionic Liquid (thyl-3-methylimidazolium iifluoromethyl)sulfonyl]imide with Tetrahydrofuran and Acetonitrile

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbp	339.15	К	96.60	Low cost apparatus for rapid boiling point determination of small air sensitive samples under inert atmosphere

Correlations

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	7.83577e+01
Coeff. B	-6.33998e+03
Coeff. C	-9.60880e+00
Coeff. D	8.18348e-06
Temperature range (K), min.	164.65
Temperature range (K), max.	540.15

Datasets

Mass density, kg/m3

Pressure, kPa - Liquid	Temperature, K - Liquid	Mass density, kg/m3 - Liquid
85.90	298.15	882.02
Reference	http	s://www.doi.org/10.1016/j.fluid.2013.05.001

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
333.20	10200.00	0.0003650
Reference	,	https://www.doi.org/10.1007/s10765-008-0542-6

Temperature, K	Pressure, kPa	Viscosity, Pa*s
303.15	101.33	0.0003260

Reference https://www.doi.org/10.1016/j.tca.2009.07.008

Sources

https://www.doi.org/10.1016/j.jct.2017.07.012 Thermodynamics and activity coefficients at infinite dilution for biguid diguid pour library and are ritioned https://www.doi.org/10.1016/j.fluid.2007.01.003
https://www.doi.org/10.1016/j.fluid.2007.01.003
https://www.doi.org/10.1016/j.fluid.2007.01.003
https://www.doi.org/10.1016/j.fluid.2018.11.011
https://www.doi.org/10.1016/j.fluid.2018.11.011
https://www.doi.org/10.1016/j.fluid.2018.11.011
https://www.doi.org/10.1016/j.fluid.2018.11.011
https://www.doi.org/10.1016/j.fluid.2018.11.011
https://www.doi.org/10.1016/j.jct.2013.05.023
https://www.doi.org/10.1016/j.jct.2013.05.023
https://www.doi.org/10.1016/j.jct.2013.05.023
https://www.doi.org/10.1016/j.jct.2013.05.023
https://www.doi.org/10.1016/j.jct.2013.05.023
https://www.doi.org/10.1016/j.jct.2013.05.023
https://www.doi.org/10.1016/j.jct.2013.05.023
https://www.doi.org/10.1016/j.fluid.2017.06.001
https://www.doi.org/10.1016/j.fluid.2017.06.001
https://www.doi.org/10.1016/j.fluid.2017.06.001 https://www.doi.org/10.1016/j.fluid.2007.01.003 separation on investigation of limiting https://en.wikipedia.org/wiki/Joback_method detrary Westredents with [P8.8.8.8][[NTf2] ionic liquid: Activity coefficients at infinite dilution https://www.doi.org/10.1016/j.jct.2013.10.038 of organic solutes in 1-hexyl-3Folutoria solutes in 1-hexyl-3
https://www.doi.org/10.1016/j.jct.2016.09.011

https://www.doi.org/10.1021/je1008284

https://www.doi.org/10.1021/je1008284

https://www.doi.org/10.1021/je200609g 1-Ethyl-3-methylimidazolium Adtivitycopetfisimម្មនារួមការម្យារារម្យារារីមួរស្វា https://www.doi.org/10.1016/j.jct.2018.01.003 https://www.doi.org/10.1016/j.jct.2003.09.005 https://www.doi.org/10.1016/j.fluid.2011.07.018 https://www.doi.org/10.1016/j.jtd.2011.07.01.
https://www.doi.org/10.1016/j.jtd.2011.07.01.
https://www.doi.org/10.1021/je400781b
https://www.doi.org/10.1021/je400781b
https://www.doi.org/10.1016/j.jtd.2005.06.003
https://www.doi.org/10.1016/j.jtd.2005.06.003
https://www.doi.org/10.1016/j.jtd.2011.01.019
https://www.doi.org/10.1016/j.jtd.2011.0109
https://www.doi.org/10.1016/j.jtd.2011.0 https://www.doi.org/10.1016/j.tca.2011.01.019 https://www.doi.org/10.1016/j.tca.2011.07.005 https://www.doi.org/10.1021/acs.jced.5b00007 Acetate, n-Butyric Acid, Etnyl Acetate, Stwiens, op. The moody namic and Transpace by nontinaide Banary Mixtures with the service of the serv https://www.doi.org/10.1021/je060311a https://www.doi.org/10.1016/j.fluid.2014.03.027 https://www.doi.org/10.1016/j.jct.2016.07.017 https://www.doi.org/10.1016/j.jct.2016.12.002
https://www.doi.org/10.1016/j.jct.2016.12.002
https://www.doi.org/10.1016/j.fluid.2017.12.029
https://www.doi.org/10.1016/j.fluid.2018.06.013
https://www.doi.org/10.1016/j.fluid.2018.06.013
https://www.doi.org/10.1016/j.fluid.2018.06.013
https://www.doi.org/10.1016/j.fluid.2018.06.013
https://www.doi.org/10.1016/j.fluid.2018.06.013
https://www.doi.org/10.1016/j.jct.2011.11.021
https://www.doi.org/10.1016/j.jct.2011.11.021
https://www.doi.org/10.1016/j.jct.2011.11.021
https://www.doi.org/10.1016/j.jct.2011.11.021
https://www.doi.org/10.1016/j.jct.2011.11.021
https://www.doi.org/10.1016/j.jct.2011.11.021
https://www.doi.org/10.1016/j.jct.2011.11.021
https://www.doi.org/10.1016/j.jct.2011.11.021 https://www.doi.org/10.1016/j.jct.2016.12.002 2-12-11-14-16-x)। धार्म अपनिष्य कार्य के स्थाप कर्म कार्य क

Activity coefficients at infinite dilution https://www.doi.org/10.1016/j.fluid.2012.05.006 of organic solutes in or organic solutes in Liquid L https://www.doi.org/10.1021/je400227m https://www.doi.org/10.1021/je060329I https://www.doi.org/10.1016/j.fluid.2018.07.028 ชาทางที่เดินจะโจกงเชื้อยหากอก เพราะโร ethers with 1-chlorohexane: Propriting เพลา เชื่อเกตร เข้าเคร Binary Mixing ครั้ง Tetrahydrofuran with โรงที่พยัง Conficentia ละเกล้าเขียงเก็บเรื่อง https://www.doi.org/10.1016/j.fluid.2007.05.013 https://www.doi.org/10.1021/je0600653 https://www.doi.org/10.1016/j.jct.2012.05.017
and physisophemical properties for system and correction in the ionic magurement of VLE and c1 data and interpretable of the interpretable of the interpretable of the ionic magurement of VLE and c1 data and interpretable of VLE and c1 dat https://www.doi.org/10.1016/j.jct.2012.05.017 properties of anixtures containing a ବୃହାନି ତ୍ୟାଧିନ କମ୍ୟାଧି ଜ୍ୟାଧିନ ଜନ୍ମ Azacyclotridecan-2-one in 15 Pure https://www.doi.org/10.1021/acs.jced.8b01193 https://www.doi.org/10.1016/j.fluid.2005.11.018 Barran and a serie series and the series of The their perementation and their more than the more than https://www.doi.org/10.1021/acs.jced.6b00929 Tensiena ofe Frimethylbenzene with เกียกสิ่งรู้เกิดรู้เคียงเกียกให้เกิดรู้เคียงที่ https://www.doi.org/10.1016/j.jct.2012.09.017 The stand of the s expansibility" of water in the same of the expansibility" of water in the panel of the control of the panel of the control of the panel of the control of the panel o https://www.doi.org/10.1016/j.jct.2013.09.007 https://www.doi.org/10.1007/s10765-008-0395-z THE BUILDING TO PROBLEM TO THE COURT TH https://www.doi.org/10.1021/je0601098 https://www.doi.org/10.1016/j.jct.2015.05.014 https://www.doi.org/10.1021/acs.jced.9b00490 http://link.springer.com/article/10.1007/BF02311772 Solubility of 5-Amino Salicylic Acid in https://www.doi.org/10.1021/je900646u Different Solvents at Various Thermodynamics and activity coefficients at infinite dilution for https://www.doi.org/10.1016/j.jct.2018.08.028

organic compounds in the ionic liquid 1-hexyl-3-methylimidazolium chloride:

```
Separation of binary mixtures based on https://www.doi.org/10.1016/j.jct.2018.09.003
               gamma infinity data using
       gamma infinity data using | https://www.doi.org/10.1016/j.jct.2007.09.007 | https://www.doi.org/10.1016/j.jct.2007.09.007 | https://www.doi.org/10.1016/j.jct.2013.02.004 | https://www.doi.org/10.1016/j.jct.2013.02.004 | https://www.doi.org/10.1016/j.jct.2013.02.004 | https://www.doi.org/10.1021/je034076x | https://www.doi.org/10.1021/je034076x | https://www.doi.org/10.1016/j.tca.2011.02.004 | https://www.doi.org/10.1016/j.tca.2011.02.004 | https://www.doi.org/10.1021/je034076x | ht
       at Infinite Dilution for Organic Solutes
Included a property of the property o
             at Infinite Dilution for Organic Solutes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1016/j.fluid.2007.07.016
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.fluid.2016.02.004
interface selections of visions and reveals solutions where temperatures of lonic Liquids was uneversed solutions where temperatures of lonic Liquids was uneversed solutions of organic comproparations of organic comproparations of complete selections o
               19፪tիዌ ֈֈ֎-methylimidazolium
```

Bis[(trifluoromethyl)sulfonyl]imide with Tetrahydrofuran and Acetonitrile:

Quaternary isothermal vapor-liquid https://www.doi.org/10.1016/j.fluid.2018.04.009 equilibrium of the model biofuel Examps Gibbs renergiase and volumes of https://www.doi.org/10.1016/j.fluid.2013.07.034 The same of the service of the servi https://www.doi.org/10.1016/j.fluid.2004.10.027 https://www.doi.org/10.1016/j.fluid.2012.02.013 determination of the solubility of determination of the solubility of Assessmephen Pyrachidining in the set of t https://www.doi.org/10.1021/acs.jced.9b00341 https://www.doi.org/10.1021/acs.jced.8b00425 https://www.doi.org/10.1021/acs.jced.7b00244 Activity Coefficients of Several Organic
Shartes stakilistics payer solubilities of National Activity Coefficients of Several Organic
Shartes stakilistics payer solubilities of National Activity Coefficients of Several Organic
National Activity Coefficients of Several Organic
Shartes stakilistics payer solubilities of National Activities of N https://www.doi.org/10.1016/j.fluid.2014.04.006 The trailing in the property of the property of the policy Ester in Selected Solvents: Thermodynamic surface properties of Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary solidings in the properties of [BMIm][NTf2] or [EMIm][NTf2] binary solidings in the properties of [BMIm][NTf2] or [EMIm][NTf2] binary solidings in the properties of a bilinear hospital solidings in the different organic solvents and (ethyl alcohol + water) in the soliding of the ternary solvents and (ethyl alcohol + water) in the soliding of the ternary solvents in the study for the ternary solvents in the solvents in the study for the ternary solvents in the solvents i https://www.doi.org/10.1016/j.jct.2013.02.021 https://www.doi.org/10.1016/j.jct.2013.12.028 behavior of standard molar volumes of Tonporevismics of Fluoressen Schwilling and Income to the Schwilling of the Schwilli https://www.doi.org/10.1021/je4010257 https://www.doi.org/10.1016/j.jct.2013.05.035 ionic liquids composed of the tris(pentafluoroethyl) trifluorophosphate ([FAP]) anion and a

functionalized cation:

Determination and correlation https://www.doi.org/10.1016/j.jct.2016.07.035 thermodynamic models for solid liquid tnermodynamic models for solid liquid bensibinanspecials Nifedipinanic pure six ensistence obtigative six where of lettering the solutions of lettering the solutions of lettering the solutions of lettering the solutions of liquid solutions of liq https://www.doi.org/10.1016/j.jct.2013.10.025 Dennition of the property of t https://www.doi.org/10.1021/acs.jced.7b00851 https://www.doi.org/10.1016/j.jct.2005.04.013 https://www.doi.org/10.1016/j.jct.2005.07.018 https://www.doi.org/10.1021/je800354p https://www.doi.org/10.1021/je700640r https://www.doi.org/10.1016/j.jct.2013.01.007 https://www.doi.org/10.1016/j.jct.2017.03.015 https://www.doi.org/10.1016/j.fluid.2019.03.023 https://www.doi.org/10.1016/j.jct.2011.04.018 https://www.doi.org/10.1021/je900629v https://www.doi.org/10.1007/s10765-010-0860-3 https://www.doi.org/10.1016/j.jct.2018.07.024 of binary hydrocarbons mixtures based pergamination of the base his asset of the base of t https://www.doi.org/10.1016/j.fluid.2012.06.012 dissolution enthalpy and entropy of Expens and incution enthalpy and entropy of For series and a reditable in soft vernary mixtures (1-hexene + tetrahydrofuran + ½20 mixtars and activity coefficients at the figure of the f https://www.doi.org/10.1016/j.jct.2010.10.002 https://www.doi.org/10.1016/j.jct.2011.09.022 https://www.doi.org/10.1016/j.jct.2013.10.026 https://www.doi.org/10.1016/j.jct.2015.05.022 https://www.doi.org/10.1016/j.tca.2009.07.008 https://www.doi.org/10.1016/j.fluid.2010.10.008 https://www.doi.org/10.1016/j.jct.2016.06.028 separation based on activity ទួល៤៧៧រ៉ូខ៉ែទូន ឡាំ ឱ្យជាសម្រើខ្មាំ**ភ្លាស់ ក្រាក្រ Thirteen** https://www.doi.org/10.1021/je200531k Solving the solvent of the solvent o Tolithythologram, eyeldisertand 310 k. 2001-chyrierrappisab Websightham of a chyritheroficiants abministering of a chyritherofician colutes abminister of the confirmation of chyric solutes at the chyric solutes of chyritherofic solutes of chyritherofic solutes of chyric solutes of https://www.doi.org/10.1016/j.jct.2011.11.025 https://www.doi.org/10.1021/je700297c https://www.doi.org/10.1016/j.fluid.2016.10.009 https://www.doi.org/10.1016/j.fluid.2016.08.012 https://www.doi.org/10.1021/acs.jced.5b00783 monstationealpine stiplionean methane with Assetson in the Ass ក្រាស្ត្រានាក្រាស្ត្ត អាស្ត្រាស្ត្រាស្ត្រាស្ត្រាស្ត្រាស្ត្រាស្ត្រាស្ត្រាស្ត្រាស្ត្រាស្ត្រាស្ត្រ អាស្ត្រាស្ត្រ ស្ត្រ ស្ត្រ ស្ត្រ ស្ត្រ ស្ត្រ ស្ត្រ ស្ត្រាស្ត្រ ស្ត្រ ស្ត https://www.doi.org/10.1016/j.jct.2016.09.025 https://www.doi.org/10.1016/j.jct.2010.01.004 https://www.doi.org/10.1021/acs.jced.8b00080 https://www.doi.org/10.1021/acs.jced.7b00005

```
Excess Gibbs energies and volumes of https://www.doi.org/10.1016/j.fluid.2010.06.007
Excess Gibbs energies and volumes of the ternary system chloroform + three growth and the ternary system chloroform and the ternary system chloroform three growth and th
       the ternary system chloroform +
                                                                                                                                                                                                                                                                                                     https://www.doi.org/10.1016/j.fluid.2009.01.010
                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.8b01205
                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.6b00816
                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1016/j.fluid.2013.09.023
  https://www.doi.org/10.1016/j.tca.2010.04.025
https://www.doi.org/10.1016/j.tca.2010.04.025
https://www.doi.org/10.1016/j.tca.2010.04.025
https://www.doi.org/10.1016/j.fluid.2013.11.002
https://www.doi.org/10.1016/j.fluid.2013.11.002
https://www.doi.org/10.1016/j.fluid.2005.01.002
https://www.doi.org/10.1016/j.fluid.2005.07.013
https://www.doi.org/10.1016/j.fluid.2005.07.013
https://www.doi.org/10.1016/j.tca.2014.10.026
https://www.doi.org/10.1016/j.tca.2014.10.026
https://www.doi.org/10.1016/j.jct.2016.07.021
https://www.doi.org/10.1021/je020060f
https://www.doi.org/10.1021/je020060f
https://www.doi.org/10.1021/je020060f
https://www.doi.org/10.1021/je020060f
                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2013.11.002
                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2005.01.002
                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1016/j.fluid.2005.07.013
   The smedynare is in the action of Mixtures Containing - Bricketh surface in the silver of the staining - Bricketh surface in the silver of the staining - Bricketh surface in the silver of the staining - Bricketh surface in the silver of the staining - Bricketh surface in the staining and the silver of the s
                                                                                                                                                                                                                                                                                                  http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl file/ci034243xsi20040112 053635.txt
  Estimatedia olubility Method:

1-Butyl-3-methylimidazolium Tosylate, byper methylimidazolium Tosylate, of the sylate of cyclic ethers with Activity operation of the methylimidation of 
                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.tca.2008.11.009
                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2009.01.011
                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2008.12.018
                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2018.08.001
                                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/je0498560
                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je100897y
                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je030196t
       Tetrahydrofuran and Water +
Yapproxavedfixwilder સામાર્ગાઝ .15, 313.15, https://www.doi.org/10.1016/j.fluid.2013.09.060
Jatrahydrofuran + Methanol +
শূলাক પ્રતાન - Methanol +
শূলাক પ્રતાન - Methanol +
મુક્તિકાર્યા કર્યા હતા.
    The importance of the sure ment of the substitution of the substit
                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2013.05.001
                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/acs.jced.8b01062
                                                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/acs.jced.9b00047
       in Different Pure Solvents and Binary
```

Solvent Mixtures from 278.15 to 328.15

https://www.doi.org/10.1021/je020159m Mixtures: Tetrahydrofuran + (Hexane or Sybidinesand) cientesant entires distriction measurements for organic solutes and waterphities of flequing recontaining comporaries in selected for the solution for flequing flequi Mixtures: Tetrahydrofuran + (Hexane or https://www.doi.org/10.1016/j.jct.2011.02.012 **Cotivityeeeefficientsateinfinities.clitution** https://www.doi.org/10.1021/je100341q https://www.doi.org/10.1021/je500286x https://www.doi.org/10.1016/j.jct.2004.12.005 https://www.doi.org/10.1021/acs.jced.5b00980 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1035 https://www.doi.org/10.1016/j.fluid.2019.01.005 https://www.doi.org/10.1016/j.jct.2018.02.014 https://www.doi.org/10.1021/je100316k https://www.doi.org/10.1016/j.jct.2014.11.002 https://www.doi.org/10.1021/je700209v https://www.doi.org/10.1016/j.tca.2017.05.005 https://www.doi.org/10.1021/je700626v https://www.doi.org/10.1016/j.jct.2012.02.033 https://www.cheric.org/files/research/kdb/mol/mol1035.mol ethylacetate from (293.15 to 313.15) K: Experimental Isobaric Vapor-Liquid https://www.doi.org/10.1021/je800087p **Equilibrium Data for Binary Mixtures of** https://www.doi.org/10.1016/j.jct.2015.02.011 trycastigations on thermophysical and uysacismons with let mophysical and expass properties ethicary mixtures of heres point in the second of the second https://www.doi.org/10.1021/je500068b https://www.doi.org/10.1021/je7004787 https://www.doi.org/10.1016/j.fluid.2019.04.018 Typerency/namics and activity coefficients at infinite dilution hetasty-anefficients ane anefficient model in the infinite surface of the properties for objective field in the infinite dilution hetasty-anefficients ane anefficients ane anefficients measurements for organic solutes and hetasty-anefficients measurements for organic solutes in the infinite dilution hetasty-anefficients anefficients anefficients anefficients measurements for organic solutes ane anefficient model in the infinite dilution hetasty-anefficients anefficients anefficients anefficients measurements for organic solutes ane https://www.doi.org/10.1016/j.jct.2011.11.005 https://www.doi.org/10.1016/j.jct.2011.11.005 https://www.doi.org/10.1016/j.jct.2016.08.008 https://www.doi.org/10.1016/j.jct.2016.08.008 https://www.doi.org/10.1016/j.jct.2016.08.008 https://www.doi.org/10.1016/j.jct.2014.03.026 https://www.doi.org/10.1016/j.jct.2014.03.026 https://www.doi.org/10.1016/j.jct.2014.03.026 https://www.doi.org/10.1016/j.jct.2011.09.033 https://www.doi.org/10.1016/j.jct.2011.09.033 https://www.doi.org/10.1016/j.jct.2011.09.033 https://www.doi.org/10.1016/j.jct.2011.09.033 https://www.doi.org/10.1016/j.jct.2011.09.033 https://www.doi.org/10.1016/j.jct.2011.09.033 https://www.doi.org/10.1016/j.jct.2011.09.033 https://www.doi.org/10.1016/j.jct.2011.09.033 https://www.doi.org/10.1016/j.jct.2011.09.033 https://www.doi.org/10.1016/j.jc https://www.doi.org/10.1016/j.jct.2011.06.007 coefficients at infinite dilution A volumetric and viscosity study for https://www.doi.org/10.1016/j.jct.2010.12.027 the binary mixtures of The binary mixtures of KABS/Pure (Kensym Thermophysical Herman tides) betaleanth some molecular was pure ment of heat capacities of ionic liquids by differential scanning Bannaset Perived Platform Chemicals: Thermodynamic Studies on the https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1035 https://www.doi.org/10.1016/j.fluid.2006.03.015 https://www.doi.org/10.1021/je300529j https://www.doi.org/10.1016/j.jct.2017.03.004 **Esparation of 5 Hydronymethy** Ifurfural Texane/hex-ipanes:

social-lexuite/bysistesuitlesia.of https://www.doi.c

ethylica-zhenylenehis(asebylene)llais(phosphoramidic

aethylic-zetalcatrephenyl Ester in 10 https://www.doi.org/10.1021/je4010917

Excess Enthalpies of the Ternary

Pure Solvents:

Solubility and Thermodynamic
Behavior of Veramoss in Different Pure
Sol the solubility indirectivities of id and indirectivities of imprince in the solubility and mixing properties of dimethyl sixtem list in the properties of dimethyl list in the properties of Solubility and Thermodynamic bis(trifluoromethylsulfonyl)imide at

https://www.doi.org/10.1021/acs.jced.6b00646

Proton affinity affp: basg: Gas basicity

Ľegend

chg: Standard gas enthalpy of combustion Standard liquid enthalpy of combustion chl:

Ideal gas heat capacity cpg: Liquid phase heat capacity cpl:

dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy kvisc: Kinematic viscosity

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: McGowan's characteristic volume mcvol:

Critical Pressure pc: pvap: Vapor pressure rfi: Refractive Index rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature sg: Molar entropy at standard conditions

Liquid phase molar entropy at standard conditions sl:

speedsl: Speed of sound in fluid

Surface Tension srf:

tb: Normal Boiling Point Temperature **tbp:** Boiling point at given pressure

tc: Critical Temperature

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume volm: Molar Volume

Latest version available from:

https://www.chemeo.com/cid/66-029-7/Tetrahydrofuran.pdf

Generated by Cheméo on 2025-12-24 00:47:49.901221305 +0000 UTC m=+6285467.431261967.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.