Cyclohexane

Other names: Benzene, hexahydro-

Cicloesano Cykloheksan

Hexahydrobenzene Hexamethylene Hexanaphthene NSC 406835

Rcra waste number U056

UN 1145

Inchi: InChl=1S/C6H12/c1-2-4-6-5-3-1/h1-6H2
InchiKey: XDTMQSROBMDMFD-UHFFFAOYSA-N

Formula: C6H12 SMILES: C1CCCC1

Mol. weight [g/mol]: 84.16 CAS: 110-82-7

Physical Properties

Property code	Value	Unit	Source
af	0.2120		KDB
affp	686.90	kJ/mol	NIST Webbook
aigt	543.15	K	KDB
ар	304.150	K	KDB
basg	666.90	kJ/mol	NIST Webbook
chl	-3918.00 ± 0.75	kJ/mol	NIST Webbook
chl	-3918.40 ± 1.00	kJ/mol	NIST Webbook
chl	-3919.60 ± 1.30	kJ/mol	NIST Webbook
chl	-3935.30	kJ/mol	NIST Webbook
chl	-3918.60 ± 0.70	kJ/mol	NIST Webbook
chl	-3947.00	kJ/mol	NIST Webbook
chl	-3919.90 ± 0.71	kJ/mol	NIST Webbook
dm	0.30	debye	KDB
dvisc	0.0008920	Pa×s	Densities and Viscosities of Ternary Mixtures of Cyclohexane + Cyclohexanone + Some Alkyl Acetates at 298.15 K
fII	1.33	% in Air	KDB
flu	8.35	% in Air	KDB

fpo	253.15	K	KDB
gf	31.78	kJ/mol	KDB
gyrad	3.2610	NO/THO!	KDB
hcg	3919.82	kJ/mol	KDB
hcn	3655.770	kJ/mol	KDB
hf	-123.20	kJ/mol	KDB
hf	-124.60	kJ/mol	NIST Webbook
hf	-123.30	kJ/mol	NIST Webbook
hf	-123.10 ± 0.79	kJ/mol	NIST Webbook
hfl	-156.20 ± 0.79	kJ/mol	NIST Webbook
hfl	-157.70 ± 1.80	kJ/mol	NIST Webbook
hfl	-156.40 ± 1.30	kJ/mol	NIST Webbook
hfus	2.06	kJ/mol	Joback Method
hvap	33.12	kJ/mol	NIST Webbook
hvap	33.00	kJ/mol	NIST Webbook
hvap	33.00 ± 0.10	kJ/mol	NIST Webbook
hvap	32.90 ± 0.30	kJ/mol	NIST Webbook
hvap	32.79 ± 0.14	kJ/mol	NIST Webbook
hvap	32.90	kJ/mol	NIST Webbook
hvap	33.00 ± 0.02	kJ/mol	NIST Webbook
hvap	33.00 ± 0.10	kJ/mol	NIST Webbook
hvap	33.00 ± 0.10	kJ/mol	NIST Webbook
hvap	33.04	kJ/mol	NIST Webbook
hvap	33.50	kJ/mol	NIST Webbook
hvap	33.00	kJ/mol	NIST Webbook
hvap	33.03	kJ/mol	NIST Webbook
hvap	33.10	kJ/mol	NIST Webbook
hvap	33.30 ± 0.10	kJ/mol	NIST Webbook
hvap	33.50	kJ/mol	NIST Webbook
hvap	33.10	kJ/mol	NIST Webbook
hvap	30.20 ± 0.30	kJ/mol	NIST Webbook
hvap	30.10	kJ/mol	NIST Webbook
hvap	33.00	kJ/mol	NIST Webbook
hvap	33.00	kJ/mol	NIST Webbook
ie	9.89 ± 0.01	eV	NIST Webbook
ie	9.88	eV	NIST Webbook
ie	9.83 ± 0.05	eV	NIST Webbook
ie	9.88 ± 0.02	eV	NIST Webbook
ie	9.81	eV	NIST Webbook
ie	9.88	eV	NIST Webbook
ie	9.88 ± 0.10	eV	NIST Webbook
ie	10.00 ± 0.03	eV	NIST Webbook
ie	9.84	eV	NIST Webbook
ie	9.80 ± 0.05	eV	NIST Webbook

ie	9.88 ± 0.01	eV	NIST Webbook
ie	9.88 ± 0.03	eV	NIST Webbook
ie	9.89	eV	NIST Webbook
ie	9.88 ± 0.01	eV	NIST Webbook
ie	10.30	eV	NIST Webbook
ie	10.30 ± 0.10	eV	NIST Webbook
ie	10.32	eV	NIST Webbook
ie	11.00 ± 0.20	eV	NIST Webbook
ie	9.88 ± 0.02	eV	NIST Webbook
ie	9.79	eV	NIST Webbook
ie	9.87	eV	NIST Webbook
ie	9.82	eV	NIST Webbook
log10ws	-3.10		Aqueous Solubility Prediction Method
log10ws	-3.10		Estimated Solubility Method
logp	2.341		Crippen Method
mcvol	84.540	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=1)		KDB
рс	4071.00 ± 20.00	kPa	NIST Webbook
рс	4200.00	kPa	Critical Properties of the Reacting Mixture in the Selective Oxidation of Cyclohexane by Oxygen in the Presence of Carbon Dioxide
рс	4080.00 ± 30.00	kPa	NIST Webbook
рс	4060.00	kPa	Critical Point Measurements for Five n-Alkylcyclohexanes (C6 to C10) by the Pulse-Heating Method
рс	4033.30 ± 10.67	kPa	NIST Webbook
рс	4080.00	kPa	KDB
рс	4110.76 ± 101.32	kPa	NIST Webbook
рс	4036.00 ± 60.00	kPa	NIST Webbook
рс	4097.00 ± 10.34	kPa	NIST Webbook
рс	4075.00 ± 2.00	kPa	NIST Webbook
рс	4036.70 ± 39.99	kPa	NIST Webbook
pt	5.40	kPa	KDB
rhoc	273.27 ± 5.05	kg/m3	NIST Webbook
rhoc	273.52 ± 1.68	kg/m3	NIST Webbook
rhoc	274.36 ± 5.89	kg/m3	NIST Webbook
rhoc	271.84 ± 3.37	kg/m3	NIST Webbook
rhoc	272.68 ± 2.52	kg/m3	NIST Webbook
rinpol	658.00		NIST Webbook
rinpol	662.20		NIST Webbook

rinnol	670.00	NIST Webbook
rinpol rinpol	675.00	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	651.00	NIST Webbook
	668.00	NIST Webbook NIST Webbook
rinpol		
rinpol	659.00	NIST Webbook
rinpol	660.00	NIST Webbook
rinpol	669.00	NIST Webbook
rinpol	669.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	661.00	NIST Webbook
rinpol	677.00	NIST Webbook
rinpol	657.00	NIST Webbook
rinpol	665.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	658.10	NIST Webbook
rinpol	647.36	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	651.20	NIST Webbook
rinpol	655.40	NIST Webbook
rinpol	654.90	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	648.95	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	696.00	NIST Webbook
rinpol	700.00	NIST Webbook
rinpol	664.00	NIST Webbook
rinpol	666.00	NIST Webbook
rinpol	657.00	NIST Webbook
rinpol	666.00	NIST Webbook
rinpol	666.00	NIST Webbook
rinpol	654.00	NIST Webbook
rinpol	649.00	NIST Webbook
rinpol	649.00	NIST Webbook
rinpol	664.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	666.00	NIST Webbook
rinpol	664.00	NIST Webbook
rinpol	677.00	NIST Webbook
rinpol	666.00	NIST Webbook
rinpol	645.00	NIST Webbook
rinpol	661.00	NIST Webbook
rinpol	669.00	NIST Webbook

rinnol	675.00	NIST Webbook
rinpol rinpol	664.00	NIST Webbook
rinpol	664.10	NIST Webbook
rinpol	660.10	NIST Webbook
		NIST Webbook NIST Webbook
rinpol	665.70	
rinpol	662.30	NIST Webbook
rinpol	661.20	NIST Webbook
rinpol	661.90	NIST Webbook
rinpol	662.90	NIST Webbook
rinpol	681.00	NIST Webbook
rinpol	676.00	NIST Webbook
rinpol	667.14	NIST Webbook
rinpol	667.02	NIST Webbook
rinpol	667.46	NIST Webbook
rinpol	656.80	NIST Webbook
rinpol	669.00	NIST Webbook
rinpol	693.60	NIST Webbook
rinpol	663.35	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	649.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	672.00	NIST Webbook
rinpol	688.30	NIST Webbook
rinpol	697.90	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	655.70	NIST Webbook
rinpol	692.80	NIST Webbook
rinpol	649.00	NIST Webbook
rinpol	694.00	NIST Webbook
rinpol	660.60	NIST Webbook
rinpol	665.60	NIST Webbook
rinpol	660.60	NIST Webbook
rinpol	665.60	NIST Webbook
rinpol	662.70	NIST Webbook
rinpol	667.10	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	664.00	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	676.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	666.40	NIST Webbook
rinpol	671.10	NIST Webbook

rinpol	674.00	NIST Webbook
rinpol	680.00	NIST Webbook
rinpol	669.00	NIST Webbook
rinpol	658.70	NIST Webbook
rinpol	660.90	NIST Webbook
rinpol	663.20	NIST Webbook
rinpol	665.50	NIST Webbook
rinpol	680.00	NIST Webbook
rinpol	673.60	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	685.00	NIST Webbook
rinpol	656.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	660.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	665.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	664.50	NIST Webbook
rinpol	666.80	NIST Webbook
rinpol	669.20	NIST Webbook
rinpol	671.70	NIST Webbook
rinpol	674.40	NIST Webbook
rinpol	677.30	NIST Webbook
	663.70	NIST Webbook
rinpol rinpol	664.20	NIST Webbook
	675.00	NIST Webbook
rinpol		NIST Webbook
rinpol	661.00 683.00	NIST Webbook
rinpol	669.00	
rinpol		NIST Webbook
rinpol	639.00	NIST Webbook NIST Webbook
rinpol	680.00	NIST Webbook
rinpol	661.00	
rinpol	661.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	661.00	NIST Webbook
rinpol	661.00	NIST Webbook
rinpol	657.20	NIST Webbook
rinpol · .	659.60	NIST Webbook
rinpol	662.10	NIST Webbook
rinpol	664.70	NIST Webbook
rinpol	667.40	NIST Webbook
rinpol	670.30	NIST Webbook
rinpol	657.00	NIST Webbook
rinpol	659.10	NIST Webbook

	004.00	NUCTANALA
rinpol	661.30	NIST Webbook
rinpol	663.60	NIST Webbook
rinpol	666.10	NIST Webbook
rinpol	668.80	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	669.20	NIST Webbook
rinpol	668.10	NIST Webbook
rinpol	690.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	662.70	NIST Webbook
rinpol	663.90	NIST Webbook
rinpol	662.78	NIST Webbook
rinpol	674.00	NIST Webbook
rinpol	664.00	NIST Webbook
rinpol	668.80	NIST Webbook
rinpol	667.80	NIST Webbook
rinpol	675.60	NIST Webbook
rinpol	671.00	NIST Webbook
rinpol	660.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	674.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	667.00	NIST Webbook
rinpol	674.00	NIST Webbook
rinpol	689.00	NIST Webbook
rinpol	669.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	664.00	NIST Webbook
rinpol	675.70	NIST Webbook
rinpol	682.00	NIST Webbook
rinpol	674.00	NIST Webbook
rinpol	683.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	665.00	NIST Webbook
rinpol	667.00	NIST Webbook
rinpol	669.00	NIST Webbook
rinpol	672.00	NIST Webbook
rinpol	663.80	NIST Webbook
rinpol	667.00	NIST Webbook
rinpol	674.00	NIST Webbook
Пірог	0. 1.00	THE TWO DOOR

rinnol	662.00	NIST Webbook
rinpol rinpol	700.00	NIST Webbook
	667.00	NIST Webbook
rinpol		NIST Webbook
rinpol	667.00	
rinpol	667.00	NIST Webbook
rinpol	676.00	NIST Webbook
rinpol	667.00	NIST Webbook
rinpol	688.00	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	664.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	672.00	NIST Webbook
rinpol	656.00	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	660.00	NIST Webbook
rinpol	664.00	NIST Webbook
rinpol	667.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	689.00	NIST Webbook
rinpol	675.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	676.00	NIST Webbook
rinpol	688.00	NIST Webbook
rinpol	676.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	678.00	NIST Webbook
rinpol	657.80	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	663.00	NIST Webbook
rinpol	655.80	NIST Webbook
rinpol	647.56	NIST Webbook
rinpol	648.22	NIST Webbook
rinpol	656.20	NIST Webbook
rinpol	654.90	NIST Webbook
rinpol	655.40	NIST Webbook
rinpol	656.20	NIST Webbook
rinpol	657.60	NIST Webbook
rinpol	654.60	NIST Webbook
rinpol	655.40	NIST Webbook
rinpol	656.20	NIST Webbook
rinpol	657.60	NIST Webbook
rinpol	656.20	NIST Webbook
mipor	300.20	11101-110000011

rinpol	654.90	NIST Webbook
rinpol	651.20	NIST Webbook
rinpol	651.24	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	651.09	NIST Webbook
rinpol	651.14	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	660.80	NIST Webbook
rinpol	657.30	NIST Webbook
rinpol	656.40	NIST Webbook
rinpol	647.36	NIST Webbook
rinpol	650.41	NIST Webbook
rinpol	652.19	NIST Webbook
rinpol	653.15	NIST Webbook
rinpol	656.24	NIST Webbook
rinpol	658.10	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	650.00	NIST Webbook
rinpol	665.00	NIST Webbook
rinpol	648.90	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	662.00	NIST Webbook NIST Webbook
rinpol	673.00	NIST Webbook
rinpol	680.00	NIST Webbook
·	685.00	NIST Webbook
rinpol		NIST Webbook
rinpol	668.00	NIST Webbook
rinpol	663.00	NIST Webbook NIST Webbook
rinpol	661.00	NIST Webbook
rinpol		NIST Webbook NIST Webbook
rinpol	665.00	NIST Webbook
rinpol	619.00 625.00	
rinpol		NIST Webbook NIST Webbook
rinpol	661.00	
rinpol	688.00	NIST Webbook
rinpol	676.00	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	651.00	NIST Webbook
rinpol	666.00	NIST Webbook
rinpol	662.00	NIST Webbook
rinpol	654.90	NIST Webbook
rinpol	648.95	NIST Webbook
rinpol	658.00	NIST Webbook
rinpol	669.00	NIST Webbook

ripol	726.00		NIST Webbook
ripol	723.00		NIST Webbook
ripol	756.00		NIST Webbook
ripol	723.00		NIST Webbook
ripol	765.00		NIST Webbook
ripol	737.00		NIST Webbook
ripol	742.00		NIST Webbook
ripol	765.00		NIST Webbook
ripol	712.00		NIST Webbook
ripol	717.00		NIST Webbook
ripol	729.00		NIST Webbook
ripol	729.00		NIST Webbook
ripol	723.00		NIST Webbook
ripol	741.70		NIST Webbook
ripol	737.00		NIST Webbook
ripol	735.50		NIST Webbook
ripol	734.00		NIST Webbook
ripol	732.00		NIST Webbook
ripol	722.00		NIST Webbook
ripol	722.00		NIST Webbook
ripol	722.00		NIST Webbook
ripol	752.00		NIST Webbook
ripol	738.00		NIST Webbook
ripol	732.00		NIST Webbook
ripol	726.00		NIST Webbook
ripol	766.00		NIST Webbook
ripol	742.00		NIST Webbook
ripol	735.00		NIST Webbook
ripol	740.00		NIST Webbook
ripol	757.00		NIST Webbook
ripol	752.00		NIST Webbook
ripol	748.00		NIST Webbook
ripol	746.00		NIST Webbook
ripol	700.00		NIST Webbook
	740.00		NIST Webbook
ripol		I/m alad/	NIST Webbook
sg	298.19	J/mol×K	
sl	205.90	J/mol×K	NIST Webbook
sl	204.35	J/mol×K	NIST Webbook
SI	203.89	J/mol×K	NIST Webbook
tb	353.00 ± 3.00	K	NIST Webbook
tb	358.70 ± 3.33	K	NIST Webbook
tb	345.20 ± 8.00	K	NIST Webbook
tb	354.00 ± 1.50	K	NIST Webbook
tb	354.00 ± 2.00	K	NIST Webbook

a	055.00	1.4	N 107.W. I.
tb	355.00 ± 3.00	K	NIST Webbook
tb	353.00 ± 2.00	K	NIST Webbook
tb	356.65 ± 0.50	K	NIST Webbook
tb	356.40 ± 2.00	K	NIST Webbook
tb	354.55 ± 0.20	K	NIST Webbook
tb	354.00 ± 0.50	K	NIST Webbook
tb	354.55 ± 0.30	K	NIST Webbook
tb	354.00 ± 1.00	K	NIST Webbook
tb	353.87 ± 0.10	K	NIST Webbook
tb	353.95 ± 0.10	K	NIST Webbook
tb	354.15 ± 0.30	K	NIST Webbook
tb	353.90 ± 0.50	K	NIST Webbook
tb	353.90 ± 0.30	K	NIST Webbook
tb	353.65 ± 0.60	K	NIST Webbook
tb	354.15 ± 1.50	K	NIST Webbook
tb	354.07 ± 0.30	K	NIST Webbook
tb	353.95 ± 0.40	K	NIST Webbook
tb	353.88	K	KDB
tb	353.73	К	Isobaric vapor liquid equilibria for binary systems of butyl chlorides with heptane, toluene and cyclohexane at 101.3, 80.0 and 53.3 kPa
tb	353.73	К	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa
tb	353.70	К	Isobaric vapor-liquid equilibrium for the binary mixtures of nonane with cyclohexane, toluene, m-xylene, or p-xylene at 101.3 kPa
tb	353.78	К	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures
tb	355.00	К	The role of organic diluents in the aspects of equilibrium, kinetics and thermodynamic model for silver ion extraction using an extractant D2EHPA
tb	353.70	К	Excess molar volumes of the ternary system {methylcyclohexane (1) + cyclohexane (2) + n-alkanes (3)} at T = 298.15 K
tb	353.78	K	n-hexane and cyclohex + cyclohexene at 30,

tb	353.94	К	Isobaric vapor-liquid equilibrium of three binary systems containing dimethyl succinate, dimethyl glutarate and dimethyl adipate at 2, 5.2 and 8.3 kPa
tb	353.95	К	Excess volumes, densities, speeds of sound and viscosities for the binary systems of diisopropyl ether with hydrocarbons at 303.15K
tb	353.82	К	A new analysis method for improving collection of vapor-liquid equilibrium (VLE) data of binary mixtures using differential scanning calorimetry (DSC)
tb	353.85	К	Vapor Liquid Equilibrium Data for Binary Systems of N,N-Dimethylacetamide with Cyclohexene, Cyclohexane, and Benzene Separately at Atmospheric Pressure
tb	353.82	К	A New Test System for Distillation Efficiency Experiments at Elevated Liquid Viscosities: Vapor-Liquid Equilibrium and Liquid Viscosity Data for Cyclopentanol + Cyclohexanol
tb	353.78	K Benze	Vapor-Liquid Equilibria of the Binary System 1-Pentanol + Anisole and the Quaternary System ene+Cyclohexane+1-Pentanol+Aniso at 101.32 kPa
tb	353.73	К	Isobaric Vapor-Liquid Equilibria for Binary and Ternary Mixtures with Cyclohexane, Cyclohexene, and Methyl Isobutyl Ketone at 100 kPa
tb	353.73	К	Isobaric Vapor-Liquid Equilibria for Binary and Ternary Mixtures with Cyclohexane, Cyclohexene, and 2-Methoxyethanol at 100 kPa
tb	353.90	К	Isobaric Vapor-Liquid Equilibria for (Acetic Acid + Cyclohexane) and (Cyclohexane + Acetylacetone) at a Pressure of 101.3 kPa and for (Acetic Acid + Acetylacetone) at a Pressure of 60.0 kPa

41-	252.02 - 0.42	I/	NIOT Webbeeck
tb	353.93 ± 0.10	K	NIST Webbook
tb	353.84 ± 0.10	K	NIST Webbook
tb	353.85 ± 0.20	K	NIST Webbook
tb	353.95 ± 0.10	K	NIST Webbook
tb	353.88 ± 0.20	K	NIST Webbook
tb	353.81 ± 0.15	K	NIST Webbook
tb	354.00 ± 1.00	K	NIST Webbook
tb	354.15 ± 0.30	K	NIST Webbook
tb	353.90 ± 0.08	K	NIST Webbook
tb	353.70 ± 0.30	K	NIST Webbook
tb	353.90	K	NIST Webbook
tb	353.25 ± 0.30	K	NIST Webbook
tb	353.25 ± 0.50	K	NIST Webbook
tb	353.25 ± 0.50	K	NIST Webbook
tb	354.05 ± 0.30	K	NIST Webbook
tb	353.90	K	NIST Webbook
tb	354.60 ± 0.30	K	NIST Webbook
tb	353.95 ± 0.20	K	NIST Webbook
tb	353.90 ± 0.40	K	NIST Webbook
tb	353.84 ± 0.20	K	NIST Webbook
tb	353.85 ± 0.30	K	NIST Webbook
tb	353.25 ± 0.15	K	NIST Webbook
tb	354.00 ± 0.40	K	NIST Webbook
tb	353.90 ± 0.30	K	NIST Webbook
tb	353.25 ± 0.30	K	NIST Webbook
tb	354.00 ± 0.30	K	NIST Webbook
tb	353.95 ± 0.20	K	NIST Webbook
tb	353.91 ± 0.15	K	NIST Webbook
tb	353.85 ± 0.20	K	NIST Webbook
tb	353.95 ± 0.50	K	NIST Webbook
tb	353.40 ± 0.50	K	NIST Webbook
tb	353.90 ± 0.40	K	NIST Webbook
tb	353.85 ± 0.30	K	NIST Webbook
tb	353.87 ± 0.01	K	NIST Webbook
tb	353.70 ± 0.10	K	NIST Webbook
tb	353.85 ± 0.30	K	NIST Webbook
tb	353.87 ± 0.20	K	NIST Webbook
tb	353.89 ± 0.20	K	NIST Webbook
tb	354.00 ± 0.20	K	NIST Webbook
tb	353.70 ± 1.00	K	NIST Webbook
tb	353.88 ± 0.20	K	NIST Webbook
tb	353.89 ± 0.15	K	NIST Webbook
tb	353.85 ± 0.20	K	NIST Webbook
tb	354.15 ± 1.50	K	NIST Webbook
	307.10 ± 1.00	IX.	14101 1400001

rit.	050.05 0.00	17	NIOT MALL
tb	353.85 ± 0.20	K	NIST Webbook
tb	353.85 ± 0.30	K	NIST Webbook
tb	353.85 ± 0.30	K	NIST Webbook
tb	353.85 ± 0.30	K	NIST Webbook
tb	353.93 ± 0.30	K	NIST Webbook
tb	353.55 ± 0.30	K	NIST Webbook
tb	353.95 ± 0.50	K	NIST Webbook
tb	353.89 ± 0.40	K	NIST Webbook
tb	353.70 ± 2.00	K	NIST Webbook
tb	353.90 ± 0.30	K	NIST Webbook
tb	353.90 ± 0.50	K	NIST Webbook
tb	353.90 ± 0.50	K	NIST Webbook
tb	353.72 ± 0.30	K	NIST Webbook
tb	354.08 ± 0.20	K	NIST Webbook
tb	354.15 ± 0.40	K	NIST Webbook
tb	353.95 ± 0.25	K	NIST Webbook
tb	353.90 ± 0.50	K	NIST Webbook
tb	354.00 ± 0.30	K	NIST Webbook
tb	353.00 ± 3.00	K	NIST Webbook
tb	353.89 ± 0.15	K	NIST Webbook
tb	353.80 ± 0.50	K	NIST Webbook
tb	353.15 ± 1.00	K	NIST Webbook
tb	353.95 ± 0.30	K	NIST Webbook
tb	353.81 ± 0.20	K	NIST Webbook
tb	352.35 ± 1.50	K	NIST Webbook
tb	353.80 ± 0.50	K	NIST Webbook
tb	353.80 ± 0.30	K	NIST Webbook
tb	353.87 ± 0.15	K	NIST Webbook
tb	354.00 ± 0.30	K	NIST Webbook
tb	354.00 ± 0.50	K	NIST Webbook
tb	353.95 ± 0.30	K	NIST Webbook
tb	353.90 ± 0.30	K	NIST Webbook
tb	353.80 ± 0.50	K	NIST Webbook
tb	353.88 ± 0.01	K	NIST Webbook
tb	353.90 ± 1.00	K	NIST Webbook
tb	353.70 ± 1.00	K	NIST Webbook
tb	354.10 ± 0.40	K	NIST Webbook
tb	353.15 ± 0.50	K	NIST Webbook
tb	353.89 ± 0.05	K	NIST Webbook
tb	353.95 ± 0.30	K	NIST Webbook
tb	353.89 ± 0.10	K	NIST Webbook
tb	353.75 ± 0.40	K	NIST Webbook
tb	353.96 ± 0.10	K	NIST Webbook
tb	353.95 ± 0.20	K	NIST Webbook

tb	354.10 ± 0.60	K	NIST Webbook
tb	354.05 ± 0.40	K	NIST Webbook
tb	353.95 ± 0.20	K	NIST Webbook
tb	354.40 ± 1.00	K	NIST Webbook
tb	353.88 ± 0.10	K	NIST Webbook
tb	342.10 ± 0.20	K	NIST Webbook
tc	553.64 ± 0.03	K	NIST Webbook
tc	553.00 ± 2.00	K	NIST Webbook
tc	553.80	K	KDB
tc	553.60	K	Measurement of critical properties for binary and ternary mixtures containing potential gasoline additive diethyl carbonate (DEC)
tc	554.10	K	Measurement of critical temperatures and critical pressures for binary mixtures of methyl tert-butyl ether (MTBE) + alcohol and MTBE + alkane
tc	553.61	K	Experimental determination of critical data of multi-component mixtures containing potential gasoline additives 2-butanol by a flow-type apparatus
tc	553.60	K	Gas-Liquid Critical Temperatures of Some Alkenes, Amines, and Cyclic Hydrocarbons
tc	553.80 ± 0.20	K	NIST Webbook
tc	553.90 ± 0.40	K	NIST Webbook
tc	553.70 ± 0.60	K	NIST Webbook
tc	553.40	K	NIST Webbook
tc	553.20 ± 0.60	K	NIST Webbook
tc	553.00 ± 0.30	K	NIST Webbook
tc	555.10 ± 0.50	K	NIST Webbook
tc	553.40 ± 0.60	K	NIST Webbook
tc	554.20 ± 1.00	K	NIST Webbook
tc	553.35 ± 0.10	K	NIST Webbook
tc	553.40 ± 0.60	K	NIST Webbook
tc	553.45 ± 0.15	K	NIST Webbook
tc	554.15 ± 1.50	K	NIST Webbook
tc	553.40 ± 0.60	K	NIST Webbook
tc	553.90 ± 0.20	K	NIST Webbook
tc	552.97 ± 0.10	K	NIST Webbook
tf	279.62 ± 0.20	K	NIST Webbook

tf	279.55 ± 0.40	K	NIST Webbook
tf	277.70 ± 1.00	K	NIST Webbook
tf	279.55 ± 0.20	K	NIST Webbook
tf	279.40 ± 0.60	K	NIST Webbook
tf	278.65 ± 0.20	K	NIST Webbook
tf	279.35 ± 0.50	K	NIST Webbook
tf	279.15 ± 0.50	K	NIST Webbook
tf	279.40 ± 1.00	K	NIST Webbook
tf	279.00 ± 1.50	K	NIST Webbook
tf	279.55 ± 0.10	K	NIST Webbook
tf	277.15 ± 1.00	K	NIST Webbook
tf	266.75 ± 1.50	K	NIST Webbook
tf	279.55 ± 0.20	K	NIST Webbook
tf	279.55 ± 0.20	K	NIST Webbook
tf	279.65 ± 0.10	K	NIST Webbook
tf	279.51 ± 0.06	K	NIST Webbook
tf	279.30 ± 0.80	K	NIST Webbook
tf	279.69 ± 0.01	K	NIST Webbook
tf	279.50 ± 0.07	K	NIST Webbook
tf	279.57 ± 0.06	K	NIST Webbook
tf	279.55 ± 0.20	K	NIST Webbook
tf	279.65 ± 0.50	K	NIST Webbook
tf	279.65 ± 0.30	K	NIST Webbook
tf	279.65 ± 0.10	K	NIST Webbook
tf	279.70 ± 0.30	K	NIST Webbook
tf	279.70 ± 0.20	K	NIST Webbook
tf	279.22 ± 0.10	K	NIST Webbook
tf	279.69 ± 0.10	K	NIST Webbook
tf	279.55 ± 0.50	K	NIST Webbook
tf	279.75 ± 0.30	K	NIST Webbook
tf	279.58 ± 0.10	K	NIST Webbook
tf	279.70 ± 0.03	K	NIST Webbook
tf	279.72 ± 0.04	K	NIST Webbook
tf	279.96	K	Aqueous Solubility Prediction Method
tf	279.70	K	KDB
tf	280.10	K	Phase diagrams of binary systems containing n-alkanes, or cyclohexane, or 1-alkanols and 2,3-pentanedione at atmospheric and high pressure
tf	279.73 ± 0.15	K	NIST Webbook
tf	280.69 ± 0.05	K	NIST Webbook
tf	279.70 ± 0.05	K	NIST Webbook
tf	279.60 ± 2.00	K	NIST Webbook

tf	278.70 ± 2.77	K	NIST Webbook
tf	277.90 ± 0.60	K	NIST Webbook
tf	279.87 ± 0.01	K	NIST Webbook
tf	279.73 ± 0.01	K	NIST Webbook
tf	279.74 ± 0.08	K	NIST Webbook
tf	279.66 ± 0.10	K	NIST Webbook
tf	280.00	K	Determination of thermophysical properties of cyclopentane hydrate using a stirred calorimetric cell
tf	280.15 ± 1.00	K	NIST Webbook
tf	279.96	K	Solid-Liquid Equilibria for Binary Organic Systems Containing 1-Methoxy-2-propanol and 2-Butoxy Ethanol
tf	279.95	K	Liquid-Liquid-Solid Equilibria in the Ternary System Water-Phosphoric Acid-Cyclohexane at 25 and 35 deg.C: Stability Domain of Hemihydrate and Anhydrous Phosphoric Acid
tf	279.74 ± 0.02	K	NIST Webbook
tt	279.90 ± 3.00	K	NIST Webbook
tt	279.30 ± 0.20	K	NIST Webbook
tt	279.78 ± 0.06	K	NIST Webbook
tt	279.40 ± 0.20	K	NIST Webbook
tt	279.82 ± 0.05	K	NIST Webbook
tt	279.83	K	KDB
tt	279.84 ± 0.02	K	NIST Webbook
tt	279.70 ± 0.10	K	NIST Webbook
tt	279.83 ± 0.02	K	NIST Webbook
tt	186.18	K	Development of a certified reference material for calibration of DSC and DTA below room temperature: NMIJ CRM 5401-a, Cyclohexane for Thermal Analysis
VC	0.308	m3/kmol	KDB
VC	0.309 ± 0.003	m3/kmol	NIST Webbook
VC	0.308	m3/kmol	NIST Webbook
volm	1.09e-04	m3/mol	Excess Gibbs energies and volumes of the ternary system chloroform + tetrahydrofuran + cyclohexane at 298.15 K
volm	1.09e-04	m3/mol	Thermodynamic study of (perfluoroalkane + alkane) mixtures: Excess and solvation enthalpies

volm	1.09e-04	m3/mol	Excess Gibbs Energies of the Ternary System 2-Methoxyethanol + Tetrahydrofuran + Cyclohexane and Other Relevant Binaries at 298.15 K
ZC	0.2729110		KDB
zra	0.27		KDB

Temperature Dependent Properties

cpg 206.30 ± 2.10 J/molxK 544.00 NIST Webbook cpg 196.70 ± 2.10 J/molxK 521.00 NIST Webbook cpg 189.50 ± 2.10 J/molxK 495.00 NIST Webbook cpg 174.50 ± 1.70 J/molxK 460.00 NIST Webbook cpg 161.80 ± 1.70 J/molxK 428.00 NIST Webbook cpg 153.97 J/molxK 410.00 NIST Webbook cpg 146.44 J/molxK 390.00 NIST Webbook cpg 143.10 ± 1.30 J/molxK 384.00 NIST Webbook cpg 138.07 J/molxK 370.00 NIST Webbook cpl 157.06 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 156.40 J/molxK 298.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook
cpg 189.50 ± 2.10 J/molxK 495.00 NIST Webbook cpg 174.50 ± 1.70 J/molxK 460.00 NIST Webbook cpg 161.80 ± 1.70 J/molxK 428.00 NIST Webbook cpg 153.97 J/molxK 410.00 NIST Webbook cpg 146.44 J/molxK 390.00 NIST Webbook cpg 143.10 ± 1.30 J/molxK 390.00 NIST Webbook cpg 138.07 J/molxK 370.00 NIST Webbook cpl 157.06 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 156.70 J/molxK 298.15 NIST Webbook cpl 154.81 J/molxK 298.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 156.50 J/molxK 298.15 NIST Webbook cpl 155.13 J/molxK 298.15 NIST Webbook
cpg 174.50 ± 1.70 J/molxK 460.00 NIST Webbook cpg 161.80 ± 1.70 J/molxK 428.00 NIST Webbook cpg 153.97 J/molxK 410.00 NIST Webbook cpg 146.44 J/molxK 390.00 NIST Webbook cpg 143.10 ± 1.30 J/molxK 384.00 NIST Webbook cpg 138.07 J/molxK 370.00 NIST Webbook cpl 157.06 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 156.70 J/molxK 298.15 NIST Webbook cpl 156.40 J/molxK 298.15 NIST Webbook cpl 156.40 J/molxK 298.15 NIST Webbook cpl 156.50 J/molxK 298.15 NIST Webbook cpl 155.85 J/molxK 298.15 NIST Webbook cpl 156.12 J/molxK 298.15 NIST Webbook
cpg 161.80 ± 1.70 J/molxK 428.00 NIST Webbook cpg 153.97 J/molxK 410.00 NIST Webbook cpg 146.44 J/molxK 390.00 NIST Webbook cpg 143.10 ± 1.30 J/molxK 384.00 NIST Webbook cpg 138.07 J/molxK 370.00 NIST Webbook cpl 157.06 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 156.70 J/molxK 298.15 NIST Webbook cpl 156.40 J/molxK 298.15 NIST Webbook cpl 154.81 J/molxK 298.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 156.50 J/molxK 298.15 NIST Webbook cpl 156.12 J/molxK 298.15 NIST Webbook cpl 155.13 J/molxK 298.15 NIST Webbook cpl
cpg 153.97 J/molxK 410.00 NIST Webbook cpg 146.44 J/molxK 390.00 NIST Webbook cpg 143.10 ± 1.30 J/molxK 384.00 NIST Webbook cpg 138.07 J/molxK 370.00 NIST Webbook cpl 157.06 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 156.70 J/molxK 298.15 NIST Webbook cpl 156.40 J/molxK 298.15 NIST Webbook cpl 154.81 J/molxK 293.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 156.50 J/molxK 298.15 NIST Webbook cpl 155.85 J/molxK 298.15 NIST Webbook cpl 156.12 J/molxK 298.15 NIST Webbook cpl 154.32 J/molxK 298.15 NIST Webbook cpl
cpg 146.44 J/molxK 390.00 NIST Webbook cpg 143.10 ± 1.30 J/molxK 384.00 NIST Webbook cpg 138.07 J/molxK 370.00 NIST Webbook cpl 157.06 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 156.70 J/molxK 298.00 NIST Webbook cpl 156.40 J/molxK 298.15 NIST Webbook cpl 154.81 J/molxK 293.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 156.50 J/molxK 298.15 NIST Webbook cpl 155.85 J/molxK 298.15 NIST Webbook cpl 156.12 J/molxK 298.15 NIST Webbook cpl 155.13 J/molxK 298.15 NIST Webbook cpl 154.32 J/molxK 298.15 NIST Webbook cpl
cpg 143.10 ± 1.30 J/molxK 384.00 NIST Webbook cpg 138.07 J/molxK 370.00 NIST Webbook cpl 157.06 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 156.70 J/molxK 298.00 NIST Webbook cpl 156.40 J/molxK 298.15 NIST Webbook cpl 154.81 J/molxK 293.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 156.50 J/molxK 298.15 NIST Webbook cpl 156.50 J/molxK 298.15 NIST Webbook cpl 156.12 J/molxK 298.15 NIST Webbook cpl 155.13 J/molxK 298.15 NIST Webbook cpl 154.32 J/molxK 298.15 NIST Webbook cpl 154.39 J/molxK 298.15 NIST Webbook cpl
cpg 138.07 J/molxK 370.00 NIST Webbook cpl 157.06 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 156.70 J/molxK 298.00 NIST Webbook cpl 156.40 J/molxK 298.15 NIST Webbook cpl 154.81 J/molxK 293.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 156.50 J/molxK 298.15 NIST Webbook cpl 156.50 J/molxK 298.15 NIST Webbook cpl 156.12 J/molxK 298.15 NIST Webbook cpl 156.12 J/molxK 293.15 NIST Webbook cpl 154.32 J/molxK 298.15 NIST Webbook cpl 154.90 J/molxK 298.15 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl <td< td=""></td<>
cpl 157.06 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 156.70 J/molxK 298.00 NIST Webbook cpl 156.40 J/molxK 298.15 NIST Webbook cpl 154.81 J/molxK 293.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 156.50 J/molxK 298.15 NIST Webbook cpl 155.85 J/molxK 298.15 NIST Webbook cpl 156.12 J/molxK 298.15 NIST Webbook cpl 155.13 J/molxK 298.15 NIST Webbook cpl 154.32 J/molxK 298.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 143.90 J/molxK 298.15 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl
cpl 156.00 J/molxK 298.15 NIST Webbook cpl 156.70 J/molxK 298.00 NIST Webbook cpl 156.40 J/molxK 298.15 NIST Webbook cpl 154.81 J/molxK 293.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 156.50 J/molxK 298.15 NIST Webbook cpl 155.85 J/molxK 298.15 NIST Webbook cpl 156.12 J/molxK 298.15 NIST Webbook cpl 155.13 J/molxK 298.15 NIST Webbook cpl 154.32 J/molxK 298.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 143.90 J/molxK 298.15 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl
cpl 156.70 J/molxK 298.00 NIST Webbook cpl 156.40 J/molxK 298.15 NIST Webbook cpl 154.81 J/molxK 293.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 156.50 J/molxK 298.15 NIST Webbook cpl 155.85 J/molxK 298.15 NIST Webbook cpl 156.12 J/molxK 298.15 NIST Webbook cpl 155.13 J/molxK 293.15 NIST Webbook cpl 154.32 J/molxK 298.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 143.90 J/molxK 326.50 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 158.95 J/molxK 303.15 Excess Heat Capacities of
cpl 156.40 J/molxK 298.15 NIST Webbook cpl 154.81 J/molxK 293.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 156.50 J/molxK 298.15 NIST Webbook cpl 155.85 J/molxK 298.15 NIST Webbook cpl 156.12 J/molxK 298.15 NIST Webbook cpl 155.13 J/molxK 293.15 NIST Webbook cpl 154.32 J/molxK 298.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 143.90 J/molxK 326.50 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl 158.95 J/molxK 303.15 Excess Heat Capacities of
cpl 154.81 J/molxK 293.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 156.50 J/molxK 298.15 NIST Webbook cpl 155.85 J/molxK 298.15 NIST Webbook cpl 156.12 J/molxK 298.15 NIST Webbook cpl 155.13 J/molxK 293.15 NIST Webbook cpl 154.32 J/molxK 298.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 143.90 J/molxK 326.50 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 158.95 J/molxK 303.15 Excess Heat Capacities of
cpl 155.96 J/molxK 298.15 NIST Webbook cpl 156.50 J/molxK 298.15 NIST Webbook cpl 155.85 J/molxK 298.15 NIST Webbook cpl 156.12 J/molxK 298.15 NIST Webbook cpl 155.13 J/molxK 293.15 NIST Webbook cpl 154.32 J/molxK 298.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 143.90 J/molxK 326.50 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl 158.95 J/molxK 303.15 Excess Heat Capacities of
cpl 156.50 J/molxK 298.15 NIST Webbook cpl 155.85 J/molxK 298.15 NIST Webbook cpl 156.12 J/molxK 298.15 NIST Webbook cpl 155.13 J/molxK 293.15 NIST Webbook cpl 154.32 J/molxK 298.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 143.90 J/molxK 326.50 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 158.95 J/molxK 303.15 Excess Heat Capacities of
cpl 155.85 J/molxK 298.15 NIST Webbook cpl 156.12 J/molxK 298.15 NIST Webbook cpl 155.13 J/molxK 293.15 NIST Webbook cpl 154.32 J/molxK 298.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 143.90 J/molxK 326.50 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 158.95 J/molxK 303.15 Excess Heat Capacities of
cpl 156.12 J/molxK 298.15 NIST Webbook cpl 155.13 J/molxK 293.15 NIST Webbook cpl 154.32 J/molxK 298.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 143.90 J/molxK 326.50 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 158.95 J/molxK 303.15 Excess Heat Capacities of
cpl 155.13 J/molxK 293.15 NIST Webbook cpl 154.32 J/molxK 298.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 143.90 J/molxK 326.50 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 158.95 J/molxK 303.15 Excess Heat Capacities of
cpl 154.32 J/molxK 298.15 NIST Webbook cpl 155.96 J/molxK 298.15 NIST Webbook cpl 143.90 J/molxK 326.50 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 158.95 J/molxK 303.15 Excess Heat Capacities of
cpl 155.96 J/molxK 298.15 NIST Webbook cpl 143.90 J/molxK 326.50 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 158.95 J/molxK 303.15 Excess Heat Capacities of
cpl 143.90 J/molxK 326.50 NIST Webbook cpl 156.90 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 158.95 J/molxK 303.15 Excess Heat Capacities of
cpl 156.90 J/molxK 298.15 NIST Webbook cpl 156.00 J/molxK 298.15 NIST Webbook cpl 158.95 J/molxK 303.15 Excess Heat Capacities of
cpl 156.00 J/mol×K 298.15 NIST Webbook cpl 158.95 J/mol×K 303.15 Excess Heat Capacities of
cpl 158.95 J/molxK 303.15 Excess Heat Capacities of
Capacities of
Binary and Ternary Mixtures Containing 1-Ethyl-3-methylimidazo Tetrafluoroborate and Anilines

cpl	156.20	J/mol×K	298.15 1	Excess Heat Capacities of Binary and Ternary Mixtures Containing -Ethyl-3-methylimidazolium Tetrafluoroborate and Anilines
cpl	153.75	J/mol×K	293.15 1	Excess Heat Capacities of Binary and Ternary Mixtures Containing -Ethyl-3-methylimidazolium Tetrafluoroborate and Anilines
cpl	156.07	J/mol×K	298.15	NIST Webbook
cpl	156.07	J/mol×K	298.15	NIST Webbook
cpl	156.20	J/mol×K	298.15	NIST Webbook
cpl	159.60	J/mol×K	298.15	NIST Webbook
cpl	155.20	J/mol×K	298.15	NIST Webbook
cpl	155.50	J/mol×K	298.00	NIST Webbook
cpl	152.93	J/mol×K	298.00	NIST Webbook
cpl	155.31	J/mol×K	298.00	NIST Webbook
cpl	143.90	J/mol×K	298.90	NIST Webbook
cpl	155.20	J/mol×K	311.00	NIST Webbook
cpl	154.20	J/mol×K	300.00	NIST Webbook
cpl	155.85	J/mol×K	295.00	NIST Webbook
cpl	156.31	J/mol×K	298.15	NIST Webbook
cpl	100.40	J/mol×K	304.20	NIST Webbook
cpl	176.10	J/mol×K	298.00	NIST Webbook
cpl	156.15	J/mol×K	298.15	NIST Webbook
cpl	156.12	J/mol×K	298.15	NIST Webbook
cpl	156.40	J/mol×K	298.15	NIST Webbook
cpl	154.80	J/mol×K	293.15	NIST Webbook
cpl	156.35	J/mol×K	298.15	NIST Webbook
dvisc	0.0009027	Paxs	298.15	Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures

dvice	0.0005090	Dovo	222.15	Thermodynamia
dvisc	0.0005980	Paxs	323.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0005200	Pa×s	333.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0006960	Paxs	313.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0008210	Paxs	303.15	Thermodynamic properties of binary mixtures of N-methyl-2-pyrrolidinone with cyclohexane, benzene, toluene at (303.15 to 353.15) K and atmospheric pressure
dvisc	0.0008870	Pa×s	298.15	Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameters

dvisc	0.0008160	Paxs	303.15	Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameters	
dvisc	0.0009040	Paxs	298.15	Densities, viscosities, and excess properties of (N-methylmorpholine + cyclohexane, + benzene, and + toluene) at T = (298.15, 303.15, 313.15, 323.15) K	
dvisc	0.0008090	Paxs	303.15	Densities, viscosities, and excess properties of (N-methylmorpholine + cyclohexane, + benzene, and + toluene) at T = (298.15, 303.15, 313.15, 323.15) K	
dvisc	0.0006980	Paxs	313.15	Densities, viscosities, and excess properties of (N-methylmorpholine + cyclohexane, + benzene, and + toluene) at T = (298.15, 303.15, 313.15, 323.15) K	
dvisc	0.0009680	Paxs	293.15	Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameters	

dvisc	0.0006040	Paxs	323.15 Densities, viscosities, and excess properties of (N-methylmorpholine + cyclohexane, + benzene, and + toluene) at T = (298.15, 303.15, 313.15, 323.15) K
dvisc	0.0008980	Paxs	298.15 Densities, Excess Molar Volumes, Viscosities, Speeds of Sound, Excess Isentropic Compressibilities, and Relative Permittivities for CmH2m+1(OCH2CH2)nOH (m) 1 or 2 or 4 andn) 1) + Benzene, + Toluene, + (o-, m-, and p-) Xylenes, + Ethylbenzene, and + Cyclohexane
dvisc	0.0007490	Paxs	308.15 Densities, Excess Molar Volumes, Viscosities, Speeds of Sound, Excess Isentropic Compressibilities, and Relative Permittivities for CmH2m+1(OCH2CH2)nOH (m) 1 or 2 or 4 andn) 1) + Benzene, + Toluene, + (o-, m-, and p-) Xylenes, + Ethylbenzene, and + Cyclohexane
dvisc	0.0008945	Paxs	298.15 Thermophysical Properties of Binary Mixtures of Cyclohexane + Nitrobenzene, Cyclohexanone + Nitrobenzene, and Cyclohexane + Cyclohexanone at (298.15, 303.15, and 308.15) K

dvisc	0.0007637	Paxs	308.15	Thermophysical Properties of Binary Mixtures of Cyclohexane + Nitrobenzene, Cyclohexanone + Nitrobenzene, and Cyclohexane + Cyclohexanone at (298.15, 303.15, and 308.15) K
dvisc	0.0008205	Paxs	303.15	Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures
dvisc	0.0006963	Paxs	313.15	Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures
dvisc	0.0008284	Paxs	303.15	Thermophysical Properties of Binary Mixtures of Cyclohexane + Nitrobenzene, Cyclohexanone + Nitrobenzene, and Cyclohexane + Cyclohexanone at (298.15, 303.15, and 308.15) K
dvisc	0.0005984	Paxs	323.15	Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures
dvisc	0.0005195	Paxs	333.15	Thermodynamic Properties of Binary Mixtures of p-Xylene with Cyclohexane, Heptane, Octane, and N-Methyl-2-pyrrolidone at Several Temperatures

dvisc	0.0009680	Paxs	293.15	Dynamic Viscosities of the Binary Systems Cyclohexane and Cyclopentane with Acetone, Butanone, or 2-Pentanone at Three Temperatures T) (293.15, 298.15, and 303.15) K	
dvisc	0.0008870	Paxs	298.15	Dynamic Viscosities of the Binary Systems Cyclohexane and Cyclopentane with Acetone, Butanone, or 2-Pentanone at Three Temperatures T) (293.15, 298.15, and 303.15) K	
dvisc	0.0008160	Pa×s	303.15	Dynamic Viscosities of the Binary Systems Cyclohexane and Cyclopentane with Acetone, Butanone, or 2-Pentanone at Three Temperatures T) (293.15, 298.15, and 303.15) K	
dvisc	0.0009680	Paxs	293.15	Viscosities, Densities, and Speed of Sound of the Cycloalkanes with Secondary Alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO Interaction Parameters	
dvisc	0.0008870	Pa×s	298.15	Viscosities, Densities, and Speed of Sound of the Cycloalkanes with Secondary Alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO Interaction Parameters	

dvisc	0.0008160	Paxs	303.15	Viscosities, Densities, and Speed of Sound of the Cycloalkanes with Secondary Alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO Interaction Parameters	
dvisc	0.0010770	Paxs	288.15	Densities and Viscosities of Binary Mixtures of Tri-n-butyl Phosphate + Cyclohexane, + n-Heptane at T) (288.15, 293.15, 298.15, 303.15, and 308.15) K	
dvisc	0.0009840	Paxs	293.15	Densities and Viscosities of Binary Mixtures of Tri-n-butyl Phosphate + Cyclohexane, + n-Heptane at T) (288.15, 293.15, 298.15, 303.15, and 308.15) K	
dvisc	0.0009030	Paxs	298.15	Densities and Viscosities of Binary Mixtures of Tri-n-butyl Phosphate + Cyclohexane, + n-Heptane at T) (288.15, 293.15, 298.15, 303.15, and 308.15) K	
dvisc	0.0008300	Paxs	303.15	Densities and Viscosities of Binary Mixtures of Tri-n-butyl Phosphate + Cyclohexane, + n-Heptane at T) (288.15, 293.15, 298.15, 303.15, and 308.15) K	
dvisc	0.0007640	Paxs	308.15	Densities and Viscosities of Binary Mixtures of Tri-n-butyl Phosphate + Cyclohexane, + n-Heptane at T) (288.15, 293.15, 298.15, 303.15, and 308.15) K	

dvisc	0.0009840	Paxs	293.15	Densities and Viscosities of Binary Mixtures of Tris(2-ethylhexyl) Phosphate + Cyclohexane or n-Hexane at T) (293.15, 298.15, and 303.15) K and p) 0.1 MPa	
dvisc	0.0009030	Paxs	298.15	Densities and Viscosities of Binary Mixtures of Tris(2-ethylhexyl) Phosphate + Cyclohexane or n-Hexane at T) (293.15, 298.15, and 303.15) K and p) 0.1 MPa	
dvisc	0.0008300	Paxs	303.15	Densities and Viscosities of Binary Mixtures of Tris(2-ethylhexyl) Phosphate + Cyclohexane or n-Hexane at T) (293.15, 298.15, and 303.15) K and p) 0.1 MPa	
dvisc	0.0011802	Paxs	283.15	Density and Viscosity of Decalin, Cyclohexane, and Toluene Binary Mixtures at (283.15, 293.15, 303.15, 313.15, and 323.15) K	
dvisc	0.0009847	Paxs	293.15	Density and Viscosity of Decalin, Cyclohexane, and Toluene Binary Mixtures at (283.15, 293.15, 303.15, 313.15, and 323.15) K	
dvisc	0.0008295	Paxs	303.15	Density and Viscosity of Decalin, Cyclohexane, and Toluene Binary Mixtures at (283.15, 293.15, 303.15, 313.15, and 323.15) K	

dvisc	0.0007061	Paxs	313.15	Density and Viscosity of Decalin, Cyclohexane, and Toluene Binary Mixtures at (283.15, 293.15, 303.15, 313.15, and 323.15) K	
dvisc	0.0005978	Paxs	323.15	Density and Viscosity of Decalin, Cyclohexane, and Toluene Binary Mixtures at (283.15, 293.15, 303.15, 313.15, and 323.15) K	
dvisc	0.0007720	Paxs	308.15	Density, Viscosity, and Speed of Sound of (Methyl Benzoate + Cyclohexane), (Methyl Benzoate + n-Hexane), (Methyl Benzoate + Heptane), and (Methyl Benzoate + Octane) at Temperatures of (303.15, 308.15, and 313.15) K	
dvisc	0.0006850	Paxs	313.15	Density, Viscosity, and Speed of Sound of (Methyl Benzoate + Cyclohexane), (Methyl Benzoate + n-Hexane), (Methyl Benzoate + Heptane), and (Methyl Benzoate + Octane) at Temperatures of (303.15, 308.15, and 313.15) K	
dvisc	0.0008230	Paxs	303.15	Density, Viscosity, and Speed of Sound of (Methyl Benzoate + Cyclohexane), (Methyl Benzoate + n-Hexane), (Methyl Benzoate + Heptane), and (Methyl Benzoate + Octane) at Temperatures of (303.15, 308.15, and 313.15) K	

hfust	2.68	kJ/mol	279.80	NIST Webbook	
hfust	6.74	kJ/mol	186.10	NIST Webbook	
hfust	2.68	kJ/mol	279.80	NIST Webbook	
hsubt	46.60	kJ/mol	186.00	NIST Webbook	
hsubt	36.50	kJ/mol	274.00	NIST Webbook	
hsubt	37.70	kJ/mol	248.00	NIST Webbook	
hsubt	27.60	kJ/mol	251.50	NIST Webbook	
hsubt	37.20	kJ/mol	273.00	NIST Webbook	
hvapt	30.30	kJ/mol	345.00	NIST Webbook	
hvapt	32.90	kJ/mol	323.00	NIST Webbook	
hvapt	31.40 ± 0.10	kJ/mol	324.00	NIST Webbook	
hvapt	29.96	kJ/mol	353.90	KDB	
hvapt	32.83	kJ/mol	298.00	Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects	
hvapt	29.97	kJ/mol	353.90	NIST Webbook	
hvapt	33.33	kJ/mol	298.15	NIST Webbook	
hvapt	33.10	kJ/mol	324.50	NIST Webbook	
hvapt	32.70	kJ/mol	322.50	NIST Webbook	
hvapt	31.90	kJ/mol	324.50	NIST Webbook	
hvapt	32.20	kJ/mol	415.00	NIST Webbook	
hvapt	32.30	kJ/mol	314.00	NIST Webbook	
hvapt	31.10	kJ/mol	332.00	NIST Webbook	
hvapt	30.40 ± 0.10	kJ/mol	346.00	NIST Webbook	
hvapt	30.00	kJ/mol	355.00	NIST Webbook	
hvapt	30.90	kJ/mol	383.50	NIST Webbook	
hvapt	29.60	kJ/mol	451.50	NIST Webbook	
hvapt	29.60	kJ/mol	521.00	NIST Webbook	
hvapt	32.30 ± 0.10	kJ/mol	313.00	NIST Webbook	
hvapt	32.80	kJ/mol	335.00	NIST Webbook	
hvapt	31.20 ± 0.10	kJ/mol	333.00	NIST Webbook	
hvapt	31.00 ± 0.10	kJ/mol	338.00	NIST Webbook	
hvapt	30.40 ± 0.10	kJ/mol	348.00	NIST Webbook	
hvapt	30.10 ± 0.10	kJ/mol	353.00	NIST Webbook	
hvapt	32.20 ± 0.10	kJ/mol	313.00	NIST Webbook	
hvapt	31.90 ± 0.10	kJ/mol	323.00	NIST Webbook	
hvapt	31.10 ± 0.10	kJ/mol	333.00	NIST Webbook	
hvapt	30.60 ± 0.10	kJ/mol	343.00	NIST Webbook	
hvapt	30.10 ± 0.10	kJ/mol	354.00	NIST Webbook	
hvapt	32.50	kJ/mol	323.00	NIST Webbook	
hvapt	30.10	kJ/mol	354.00	NIST Webbook	

hvapt	32.90	kJ/mol	324.00	NIST Webbook
pvap	12.15	kPa	297.08	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	101.33	kPa	353.85	Vapor Liquid Equilibrium Data for Binary Systems of N,N-Dimethylacetamide with Cyclohexene, Cyclohexane, and Benzene Separately at Atmospheric Pressure
pvap	16.40	kPa	303.15	Bubble Pressure Measurement and Prediction for n-Hexadecane and n-Eicosane + Cyclohexane, Methylcyclohexane, and Ethylcyclohexane Binary Mixtures from 303.15 to 393.15 K
pvap	24.70	kPa	313.15	Bubble Pressure Measurement and Prediction for n-Hexadecane and n-Eicosane + Cyclohexane, Methylcyclohexane, and Ethylcyclohexane Binary Mixtures from 303.15 to 393.15 K
pvap	36.40	kPa	323.15	Bubble Pressure Measurement and Prediction for n-Hexadecane and n-Eicosane + Cyclohexane, Methylcyclohexane, and Ethylcyclohexane Binary Mixtures from 303.15 to 393.15 K

pvap	52.00	kPa	333.15	Bubble Pressure Measurement and Prediction for n-Hexadecane and n-Eicosane + Cyclohexane, Methylcyclohexane, and Ethylcyclohexane Binary Mixtures from 303.15 to 393.15 K
pvap	72.50	kPa	343.15	Bubble Pressure Measurement and Prediction for n-Hexadecane and n-Eicosane + Cyclohexane, Methylcyclohexane, and Ethylcyclohexane Binary Mixtures from 303.15 to 393.15 K
pvap	101.30	kPa	353.82	A New Test System for Distillation Efficiency Experiments at Elevated Liquid Viscosities: Vapor-Liquid Equilibrium and Liquid Viscosity Data for Cyclopentanol + Cyclohexanol
pvap	16.06	kPa	302.92	Vapor-Liquid Equilibrium in a Ternary System Cyclohexane + Ethanol + Water
pvap	16.95	kPa	304.19	Vapor-Liquid Equilibrium in a Ternary System Cyclohexane + Ethanol + Water
pvap	19.05	kPa	306.91	Vapor-Liquid Equilibrium in a Ternary System Cyclohexane + Ethanol + Water
pvap	20.16	kPa	308.27	Vapor-Liquid Equilibrium in a Ternary System Cyclohexane + Ethanol + Water
pvap	21.56	kPa	309.90	Vapor-Liquid Equilibrium in a Ternary System Cyclohexane + Ethanol + Water

pvap	24.61	kPa	313.16	Vapor-Liquid Equilibrium in a Ternary System Cyclohexane + Ethanol + Water	
pvap	30.03	kPa	318.19	Vapor-Liquid Equilibrium in a Ternary System Cyclohexane + Ethanol + Water	
pvap	36.23	kPa	323.14	Vapor-Liquid Equilibrium in a Ternary System Cyclohexane + Ethanol + Water	
pvap	43.51	kPa	328.16	Vapor-Liquid Equilibrium in a Ternary System Cyclohexane + Ethanol + Water	
pvap	49.68	kPa	331.90	Vapor-Liquid Equilibrium in a Ternary System Cyclohexane + Ethanol + Water	
pvap	51.90	kPa	333.16	Vapor-Liquid Equilibrium in a Ternary System Cyclohexane + Ethanol + Water	
pvap	51.90	kPa	333.17	Vapor-Liquid Equilibrium in a Ternary System Cyclohexane + Ethanol + Water	
pvap	61.56	kPa	338.16	Vapor-Liquid Equilibrium in a Ternary System Cyclohexane + Ethanol + Water	
pvap	72.53	kPa	343.16	Vapor-Liquid Equilibrium in a Ternary System Cyclohexane + Ethanol + Water	
руар	101.30	kPa	353.82	A new analysis method for improving collection of vapor-liquid equilibrium (VLE) data of binary mixtures using differential scanning calorimetry (DSC)	
pvap	84.73	kPa	348.05	Vapor-Liquid Equilibrium in a Ternary System Cyclohexane + Ethanol + Water	

pvap	19.80	kPa	308.15	VLE and LLE Data for the System Cyclohexane + Cyclohexene + Water + Cyclohexanol	
pvap	29.70	kPa	318.30	VLE and LLE Data for the System Cyclohexane + Cyclohexene + Water + Cyclohexanol	
pvap	39.70	kPa	325.95	VLE and LLE Data for the System Cyclohexane + Cyclohexene + Water + Cyclohexanol	
pvap	49.70	kPa	332.10	VLE and LLE Data for the System Cyclohexane + Cyclohexene + Water + Cyclohexanol	
pvap	59.70	kPa	337.45	VLE and LLE Data for the System Cyclohexane + Cyclohexene + Water + Cyclohexanol	
pvap	69.80	kPa	342.05	VLE and LLE Data for the System Cyclohexane + Cyclohexene + Water + Cyclohexanol	
pvap	79.90	kPa	346.25	VLE and LLE Data for the System Cyclohexane + Cyclohexene + Water + Cyclohexanol	
pvap	90.05	kPa	350.00	VLE and LLE Data for the System Cyclohexane + Cyclohexene + Water + Cyclohexanol	

pvap	101.75	kPa	354.05	VLE and LLE Data for the System Cyclohexane + Cyclohexene + Water + Cyclohexanol	
pvap	2.08	kPa	263.15	Isothermal Vapor-Liquid Equilibria and Excess Enthalpies of (Propyl Ethanoate + Heptane), (Propyl Ethanoate + Cyclohexane), and (Propyl Ethanoate + 1-Hexene)	
pvap	3.73	kPa	273.15	Isothermal Vapor-Liquid Equilibria and Excess Enthalpies of (Propyl Ethanoate + Heptane), (Propyl Ethanoate + Cyclohexane), and (Propyl Ethanoate + 1-Hexene)	
pvap	6.36	kPa	283.15	Isothermal Vapor-Liquid Equilibria and Excess Enthalpies of (Propyl Ethanoate + Heptane), (Propyl Ethanoate + Cyclohexane), and (Propyl Ethanoate + 1-Hexene)	
pvap	10.37	kPa	293.15	Isothermal Vapor-Liquid Equilibria and Excess Enthalpies of (Propyl Ethanoate + Heptane), (Propyl Ethanoate + Cyclohexane), and (Propyl Ethanoate + 1-Hexene)	

pvap	13.04	kPa	298.15	Isothermal Vapor-Liquid Equilibria and Excess Enthalpies of (Propyl Ethanoate + Heptane), (Propyl Ethanoate + Cyclohexane), and (Propyl Ethanoate + 1-Hexene)
pvap	16.26	kPa	303.15	Isothermal Vapor-Liquid Equilibria and Excess Enthalpies of (Propyl Ethanoate + Heptane), (Propyl Ethanoate + Cyclohexane), and (Propyl Ethanoate + 1-Hexene)
pvap	24.65	kPa	313.15	Isothermal Vapor-Liquid Equilibria and Excess Enthalpies of (Propyl Ethanoate + Heptane), (Propyl Ethanoate + Cyclohexane), and (Propyl Ethanoate + 1-Hexene)
pvap	36.24	kPa	323.15	Isothermal Vapor-Liquid Equilibria and Excess Enthalpies of (Propyl Ethanoate + Heptane), (Propyl Ethanoate + Cyclohexane), and (Propyl Ethanoate + 1-Hexene)
pvap	51.85	kPa	333.15	Isothermal Vapor-Liquid Equilibria and Excess Enthalpies of (Propyl Ethanoate + Heptane), (Propyl Ethanoate + Cyclohexane), and (Propyl Ethanoate + 1-Hexene)

pvap	72.39	kPa	343.15	Isothermal Vapor-Liquid Equilibria and Excess Enthalpies of (Propyl Ethanoate + Heptane), (Propyl Ethanoate + Cyclohexane), and (Propyl Ethanoate + 1-Hexene)	
pvap	98.85	kPa	353.15	Isothermal Vapor-Liquid Equilibria and Excess Enthalpies of (Propyl Ethanoate + Heptane), (Propyl Ethanoate + Cyclohexane), and (Propyl Ethanoate + 1-Hexene)	
pvap	132.33	kPa	363.15	Isothermal Vapor-Liquid Equilibria and Excess Enthalpies of (Propyl Ethanoate + Heptane), (Propyl Ethanoate + Cyclohexane), and (Propyl Ethanoate + 1-Hexene)	
pvap	362.80	kPa	403.15	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	20.00	kPa	308.07	Isobaric Vapor Liquid Equilibrium for Binary Systems of Toluene + Acrylic Acid, Toluene + Acetic Acid, and Cyclohexane + Acrylic Acid at 20 kPa	

pvap	24.63	kPa	313.15	Vapor-Liquid Equilibria of Binary Mixtures Containing 1-Butanol and Hydrocarbons at 313.15 K	
pvap	24.62	kPa	313.15	Vapor Liquid Equilibria of Binary Mixtures Containing 2-Butanol and Hydrocarbons at 313.15 K	
pvap	29.77	kPa	317.95	Determination and Prediction of Vapor Liquid Equilibria for a System Containing Water + Butyl Acetate + Cyclohexane + Ethanol	
pvap	58.85	kPa	336.85	Determination and Prediction of Vapor Liquid Equilibria for a System Containing Water + Butyl Acetate + Cyclohexane + Ethanol	
pvap	87.65	kPa	349.15	Determination and Prediction of Vapor Liquid Equilibria for a System Containing Water + Butyl Acetate + Cyclohexane + Ethanol	
pvap	11.15	kPa	295.42	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	11.16	kPa	295.45	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	11.17	kPa	295.46	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	11.33	kPa	295.72	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	11.35	kPa	295.75	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	11.63	kPa	296.22	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	101.30	kPa	353.94	Isobaric vapor-liquid equilibrium of three binary systems containing dimethyl succinate, dimethyl glutarate and dimethyl adipate at 2, 5.2 and 8.3 kPa	
pvap	12.16	kPa	297.13	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	12.17	kPa	297.13	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	12.61	kPa	297.86	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	12.71	kPa	297.99	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	13.23	kPa	298.83	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	13.80	kPa	299.75	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	13.81	kPa	299.77	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	14.52	kPa	300.85	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	15.71	kPa	302.63	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	16.03	kPa	303.02	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	16.11	kPa	303.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	17.04	kPa	304.38	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	17.05	kPa	304.40	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	17.07	kPa	304.42	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	18.33	kPa	306.05	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	18.60	kPa	306.40	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	19.40	kPa	307.45	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	19.91	kPa	308.06	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	21.12	kPa	309.50	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	22.47	kPa	310.98	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	23.89	kPa	312.48	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	24.56	kPa	313.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	25.25	kPa	313.84	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	26.47	kPa	315.01	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	26.67	kPa	315.26	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	27.88	kPa	316.32	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	29.23	kPa	317.51	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	30.09	kPa	318.31	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	30.56	kPa	318.67	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	31.93	kPa	319.81	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	33.27	kPa	320.87	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	34.59	kPa	321.91	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	34.69	kPa	321.99	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	35.95	kPa	322.94	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	36.27	kPa	323.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	36.59	kPa	323.44	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	37.23	kPa	323.88	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	37.33	kPa	323.95	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	38.56	kPa	324.83	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	132.35	kPa	363.15 2	Excess properties and vapour pressure of 2-diethylaminoethylamine + cyclohexane
pvap	41.25	kPa	326.68	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	42.68	kPa	327.61	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	43.97	kPa	328.43	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	45.40	kPa	329.32	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	45.43	kPa	329.35	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols

pvap	46.59	kPa	330.05	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	48.07	kPa	330.94	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	49.32	kPa	331.68	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	49.89	kPa	332.02	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	50.60	kPa	332.41	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	51.87	kPa	333.11	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	51.92	kPa	333.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	53.15	kPa	333.83	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	53.19	kPa	333.86	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	54.47	kPa	334.53	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	55.85	kPa	335.26	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	56.56	kPa	335.64	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	57.19	kPa	335.95	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	58.63	kPa	336.70	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	59.96	kPa	337.36	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	61.39	kPa	338.06	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	61.40	kPa	338.06	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	62.63	kPa	338.65	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	62.64	kPa	338.67	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	63.95	kPa	339.29	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap	65.29	kPa	339.92	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	66.63	kPa	340.54	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	67.95	kPa	341.12	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	69.29	kPa	341.72	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	70.65	kPa	342.32	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	71.93	kPa	342.88	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	72.60	kPa	343.15	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	73.25	kPa	343.43	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	74.73	kPa	344.05	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	75.96	kPa	344.55	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	

pvap 77.27 kPa 345.08 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 78.76 kPa 345.69 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 80.00 kPa 346.18 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 81.25 kPa 346.67 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 82.56 kPa 347.18 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 82.57 kPa 347.18 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 82.57 kPa 347.18 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 83.89 kPa 347.69 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 85.23 kPa 348.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 85.23 kPa 348.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 85.23 kPa 348.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 86.49 kPa 348.65 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 87.93 kPa 348.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols						
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	77.27	kPa	345.08	Equilibria in Binary Systems Formed by Cyclohexane with	
Pvap 81.25 kPa 346.67 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 82.56 kPa 347.18 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 82.57 kPa 347.18 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 82.57 kPa 347.18 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 83.89 kPa 347.69 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 85.23 kPa 348.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 85.23 kPa 348.65 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 86.49 kPa 348.65 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 87.93 kPa 349.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 87.93 kPa 349.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	78.76	kPa	345.69	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 82.56 kPa 347.18 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 82.57 kPa 347.18 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 83.89 kPa 347.69 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 85.23 kPa 348.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 85.23 kPa 348.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 86.49 kPa 348.65 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 86.49 kPa 348.65 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 87.93 kPa 349.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	80.00	kPa	346.18	Equilibria in Binary Systems Formed by Cyclohexane with	
Pvap 82.57 kPa 347.18 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 83.89 kPa 347.69 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 85.23 kPa 348.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 85.23 kPa 348.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 86.49 kPa 348.65 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 87.93 kPa 349.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	81.25	kPa	346.67	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 83.89 kPa 347.69 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 85.23 kPa 348.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 86.49 kPa 348.65 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 86.49 kPa 348.65 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 87.93 kPa 349.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	82.56	kPa	347.18	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 85.23 kPa 348.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 86.49 kPa 348.65 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 87.93 kPa 349.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	82.57	kPa	347.18	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 86.49 kPa 348.65 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 87.93 kPa 349.19 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	pvap	83.89	kPa	347.69	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 87.93 kPa 349.19 Vapor-Liquid Equilibria in	pvap	85.23	kPa	348.19	Equilibria in Binary Systems Formed by Cyclohexane with	
Equilibria in	pvap	86.49	kPa	348.65	Equilibria in Binary Systems Formed by Cyclohexane with	
Binary Systems Formed by Cyclohexane with Alcohols	pvap	87.93	kPa	349.19	Equilibria in Binary Systems Formed by Cyclohexane with	

Pyap 89.43 RPa 349.72 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols					
Pound	Equilibria in Binary Systems Formed by Cyclohexane with	349.72	kPa	89.43	pvap
Post	Equilibria in Binary Systems Formed by Cyclohexane with	350.18	kPa	90.64	pvap
Pvap 93.27 kPa 351.10 Formed by Cyclohexane with Alcohols Pvap 94.63 kPa 351.57 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 95.92 kPa 352.01 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 97.23 kPa 352.45 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 97.23 kPa 352.45 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 97.23 kPa 352.45 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 98.57 kPa 352.90 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	Equilibria in Binary Systems Formed by Cyclohexane with	350.25	kPa	90.87	pvap
Pvap 94.63 kPa 351.57 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 95.92 kPa 352.01 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 95.92 kPa 352.01 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 97.23 kPa 352.45 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 97.23 kPa 352.45 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 98.57 kPa 352.90 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	Equilibria in Binary Systems Formed by Cyclohexane with	350.67	kPa	92.07	pvap
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 95.92 kPa 352.01 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 97.23 kPa 352.45 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 98.57 kPa 352.90 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols Pvap 98.57 kPa 352.90 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	Equilibria in Binary Systems Formed by Cyclohexane with	351.10	kPa	93.27	pvap
Pvap 97.23 kPa 352.45 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 97.23 kPa 352.45 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 98.57 kPa 352.90 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Cyclohexane with Sparse	Equilibria in Binary Systems Formed by Cyclohexane with	351.57	kPa	94.63	pvap
Equilibria in Binary Systems Formed by Cyclohexane with Alcohols pvap 98.57 kPa 352.90 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with	Equilibria in Binary Systems Formed by Cyclohexane with	352.01	kPa	95.92	pvap
Equilibria in Binary Systems Formed by Cyclohexane with	Equilibria in Binary Systems Formed by Cyclohexane with	352.45	kPa	97.23	pvap
	Equilibria in Binary Systems Formed by Cyclohexane with	352.90	kPa	98.57	pvap
pvap 99.31 kPa 353.15 Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	Equilibria in Binary Systems Formed by Cyclohexane with	353.15	kPa	99.31	pvap

pvap	99.95	kPa	353.36	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols
pvap	98.87	kPa	353.15	Excess properties and vapour pressure of
				2-diethylaminoethylamine + cyclohexane
pvap	72.39	kPa	343.15	Excess properties and vapour pressure of 2-diethylaminoethylamine + cyclohexane
pvap	51.85	kPa	333.15	Excess properties and vapour pressure of 2-diethylaminoethylamine + cyclohexane
pvap	36.24	kPa	323.15	Excess properties and vapour pressure of 2-diethylaminoethylamine + cyclohexane
pvap	24.65	kPa	313.15	Excess properties and vapour pressure of 2-diethylaminoethylamine + cyclohexane
pvap	16.26	kPa	303.15	Excess properties and vapour pressure of 2-diethylaminoethylamine + cyclohexane
pvap	13.04	kPa	298.15	Excess properties and vapour pressure of 2-diethylaminoethylamine + cyclohexane
pvap	10.36	kPa	293.15	Excess properties and vapour pressure of 2-diethylaminoethylamine + cyclohexane
pvap	6.35	kPa	283.15	Excess properties and vapour pressure of 2-diethylaminoethylamine + cyclohexane

pvap	3.73	kPa	273.15 Excess properties and vapour pressure of 2-diethylaminoethylamine + cyclohexane
pvap	132.35	kPa	363.15 Excess properties and vapour pressure of
			{3-diethylaminopropylamine + cyclohexane}
pvap	98.87	kPa	353.15 Excess properties and vapour pressure of {3-diethylaminopropylamine + cyclohexane}
pvap	72.40	kPa	343.15 Excess properties and vapour pressure of {3-diethylaminopropylamine + cyclohexane}
pvap	51.85	kPa	333.15 Excess properties and vapour pressure of {3-diethylaminopropylamine + cyclohexane}
pvap	36.24	kPa	323.15 Excess properties and vapour pressure of {3-diethylaminopropylamine + cyclohexane}
pvap	24.65	kPa	313.15 Excess properties and vapour pressure of {3-diethylaminopropylamine + cyclohexane}
pvap	16.26	kPa	303.15 Excess properties and vapour pressure of {3-diethylaminopropylamine + cyclohexane}
pvap	10.36	kPa	293.15 Excess properties and vapour pressure of {3-diethylaminopropylamine + cyclohexane}
pvap	6.35	kPa	283.15 Excess properties and vapour pressure of {3-diethylaminopropylamine + cyclohexane}

pvap	40.45	kPa	326.12	Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols	
pvap	3.73	kPa	273.15	Excess properties and vapour pressure of	
			{3-	diethylaminopropylar + cyclohexane}	nine
pvap	99.11	kPa	353.14	Isothermal vapor- liquid equilibria and excess molar enthalpy of 2-methylpyrazine (2MP) containing binary mixtures. Comparison with DISQUAC predictions	
pvap	72.98	kPa	343.18	Isothermal vapor- liquid equilibria and excess molar enthalpy of 2-methylpyrazine (2MP) containing binary mixtures. Comparison with DISQUAC predictions	
pvap	52.48	kPa	333.21	Isothermal vapor- liquid equilibria and excess molar enthalpy of 2-methylpyrazine (2MP) containing binary mixtures. Comparison with DISQUAC predictions	
pvap	36.72	kPa	323.21	Isothermal vapor- liquid equilibria and excess molar enthalpy of 2-methylpyrazine (2MP) containing binary mixtures. Comparison with DISQUAC predictions	
pvap	24.97	kPa	313.24	Isothermal vapor- liquid equilibria and excess molar enthalpy of 2-methylpyrazine (2MP) containing binary mixtures. Comparison with DISQUAC predictions	

pvap	16.45	kPa	303.27	Isothermal vapor- liquid equilibria and excess molar enthalpy of 2-methylpyrazine (2MP) containing binary mixtures. Comparison with DISQUAC predictions	
pvap	13.17	kPa	298.25	Isothermal vapor- liquid equilibria and excess molar enthalpy of 2-methylpyrazine (2MP) containing binary mixtures. Comparison with DISQUAC predictions	
pvap	10.42	kPa	293.27	Isothermal vapor- liquid equilibria and excess molar enthalpy of 2-methylpyrazine (2MP) containing binary mixtures. Comparison with DISQUAC predictions	
pvap	8.20	kPa	288.28	Isothermal vapor- liquid equilibria and excess molar enthalpy of 2-methylpyrazine (2MP) containing binary mixtures. Comparison with DISQUAC predictions	
pvap	6.39	kPa	283.32	Isothermal vapor- liquid equilibria and excess molar enthalpy of 2-methylpyrazine (2MP) containing binary mixtures. Comparison with DISQUAC predictions	
pvap	99.11	kPa	353.14	Isothermal vapour pressures and thermodynamic excess properties of 3,5- and 2,6-dimethylpyridine with cyclohexane. Measurements and prediction	

pvap	72.98	kPa	343.18	Isothermal vapour pressures and thermodynamic excess properties of 3,5- and 2,6-dimethylpyridine with cyclohexane. Measurements and prediction	
pvap	52.48	kPa	333.21	Isothermal vapour pressures and thermodynamic excess properties of 3,5- and 2,6-dimethylpyridine with cyclohexane. Measurements and prediction	
pvap	36.72	kPa	323.21	Isothermal vapour pressures and thermodynamic excess properties of 3,5- and 2,6-dimethylpyridine with cyclohexane. Measurements and prediction	
pvap	24.97	kPa	313.24	Isothermal vapour pressures and thermodynamic excess properties of 3,5- and 2,6-dimethylpyridine with cyclohexane. Measurements and prediction	
pvap	16.45	kPa	303.27	Isothermal vapour pressures and thermodynamic excess properties of 3,5- and 2,6-dimethylpyridine with cyclohexane. Measurements and prediction	

pvap	13.17	kPa	298.25	Isothermal vapour pressures and thermodynamic excess properties of 3,5- and 2,6-dimethylpyridine with cyclohexane. Measurements and prediction	
pvap	10.42	kPa	293.27	Isothermal vapour pressures and thermodynamic excess properties of 3,5- and 2,6-dimethylpyridine with cyclohexane. Measurements and prediction	
pvap	8.20	kPa	288.28	Isothermal vapour pressures and thermodynamic excess properties of 3,5- and 2,6-dimethylpyridine with cyclohexane. Measurements and prediction	
pvap	6.39	kPa	283.32	Isothermal vapour pressures and thermodynamic excess properties of 3,5- and 2,6-dimethylpyridine with cyclohexane. Measurements and prediction	
pvap	84.70	kPa	348.15	Phase equilibria and excess molar enthalpies study of the binary systems (pyrrole + hydrocarbon, or an alcohol) and modeling	
pvap	61.50	kPa	338.15	Phase equilibria and excess molar enthalpies study of the binary systems (pyrrole + hydrocarbon, or an alcohol) and modeling	

	404.00	I-D-	050.70	la ab as' s	
pvap	101.30	kPa	353.70	Isobaric vapor-liquid equilibrium for the binary mixtures of nonane with cyclohexane, toluene, m-xylene, or p-xylene at 101.3 kPa	
pvap	101.33	kPa	353.73	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	94.84	kPa	351.55	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	92.48	kPa	350.73	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	89.99	kPa	349.84	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	87.27	kPa	348.86	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	

nyan	85.03	kPa	348.01	Isobaric vapor	
рvар	60.00	KF d	340.01	liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	82.52	kPa	347.06	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	79.92	kPa	346.07	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	77.54	kPa	345.11	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	75.07	kPa	344.09	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	74.96	kPa	344.05	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	

	70.45	LD.	242.00	laabaw'a	
pvap	72.45	kPa	342.99	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	69.94	kPa	341.92	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	67.47	kPa	340.81	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	64.86	kPa	339.65	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	62.44	kPa	338.50	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	59.98	kPa	337.31	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	

	57.44	1.5	005.00		
pvap	57.44	kPa	335.99	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	54.76	kPa	334.60	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	52.43	kPa	333.33	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	49.92	kPa	331.94	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	47.45	kPa	330.44	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	44.91	kPa	328.90	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	

pvap	42.42	kPa	327.32	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	39.94	kPa	325.66	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	37.43	kPa	323.92	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	34.90	kPa	322.06	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	32.46	kPa	320.11	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	29.95	kPa	318.05	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	

pvap	27.43	kPa	315.76	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	24.95	kPa	313.40	Isobaric vapor liquid equilibrium for binary mixtures of 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa	
pvap	93.32	kPa	351.12	Determination and correlation of vapor liquid equilibrium for binary systems consisting of close-boiling components	
pvap	79.99	kPa	346.11	Determination and correlation of vapor liquid equilibrium for binary systems consisting of close-boiling components	
pvap	66.66	kPa	340.43	Determination and correlation of vapor liquid equilibrium for binary systems consisting of close-boiling components	
pvap	53.33	kPa	333.77	Determination and correlation of vapor liquid equilibrium for binary systems consisting of close-boiling components	
pvap	40.00	kPa	325.65	Determination and correlation of vapor liquid equilibrium for binary systems consisting of close-boiling components	

pvap	102.34	kPa	354.11	Isobaric vapor liquid equilibria for binary systems of butyl chlorides with heptane, toluene and cyclohexane at 101.3, 80.0 and 53.3 kPa	
pvap	95.17	kPa	351.72	Isobaric vapor liquid equilibria for binary systems of butyl chlorides with heptane, toluene and cyclohexane at 101.3, 80.0 and 53.3 kPa	
pvap	81.20	kPa	346.58	Isobaric vapor liquid equilibria for binary systems of butyl chlorides with heptane, toluene and cyclohexane at 101.3, 80.0 and 53.3 kPa	
pvap	80.00	kPa	346.13	Isobaric vapor liquid equilibria for binary systems of butyl chlorides with heptane, toluene and cyclohexane at 101.3, 80.0 and 53.3 kPa	
pvap	74.01	kPa	343.68	Isobaric vapor liquid equilibria for binary systems of butyl chlorides with heptane, toluene and cyclohexane at 101.3, 80.0 and 53.3 kPa	
pvap	69.95	kPa	341.96	Isobaric vapor liquid equilibria for binary systems of butyl chlorides with heptane, toluene and cyclohexane at 101.3, 80.0 and 53.3 kPa	
pvap	60.49	kPa	337.59	Isobaric vapor liquid equilibria for binary systems of butyl chlorides with heptane, toluene and cyclohexane at 101.3, 80.0 and 53.3 kPa	

pvap	53.30	kPa	333.96	Isobaric vapor liquid equilibria for binary	
				systems of butyl chlorides with heptane, toluene and cyclohexane at 101.3, 80.0 and 53.3 kPa	
pvap	50.00	kPa	332.08	Isobaric vapor liquid equilibria for binary systems of butyl chlorides with heptane, toluene and cyclohexane at 101.3, 80.0 and 53.3 kPa	
pvap	38.28	kPa	324.73	Isobaric vapor liquid equilibria for binary systems of butyl chlorides with heptane, toluene and cyclohexane at 101.3, 80.0 and 53.3 kPa	
pvap	38.19	kPa	324.72	Isobaric vapor liquid equilibria for binary systems of butyl chlorides with heptane, toluene and cyclohexane at 101.3, 80.0 and 53.3 kPa	
pvap	101.30	kPa	353.73	Isobaric vapor liquid equilibria for binary systems of butyl chlorides with heptane, toluene and cyclohexane at 101.3, 80.0 and 53.3 kPa	
pvap	77.94	kPa	345.42	Vapor-Liquid Equilibrium in a Ternary System Cyclohexane + Ethanol + Water	
rfi	1.41516		313.15	Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes with o-Xylene, m-Xylene, p-Xylene, and Mesitylene at T = (298.15 and 313.15) K	

rfi	1.42350	298.15	Densities, Viscosities, and Refractive Indices of Mixtures of Hexane with Cyclohexane, Decane, Hexadecane, and Squalane at 298.15K
rfi	1.42050	308.15	Topological and thermodynamic investigations of molecular interactions in binary mixtures: Molar excess volumes and molar excess enthalpies
rfi	1.42350	298.15	Activity coefficients in binary mixtures formed by cyclohexanone with a variety of compounds at 94.7 kPa
rfi	1.42650	293.15	Vapour liquid equilibrium of carboxylic acid systems: Propionic acid + valeric acid and isobutyric acid + valeric acid
rfi	1.42350	298.15	Vapor liquid equilibrium for binary system of diethyl sulfide + cyclohexane at 353.15 and 343.15 K and diethyl sulfide + 2-ethoxy-2-methylpropane at 343.15 and 333.15 K
rfi	1.42378	298.15	Liquid liquid equilibria of lactam containing binary systems
rfi	1.42508	298.15	Vapor liquid equilibria and interfacial tensions for the ternary system acetone + 2,2 -oxybis[propane] + cyclohexane and its constituent binary systems

rfi	1.42508	298.15	Phase equilibria and interfacial tensions in the systems methyl tert-butyl ether + acetone + cyclohexane, methyl tert-butyl ether + acetone and methyl tert-butyl ether + cyclohexane
rfi	1.42350	298.15	Phase equilibria on four binary systems containing 3-methylthiophene
rfi	1.42630	293.20	Liquid phase equilibria for mixtures of (an aliphatic hydrocarbon + toluene + gamma-butyrolactone)
rfi	1.42360	298.15	Experimental data, correlation and prediction of the extraction of benzene from cyclic hydrocarbons using [Epy][ESO4] ionic liquid
rfi	1.42320	298.15	Azeotropic behaviour of (benzene + cyclohexane + chlorobenzene) ternary mixture using chlorobenzene as entrainer at 101.3 kPa
rfi	1.42633	293.15	Mixing properties of binary mixtures presenting azeotropes at several temperatures
rfi	1.42354	298.15	Mixing properties of binary mixtures presenting azeotropes at several temperatures

rfi	1.42073	303.15 Mixing properties of binary mixtures presenting azeotropes at several temperatures
rfi	1.42403	298.15 (Liquid + liquid) equilibria of [C8mim][NTf2] ionic liquid with a sulfur-component and hydrocarbons
rfi	1.42360	298.15 Separation of toluene from cyclic hydrocarbons using 1-butyl-3-methylimidazolium methylsulfate ionic liquid at T = 298.15 K and atmospheric pressure
rfi	1.42360	298.15 (Liquid + liquid) equilibrium data for the ternary systems (cycloalkane + ethylbenzene + 1-ethyl-3-methylimidazolium ethylsulfate) at T = 298.15 K and atmospheric pressure
rfi	1.42356	298.15 Application of [HMim][NTf2], [HMim][Tf0] and [BMim][Tf0] ionic liquids on the extraction of toluene from alkanes: Effect of the anion and the alkyl chain length of the cation on the LLE
rfi	1.42350	293.15 Solubility Data for Roflumilast and Maraviroc in Various Solvents between T = (278.2-323.2) K
rfi	1.42350	298.15 Bubble Temperature Measurements on Binary Mixtures Formed by Cyclohexane at 94.7 kPa

rfi	1.42350	Bubble-Temperature Measurements on Some Binary Mixtures Formed by Tetrahydrofuran or Amyl Alcohol with Hydrocarbons, Chlorohydrocarbons, or Butanols at (94.6 or 95.8) kPa
rfi	1.42360	298.15 Solubility of -Carotene in Binary Solvents Formed by Some Hydrocarbons with Dibutyl Ether and 1,2-Dimethoxyethane
rfi	1.42360	298.15 Solubility of a-Carotene in Binary Solvents Formed by Some Hydrocarbons with tert-Butyl Methyl Ether and with tert-Amyl Methyl Ether
rfi	1.42690	293.20 Phase Equilibria for the Ternary Liquid Systems of (Water + Tetrahydrofurfuryl Alcohol + Cyclic Solvent) at 298.2 K
rfi	1.42360	298.15 Solubility of a-Carotene in Binary Solvents Formed by Some Hydrocarbons with 2,5,8-Trioxanonane, 2-Propanone, and Cyclohexanone
rfi	1.42660	293.15 Solubilities of Phosphorus-Containing Compounds in Selected Solvents
rfi	1.42354	298.15 KDB
rfi	1.42360	298.15 Liquid Extraction of Benzene from Its Mixtures Using 1-Ethyl-3-methylimidazolium Ethylsulfate as a Solvent

rfi	1.42590	293.15 Liquid-Liquid Equilibrium of (Water + Pentane-2,4-dione + Ethyl Ethanoate) and (Water + Pentane-2,4-dione + Cyclohexane) at (298.15 and 313.15) K
rfi	1.42360	298.15 Liquid Liquid Extraction of Aromatic Compounds from Cycloalkanes Using 1-Butyl-3-methylimidazolium Methylsulfate Ionic Liquid
rfi	1.42650	298.15 Vapor Liquid Equilibrium for Ternary and Binary Mixtures of Tetrahydrofuran, Cyclohexane, and 1,2-Propanediol at 101.3 kPa
rfi	1.42403	298.15 Liquid-Liquid Equilibria for Systems Composed by 1-Methyl-3-octylimidazolium Tetrafluoroborate Ionic Liquid, Thiophene, and n-Hexane or Cyclohexane
rfi	1.43193	Density, Speed of Sound, and Refractive Index of the Binary Systems Cyclohexane (1) or Methylcyclohexane (1) or Cyclo-octane (1) with Benzene (2), Toluene (2), and Ethylbenzene (2) at Two Temperatures

rfi	1.42360		298.15	Density, Speed of Sound, and Refractive Index of the Binary Systems Cyclohexane (1) or Methylcyclohexane (1) or Cyclo-octane (1) with Benzene (2), Toluene (2), and Ethylbenzene (2) at Two	
rfi	1.42360		298.15	Temperatures Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes with o-Xylene, m-Xylene, p-Xylene, and Mesitylene at T = (298.15 and 313.15) K	
rhol	769.00	kg/m3	303.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures	
rhol	774.00	kg/m3	298.15	Liquid-Liquid Equilibrium for 2,2,2-Trifluoroethano + Ethanol + Cyclohexane from (288.15 to 308.15) K	I
rhol	773.80	kg/m3	298.15	Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes and Aromatic Compounds at T = 313.15 K	

rhol	748.70	kg/m3	323.15	Volumetric Behavior of the Binary Mixtures of Methyl Ethyl Ketone with n-Hexane, Cyclohexane, and Benzene at T) (303.15, 313.15, and 323.15) K	
rhol	759.20	kg/m3	313.15	Volumetric Behavior of the Binary Mixtures of Methyl Ethyl Ketone with n-Hexane, Cyclohexane, and Benzene at T) (303.15, 313.15, and 323.15) K	
rhol	768.90	kg/m3	303.15	Volumetric Behavior of the Binary Mixtures of Methyl Ethyl Ketone with n-Hexane, Cyclohexane, and Benzene at T) (303.15, 313.15, and 323.15) K	
rhol	779.00	kg/m3	293.00	KDB	
rhol	778.70	kg/m3	293.15	Densities and Kinematic Viscosities of One Quinary Regular Liquid System and Its Five Quaternary Sub-Systems at Temperatures (293.15 and 298.15) K	
rhol	773.90	kg/m3	298.15	Densities and Kinematic Viscosities of One Quinary Regular Liquid System and Its Five Quaternary Sub-Systems at Temperatures (293.15 and 298.15) K	

rhol	778.70	kg/m3	293.15	Densities and	
				Kinematic Viscosities of a Quinary Regular Liquid System and Its Five Quaternary Subsystems at 293.15A K and 298.15A K	
rhol	773.90	kg/m3	298.15	Densities and Kinematic Viscosities of a Quinary Regular Liquid System and Its Five Quaternary Subsystems at 293.15A K and 298.15A K	
rhol	773.70	kg/m3	298.15	Fluid Phase Topology of Benzene + Cyclohexane + 1-Propanol at 101.3 kPa	
rhol	773.65	kg/m3	298.15	Experimental and predicted vapour liquid equilibrium of 1,4-dioxane with cycloalkanes and benzene	
rhol	773.88	kg/m3	298.10	Excess enthalpies of binary mixtures of 2-ethoxyethanol with four hydrocarbons at 298.15, 308.15, and 318.15K An experimental and theoretical study	
rhol	773.86	kg/m3	298.15	Thermodynamic study of 1,1,2,2-tetrachloroethane + hydrocarbon mixtures I. Excess and solvation enthalpies	
rhol	778.54	kg/m3	293.00	Volumetric behavior of the binary systems benzene + cyclohexane and benzene + 2,2,4-trimethyl-pentane at temperatures 293.15-323.15K	

rhol	769.13	kg/m3	303.00	Volumetric behavior of the binary systems benzene + cyclohexane and benzene + 2,2,4-trimethyl-pentane at temperatures 293.15-323.15K
rhol	759.60	kg/m3	313.00	Volumetric behavior of the binary systems benzene + cyclohexane and benzene + 2,2,4-trimethyl-pentane at temperatures 293.15-323.15K
rhol	749.94	kg/m3	323.00	Volumetric behavior of the binary systems benzene + cyclohexane and benzene + 2,2,4-trimethyl-pentane at temperatures 293.15-323.15K
rhol	774.00	kg/m3	298.15	Effect of Temperature on Phase Equilibrium of the Mixed-Solvent System of (2,2,2-Trifluoroethanol + Methanol + Cyclohexane)
rhol	759.41	kg/m3	313.15	Thermodynamic properties of cyclohexane methanol liquid mixture from shear viscosity measurements
rhol	754.60	kg/m3	318.15	Thermodynamic properties of cyclohexane methanol liquid mixture from shear viscosity measurements
rhol	749.76	kg/m3	323.15	Thermodynamic properties of cyclohexane methanol liquid mixture from shear viscosity measurements

rhol	776.11	kg/m3	298.15	Quaternary isothermal vapor-liquid equilibrium of the model biofuel 2-butanone + n-heptane + tetrahydrofuran + cyclohexane using Raman spectroscopic characterization	
rhol	778.50	kg/m3	293.15	Partial molar volume of paracetamol in water, 0.1 M HCI and 0.154 M NaCl at T = (298.15, 303.15, 308.15 and 310.65) K and at 101.325 kPa	
rhol	773.96	kg/m3	298.15	Thermodynamics of mixtures containing amines. XI. Liquid + liquid equilibria and molar excess enthalpies at 298.15 K for N-methylaniline + hydrocarbon systems. Characterization in terms of DISQUAC and ERAS models	
rhol	773.86	kg/m3	298.15	Volumetric and acoustic properties of binary mixtures of tri-n-butyl phosphate with n-hexane, cyclohexane, and n-heptane from T = (298.15 to 323.15) K	
rhol	769.12	kg/m3	303.15	Volumetric and acoustic properties of binary mixtures of tri-n-butyl phosphate with n-hexane, cyclohexane, and n-heptane from T = (298.15 to 323.15) K	

rhol	764.35	kg/m3	308.15	Volumetric and acoustic properties of binary mixtures of tri-n-butyl phosphate with n-hexane, cyclohexane, and n-heptane from T = (298.15 to 323.15) K	
rhol	759.56	kg/m3	313.15	Volumetric and acoustic properties of binary mixtures of tri-n-butyl phosphate with n-hexane, cyclohexane, and n-heptane from T = (298.15 to 323.15) K	
rhol	754.74	kg/m3	318.15	Volumetric and acoustic properties of binary mixtures of tri-n-butyl phosphate with n-hexane, cyclohexane, and n-heptane from T = (298.15 to 323.15) K	
rhol	749.88	kg/m3	323.15	Volumetric and acoustic properties of binary mixtures of tri-n-butyl phosphate with n-hexane, cyclohexane, and n-heptane from T = (298.15 to 323.15) K	
rhol	778.41	kg/m3	293.15	Isothermal (vapour + liquid) equilibria for binary mixtures of diisopropyl ether with (methanol, or ethanol, or 1-butanol): Experimental data, correlations, and predictions	

rhol	773.88	kg/m3	298.15	Quaternary (liquid + liquid) equilibrium data for the extraction of toluene from alkanes using the ionic liquid [EMim][MSO4]	
rhol	773.94	kg/m3	298.15	Excess molar volumes and excess isentropic compressibilities of binary and ternary mixtures of o-chlorotoluene with cyclic ether and amides or cyclohexane at different temperatures	
rhol	769.21	kg/m3	303.15	Excess molar volumes and excess isentropic compressibilities of binary and ternary mixtures of o-chlorotoluene with cyclic ether and amides or cyclohexane at different temperatures	
rhol	764.45	kg/m3	308.15	Excess molar volumes and excess isentropic compressibilities of binary and ternary mixtures of o-chlorotoluene with cyclic ether and amides or cyclohexane at different temperatures	
rhol	773.50	kg/m3		Measurements and modeling of LLE and HE for (methanol + 4,4-trimethyl-1-pentene), and LLE for (water + methanol + 4,4-trimethyl-1-pentene)	

rhol	773.87	kg/m3	298.15	Volumetric, acoustic, and refractometric properties of (thiophene + hexane/cyclohexane) solutions in the presence of some imidazolium based ionic liquids at T = 298.15 K
rhol	773.88	kg/m3	298.15	(Liquid + liquid) equilibrium of ternary and quaternary systems containing heptane, cyclohexane, toluene and the ionic liquid [EMim][N(CN)2]. Experimental data and correlation
rhol	779.00	kg/m3	293.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures
rhol	773.81	kg/m3	298.15	Volumetric investigation of the ternary system ethanol + dimethylformamide + cyclohexane at 298.15 K
rhol	760.00	kg/m3	313.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures

rhol	778.00	kg/m3	293.15	Thermophysical
				approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures
rhol	759.00	kg/m3	313.15	Thermophysical approach to understand the nature of molecular interactions and structural factor between methyl isobutyl ketone and organic solvents mixtures
rhol	783.00	kg/m3	288.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume
rhol	779.00	kg/m3	293.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume
rhol	774.00	kg/m3	298.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume
rhol	769.00	kg/m3	303.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume

rhol	760.00	kg/m3	313.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
rhol	751.00	kg/m3	323.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
rhol	741.00	kg/m3	333.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
rhol	731.00	kg/m3	343.15	Effect of temperature on intermolecular interactions between the organic solvents: Insights from density and excess volume	
rhol	773.78	kg/m3	298.15	Densities, isobaric thermal compressibilities and derived thermodynamic properties of the binary systems of cyclohexane with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at t = (298.15 and 308.15)K	

rhol	764.30	kg/m3	308.15	Densities, isobaric thermal compressibilities and derived thermodynamic properties of the binary systems of cyclohexane with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at t = (298.15 and 308.15)K	
rhol	769.10	kg/m3	303.15	Studies of partial molar volumes of alkylamine in non-electrolyte solvents I. Alkylamines in hydrocarbons at 303.15 and 313.15K	
rhol	759.52	kg/m3	313.15	Studies of partial molar volumes of alkylamine in non-electrolyte solvents I. Alkylamines in hydrocarbons at 303.15 and 313.15K	
rhol	773.94	kg/m3	298.15	Topological and thermodynamic investigations of binary mixtures: Molar excess volumes, molar excess enthalpies and isentropic compressibility changes of mixing	
rhol	769.12	kg/m3	303.15	Volumetric and transport properties of ternary mixtures containing 1-propanol + ethyl ethanoate + cyclohexane or benzene at 303.15 K: Experimental data, correlation and prediction by ERAS model	

rhol	769.12	kg/m3	303.15	Volumetric and transport properties of ternary mixtures containing 1-alkanol + ethyl ethanoate + cyclohexane at 303.15 K: Experimental data, correlation and prediction by ERAS model	
rhol	773.94	kg/m3	298.15	Excess molar volumes and isentropic compressibilities changes of mixing of tetrahydropyran + benzene + cyclo or n-alkanes ternary mixtures at 308.15 K	
rhol	759.80	kg/m3	313.15	Excess Molar Volumes for Three and Four Component Mixtures Simulating the Binary Mixture (Cyclohexane+ Hexadecane)	
rhol	779.00	kg/m3	298.15	Liquid Liquid Equilibrium data for the ternary systems of Water, Isopropyl alcohol, and selected entrainers	
rhol	768.80	kg/m3	303.15	Densities and Dynamic Viscosities of Alicyclic Cyclohexane with Toluene, o-Xylene, and Mesitylene at T = (303.15 to 323.15) K and Atmospheric Pressure	

rhol	764.00	kg/m3	308.15	Densities and Dynamic Viscosities of Alicyclic Cyclohexane with Toluene, o-Xylene, and Mesitylene at T = (303.15 to 323.15) K and Atmospheric Pressure	
rhol	759.30	kg/m3	313.15	Densities and Dynamic Viscosities of Alicyclic Cyclohexane with Toluene, o-Xylene, and Mesitylene at T = (303.15 to 323.15) K and Atmospheric Pressure	
rhol	754.40	kg/m3	318.15	Densities and Dynamic Viscosities of Alicyclic Cyclohexane with Toluene, o-Xylene, and Mesitylene at T = (303.15 to 323.15) K and Atmospheric Pressure	
rhol	749.50	kg/m3	323.15	Densities and Dynamic Viscosities of Alicyclic Cyclohexane with Toluene, o-Xylene, and Mesitylene at T = (303.15 to 323.15) K and Atmospheric Pressure	
rhol	765.00	kg/m3	308.15	Total Pressure Phase Equilibrium Measurements for the Binary Systems of n-Pentane + Cyclohexane and 1-Hexene + 2-Propanol	

rhol	775.00	kg/m3	298.15 Isothermal Vapor-Liquid Equilibrium Data for the Binary Systems Consisting of 1,1,2,3,3,3-Hexafluoro-1-propene and Either Methylcyclohexane, Cyclohexane, n-Hexane, 2-Methyltetrahydrofuran, or 2,2,3,3,4,4,4-Heptafluoro-1-butanol
rhol	773.80	kg/m3	298.15 Viscosities of Dimethyl Carbonate or Diethyl Carbonate with Alkanes at Four Temperatures. New UNIFAC-VISCO Parameters
rhol	778.56	kg/m3	293.15 Excess Molar Enthalpies for Binary Mixtures of Ethanol + Acetone, + Octane, + Cyclohexane and 1-Propanol + Acetone, + Octane, + Heptane at 323.15
rhol	773.92	kg/m3	298.15 Excess Enthalpies of the Ternary Mixtures: Tetrahydrofuran + (Hexane or Cyclohexane) + Decane at 298.15K
rhol	773.98	kg/m3	298.15 Vapor-Liquid Equilibria and Excess Enthalpies for Binary Systems of Dimethoxymethane with Hydrocarbons
rhol	773.93	kg/m3	298.15 Viscosities and Excess Molar Volumes of the Ternary System Toluene (1) + Cyclohexane (2) + Pentane (3) at 298.15 K

rhol	778.20	kg/m3	293.10	Vapor-Liquid Equilibrium for Binary Systems of Cyclohexane + Cyclohexanone and + Cyclohexanol at Temperatures from (414.0 to 433.7) K	
rhol	778.80	kg/m3	293.15	Densities, Excess Molar Volumes, Isothermal Compressibilities, and Isobaric Expansivities of Dimethyl Carbonate + Cyclohexane Systems at Temperatures from (293.15 to 313.15) K and Pressures from (0.1 to 40) MPa	
rhol	773.90	kg/m3	298.15	Densities, Excess Molar Volumes, Isothermal Compressibilities, and Isobaric Expansivities of Dimethyl Carbonate + Cyclohexane Systems at Temperatures from (293.15 to 313.15) K and Pressures from (0.1 to 40) MPa	
rhol	769.30	kg/m3	303.15	Densities, Excess Molar Volumes, Isothermal Compressibilities, and Isobaric Expansivities of Dimethyl Carbonate + Cyclohexane Systems at Temperatures from (293.15 to 313.15) K and Pressures from (0.1 to 40) MPa	

rhol	764.50	kg/m3	308.15	Densities, Excess Molar Volumes, Isothermal Compressibilities, and Isobaric Expansivities of Dimethyl Carbonate + Cyclohexane Systems at Temperatures from (293.15 to 313.15) K and Pressures from (0.1 to 40) MPa	
rhol	759.70	kg/m3	313.15	Densities, Excess Molar Volumes, Isothermal Compressibilities, and Isobaric Expansivities of Dimethyl Carbonate + Cyclohexane Systems at Temperatures from (293.15 to 313.15) K and Pressures from (0.1 to 40) MPa	
rhol	773.85	kg/m3	298.20	Apparent and Partial Molar Volumes at Infinite Dilution and Solid Liquid Equilibria of Dibenzothiophene + Alkane Systems	
rhol	778.71	kg/m3	293.15	Thermodynamics of Mixtures Containing Amines. XII. Volumetric and Speed of Sound Data at (293.15, 298.15, and 303.15) K for N-Methylaniline + Hydrocarbon Systems	
rhol	774.02	kg/m3	298.15	Thermodynamics of Mixtures Containing Amines. XII. Volumetric and Speed of Sound Data at (293.15, 298.15, and 303.15) K for N-Methylaniline + Hydrocarbon Systems	

rhol	769.30	kg/m3	303.15 Thermodynamics of Mixtures Containing Amines. XII. Volumetric and Speed of Sound Data at (293.15, 298.15, and 303.15) K for N-Methylaniline + Hydrocarbon Systems
rhol	778.51	kg/m3	293.15 Excess Molar Volume along with Viscosity and Refractive Index for Binary Systems of Tricyclo[5.2.1.0(2.6)]decane with Five Cycloalkanes
rhol	773.84	kg/m3	298.15 Excess Molar Volume along with Viscosity and Refractive Index for Binary Systems of Tricyclo[5.2.1.0(2.6)]decane with Five Cycloalkanes
rhol	769.11	kg/m3	303.15 Excess Molar Volume along with Viscosity and Refractive Index for Binary Systems of Tricyclo[5.2.1.0(2.6)]decane with Five Cycloalkanes
rhol	764.36	kg/m3	308.15 Excess Molar Volume along with Viscosity and Refractive Index for Binary Systems of Tricyclo[5.2.1.0(2.6)]decane with Five Cycloalkanes
rhol	759.57	kg/m3	313.15 Excess Molar Volume along with Viscosity and Refractive Index for Binary Systems of Tricyclo[5.2.1.0(2.6)]decane with Five Cycloalkanes

rhol	788.30	kg/m3	287.00	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	763.70	kg/m3	305.90	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	752.10	kg/m3	324.90	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	731.80	kg/m3	351.00	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	704.30	kg/m3	375.00	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	686.70	kg/m3	394.80	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	666.50	kg/m3	416.60	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	

rhol	646.20	kg/m3	431.90	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	620.20	kg/m3	452.40	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	595.50	kg/m3	475.10	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	573.50	kg/m3	488.40	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	546.30	kg/m3	504.40	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	527.50	kg/m3	513.90	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	510.30	kg/m3	522.60	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	

rhol	487.00	kg/m3	531.90	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	454.50	kg/m3	543.00	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	426.20	kg/m3	553.20	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	365.60	kg/m3	561.70	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	259.50	kg/m3	572.10	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	187.00	kg/m3	584.20	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	167.00	kg/m3	592.50	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	

rhol	149.30	kg/m3	603.60	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	133.00	kg/m3	618.80	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	118.30	kg/m3	635.00	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	109.80	kg/m3	654.20	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	96.50	kg/m3	672.30	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	92.00	kg/m3	687.50	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure	
rhol	774.00	kg/m3	298.15	Liquid-Liquid Equilibrium of (Cyclohexane + 2,2,2-Trifluoroethanol) and (Cyclohexane + Methanol) from (278.15 to 318.15) K	
rhol	773.92	kg/m3	298.15	Binary Liquid Liquid Equilibria of ?-Valerolactone with Some Hydrocarbons	

rhol	89.90	kg/m3	698.50	Design of a Gamma Densitometer for Hydrocarbon Fuel at High Temperature and Supercritical Pressure
sdco	0.00	m2/s	328.13	Viscous Calibration Liquids for Self-diffusion Measurements
sdco	0.00	m2/s	328.15	Viscous Calibration Liquids for Self-diffusion Measurements
sdco	0.00	m2/s	308.16	Viscous Calibration Liquids for Self-diffusion Measurements
sdco	0.00	m2/s	308.17	Viscous Calibration Liquids for Self-diffusion Measurements
sdco	0.00	m2/s	318.22	Viscous Calibration Liquids for Self-diffusion Measurements
sdco	0.00	m2/s	318.25	Viscous Calibration Liquids for Self-diffusion Measurements
sfust	9.57	J/mol×K	279.80	NIST Webbook
sfust	36.20	J/mol×K	186.10	NIST Webbook
speedsl	1255.00	m/s	298.15	Thermodynamic and topological investigations of molecular interactions in binary and ternary mixtures containing 1-methyl pyrrolidin-2-one at T = 308.15 K
speedsl	1181.00	m/s	313.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K

speedsl	1253.90	m/s	298.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1133.70	m/s	323.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1229.30	m/s	303.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1205.10	m/s	308.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1254.40	m/s	298.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures	

speedsl	1212.00	m/s	308.15	Densities, Speeds of Sound, Excess Molar Volumes, and Excess Isentropic Compressibilities at T = (298.15 and 308.15) K for Methyl Methacrylate + 1-Alkanols (1-Butanol, 1-Pentanol, and 1-Heptanol) + Cyclohexane, + Benzene, + Toluene, + p-Xylene, and + Ethylbenzene	
speedsl	1254.00	m/s	298.15	Densities, Speeds of Sound, Excess Molar Volumes, and Excess Isentropic Compressibilities at T = (298.15 and 308.15) K for Methyl Methacrylate + 1-Alkanols (1-Butanol, 1-Pentanol, and 1-Heptanol) + Cyclohexane, + Benzene, + Toluene, + p-Xylene, and + Ethylbenzene	
speedsl	1157.30	m/s	318.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1327.80	m/s	283.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures	

		,	212.15	0 1 10 1	
speedsl	1181.10	m/s	313.15	Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures	
speedsl	1279.00	m/s	293.15	Acoustic and Thermophysical Properties of Binary Liquid Mixtures of Primary Butanols with Hexane and Cyclohexane at 293.15 K	
speedsl	1278.60	m/s	293.15	Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the range (293.15 to 323.15) K	
speedsl	1133.73	m/s	323.15	Volumetric and Acoustic Properties of Binary Mixtures of Cyclohexane + Benzene and + Benzaldehyde at (293.15 to 323.15) K	
speedsl	1157.29	m/s	318.15	Volumetric and Acoustic Properties of Binary Mixtures of Cyclohexane + Benzene and + Benzaldehyde at (293.15 to 323.15) K	
speedsl	1181.03	m/s	313.15	Volumetric and Acoustic Properties of Binary Mixtures of Cyclohexane + Benzene and + Benzaldehyde at (293.15 to 323.15) K	

	1005.05	1	000.45	\	
speedsl	1205.05	m/s	308.15	Volumetric and Acoustic Properties of Binary Mixtures of Cyclohexane + Benzene and + Benzaldehyde at (293.15 to 323.15) K	
speedsl	1229.34	m/s	303.15	Volumetric and Acoustic Properties of Binary Mixtures of Cyclohexane + Benzene and + Benzaldehyde at (293.15 to 323.15) K	
speedsl	1253.86	m/s	298.15	Volumetric and Acoustic Properties of Binary Mixtures of Cyclohexane + Benzene and + Benzaldehyde at (293.15 to 323.15) K	
speedsl	1278.55	m/s	293.15	Volumetric and Acoustic Properties of Binary Mixtures of Cyclohexane + Benzene and + Benzaldehyde at (293.15 to 323.15) K	
speedsl	1212.00	m/s	308.15	Thermodynamic and topological investigations of molecular interactions in binary and ternary mixtures containing 1-methyl pyrrolidin-2-one at T = 308.15 K	
srf	0.02	N/m	318.15	Interfacial Tensions of Imidazolium-Based Ionic Liquids with N-Alkanes and Cyclohexane	
srf	0.02	N/m	318.15	Surface Tension of Dilute Solutions of Alkanes in Cyclohexanol at Different Temperatures	

srf	0.02	N/m	323.15	Surface Tension of Dilute Solutions of Alkanes in Cyclohexanol at Different Temperatures	
srf	0.03	N/m	293.20	KDB	
srf	0.02	N/m	337.93	Surface Tension of Pure Liquids and Binary Liquid Mixtures	
srf	0.03	N/m	283.15	Thermophysical study of 1,4-dioxane with cycloalkane mixtures	
srf	0.02	N/m	298.15	Thermophysical study of 1,4-dioxane with cycloalkane mixtures	
srf	0.02	N/m	303.15	Surface Tension of Dilute Solutions of Alkanes in Cyclohexanol at Different Temperatures	
srf	0.03	N/m	279.33	Surface Tension of Pure Liquids and Binary Liquid Mixtures	
srf	0.03	N/m	282.82	Surface Tension of Pure Liquids and Binary Liquid Mixtures	
srf	0.03	N/m	287.81	Surface Tension of Pure Liquids and Binary Liquid Mixtures	
srf	0.02	N/m	297.82	Surface Tension of Pure Liquids and Binary Liquid Mixtures	
srf	0.02	N/m	307.86	Surface Tension of Pure Liquids and Binary Liquid Mixtures	
srf	0.02	N/m	317.86	Surface Tension of Pure Liquids and Binary Liquid Mixtures	
srf	0.02	N/m	327.88	Surface Tension of Pure Liquids and Binary Liquid Mixtures	

srf	0.03	N/m	293.15	Surface Properties of Dilute Solutions of Alkanes in Benzyl Alcohol	
srf	0.02	N/m	298.15	Surface Properties of Dilute Solutions of Alkanes in Benzyl Alcohol	
srf	0.02	N/m	303.15	Surface Properties of Dilute Solutions of Alkanes in Benzyl Alcohol	
srf	0.02	N/m	308.15	Surface Properties of Dilute Solutions of Alkanes in Benzyl Alcohol	
srf	0.02	N/m	313.15	Surface Properties of Dilute Solutions of Alkanes in Benzyl Alcohol	
srf	0.02	N/m	318.15	Surface Properties of Dilute Solutions of Alkanes in Benzyl Alcohol	
srf	0.02	N/m	323.15	Surface Properties of Dilute Solutions of Alkanes in Benzyl Alcohol	
srf	0.03	N/m	288.15	Interfacial Tensions of Imidazolium-Based Ionic Liquids with N-Alkanes and Cyclohexane	
srf	0.02	N/m	298.15	Interfacial Tensions of Imidazolium-Based Ionic Liquids with N-Alkanes and Cyclohexane	
srf	0.02	N/m	308.15	Interfacial Tensions of Imidazolium-Based Ionic Liquids with N-Alkanes and Cyclohexane	
srf	0.02	N/m	313.15	Surface Tension of Dilute Solutions of Alkanes in Cyclohexanol at Different Temperatures	

srf	0.02	N/m	328.15	Interfacial Tensions of Imidazolium-Based Ionic Liquids with N-Alkanes and Cyclohexane	
srf	0.03	N/m	293.15	Surface Tension of Dilute Solutions of Alkanes in Cyclohexanol at Different Temperatures	
srf	0.02	N/m	298.15	Surface Tension of Dilute Solutions of Alkanes in Cyclohexanol at Different Temperatures	
srf	0.02	N/m	313.15	Thermophysical study of 1,4-dioxane with cycloalkane mixtures	
srf	0.02	N/m	308.15	Surface Tension of Dilute Solutions of Alkanes in Cyclohexanol at Different Temperatures	
svapt	111.80	J/mol×K	298.15	NIST Webbook	
tcondl	0.12	W/m×K	300.84	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.11	W/m×K	318.82	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

tcondl	0.11	W/m×K	318.66	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	301.14	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	301.00	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.11	W/m×K	318.95	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	
tcondl	0.12	W/m×K	295.83	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons	

tcondl	0.12	W/m×K	295.70	Thermal
toondi	0.12	WIIIAX	230.70	Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.12	W/m×K	295.53	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.12	W/m×K	281.15	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.12	W/m×K	281.00	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons
tcondl	0.12	W/m×K	280.83	Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids: Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbp	312.78	K	24.08	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures
tbp	318.96	K	30.70	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures
tbp	325.07	K	38.72	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures
tbp	330.32	К	46.85	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures
tbp	335.01	K	55.20	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures
tbp	338.21	К	61.52	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures

tbp	341.67	K	69.06	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	345.37	K	77.87	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	348.28	K	85.44	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	
tbp	350.53	К	91.68	A novel dynamic recirculating apparatus for vapour-liquid equilibrium measurements at moderate pressures and temperatures	

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.38484e+01
Coeff. B	-2.76500e+03
Coeff. C	-5.43350e+01
Temperature range (K), min.	258.23
Temperature range (K), max.	378.22

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$

Coeff. A	7.56506e+01
Coeff. B	-6.35490e+03
Coeff. C	-9.20098e+00
Coeff. D	7.37481e-06
Temperature range (K), min.	279.69
Temperature range (K), max.	553.54

Datasets

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
303.10	2930.00	0.0008520
305.20	140.00	0.0007960
305.10	960.00	0.0008010
305.20	1960.00	0.0008190
305.20	3940.00	0.0008390
313.80	2920.00	0.0007210
323.70	150.00	0.0006010
324.00	1020.00	0.0006160
323.70	1990.00	0.0006140
323.70	4000.00	0.0006310
348.90	140.00	0.0004320
348.90	990.00	0.0004400
348.90	2080.00	0.0004450
348.90	3030.00	0.0004510
348.90	3930.00	0.0004490
373.70	970.00	0.0003310
373.70	2020.00	0.0003360
373.70	2930.00	0.0003400
373.70	3960.00	0.0003460
398.20	960.00	0.0002580
398.10	2000.00	0.0002620
398.20	2940.00	0.0002660
398.10	4010.00	0.0002700
422.40	960.00	0.0002040
422.50	1970.00	0.0002090
422.50	2960.00	0.0002140
422.50	3960.00	0.0002160

447.50	1010.00	0.0001650
447.60	2040.00	0.0001650
447.70	3010.00	0.0001700
447.70	4000.00	0.0001740
473.40	1930.00	0.0001310
473.30	3000.00	0.0001380
473.40	3930.00	0.0001390
498.20	3020.00	0.0001060
497.90	3050.00	0.0001060
498.10	3980.00	0.0001100
498.30	4020.00	0.0001100
523.00	3050.00	0.0000791
523.00	3970.00	0.0000856

Reference

https://www.doi.org/10.1021/acs.jced.5b00270

Pressure, kPa	Temperature, K	Viscosity, Pa*s
690.00	313.20	0.0007230
690.00	333.20	0.0005400
690.00	353.20	0.0004240
690.00	373.20	0.0003230
690.00	393.20	0.0002480
5000.00	313.20	0.0007720
5000.00	333.20	0.0005760
5000.00	353.20	0.0004500
5000.00	373.20	0.0003490
5000.00	393.20	0.0002620
10000.00	313.20	0.0008250
10000.00	333.20	0.0006160
10000.00	353.20	0.0004800
10000.00	373.20	0.0003710
10000.00	393.20	0.0002840
20000.00	313.20	0.0009260
20000.00	333.20	0.0006920
20000.00	353.20	0.0005400
20000.00	373.20	0.0004200
20000.00	393.20	0.0003290
30000.00	313.20	0.0010180
30000.00	333.20	0.0007620
30000.00	353.20	0.0005970
30000.00	373.20	0.0004610
30000.00	393.20	0.0003690
40000.00	313.20	0.0011110

40000.00	333.20	0.0008370
40000.00	353.20	0.0006510
40000.00	373.20	0.0005040
40000.00	393.20	0.0004140
50000.00	313.20	0.0012400
50000.00	333.20	0.0009120
50000.00	353.20	0.0007030
50000.00	373.20	0.0005570
50000.00	393.20	0.0004530
60000.00	313.20	0.0013470
60000.00	333.20	0.0009940
60000.00	353.20	0.0007520
60000.00	373.20	0.0006080
60000.00	393.20	0.0004920

Reference https://www.doi.org/10.1021/je800882f

Temperature, K	Pressure, kPa	Viscosity, Pa*s
298.15	100.00	0.0008880
298.15	4000.00	0.0009030
298.15	7600.00	0.0009620
298.15	13700.00	0.0010370
298.15	20900.00	0.0011290
298.15	27700.00	0.0012220
298.15	34700.00	0.0013090
318.15	6895.00	0.0006710
318.15	13790.00	0.0007260
318.15	20680.00	0.0007850
318.15	27580.00	0.0008390
318.15	34470.00	0.0009060
318.15	41370.00	0.0009740
318.15	48260.00	0.0010490
318.15	55160.00	0.0011490
318.15	62050.00	0.0012160
323.15	100.00	0.0006060
323.15	7200.00	0.0006670
323.15	14200.00	0.0007210
323.15	21100.00	0.0007760
323.15	27700.00	0.0008350
323.15	40000.00	0.0009520
323.15	48200.00	0.0010350
323.15	50900.00	0.0010610
323.15	52300.00	0.0010720

323.15	54300.00	0.0010910
323.15	55000.00	0.0009150
333.15	100.00	0.0005120
333.15	3800.00	0.0005380
333.15	6895.00	0.0005460
333.15	7300.00	0.0005630
333.15	13790.00	0.0005950
333.15	14100.00	0.0006090
333.15	20600.00	0.0006570
333.15	20680.00	0.0006420
333.15	27580.00	0.0006980
333.15	27800.00	0.0007090
333.15	34470.00	0.0007500
333.15	34700.00	0.0007570
333.15	41370.00	0.0008080
333.15	42000.00	0.0008150
333.15	48260.00	0.0008550
333.15	49000.00	0.0008760
333.15	53500.00	0.0009040
333.15	55160.00	0.0009160
333.15	62050.00	0.0009510
348.15	6895.00	0.0004580
348.15	13790.00	0.0004950
348.15	20680.00	0.0005360
348.15	27580.00	0.0005790
348.15	34470.00	0.0006240
348.15	41370.00	0.0006700
348.15	48260.00	0.0007170
348.15	55160.00	0.0007690
348.15	62050.00	0.0008140
363.15	6895.00	0.0003860
363.15	13790.00	0.0004200
363.15	20680.00	0.0004550
363.15	27580.00	0.0004930
363.15	34470.00	0.0005300
363.15	41370.00	0.0005680
363.15	48260.00	0.0006180
363.15	55160.00	0.0006580
363.15	62050.00	0.0006990
388.15	6895.00	0.0003010
388.15	13790.00	0.0003280
388.15	20680.00	0.0003560
388.15	27580.00	0.0003840
388.15	34470.00	0.0004120

388.15	41370.00	0.0004410
388.15	48260.00	0.0004690
388.15	55160.00	0.0004980
388.15	62050.00	0.0005280
413.15	6895.00	0.0002450
413.15	13790.00	0.0002730
413.15	20680.00	0.0002930
413.15	27580.00	0.0003160
413.15	34470.00	0.0003420
413.15	41370.00	0.0003670
413.15	48260.00	0.0003960
413.15	55160.00	0.0004150
413.15	62050.00	0.0004380

https://www.doi.org/10.1021/je9000262

Mass density, kg/m3

Reference

Temperature, K - Liquid	Pressure, kPa - Liquid	Mass density, kg/m3 - Liquid
298.15	100.00	773.6
Reference		https://www.doi.org/10.1016/j.fluid.2019.02.006

Temperature, K	Pressure, kPa	Mass density, kg/m3
293.15	99.46	778.632
293.15	1102.03	779.471
293.15	2002.37	780.22
293.15	4003.86	781.856
293.15	6003.84	783.454
293.15	8003.30	785.025
293.15	10042.20	786.595
293.15	12045.50	788.105
293.15	13918.70	789.495
293.15	15982.40	790.995
293.15	17946.40	792.401
293.15	20017.10	793.855
313.15	102.48	759.667
313.15	1139.02	760.675
313.15	2012.18	761.509
313.15	4102.38	763.47

313.15	5932.83	765.157
313.15	7910.50	766.936
313.15	10017.50	768.784
313.15	12069.20	770.545
313.15	13964.70	772.137
313.15	15901.80	773.737
313.15	17955.80	775.394
313.15	20142.40	777.123
333.15	1112.41	741.367
333.15	2043.58	742.401
333.15	3987.96	744.517
333.15	5966.83	746.613
333.15	8141.84	748.853
333.15	10007.20	750.72
333.15	11993.60	752.664
333.15	14092.70	754.666
333.15	15962.90	756.414
333.15	17994.70	758.261
333.15	19860.60	759.929
353.15	1109.91	721.547
353.15	1973.18	722.669
353.15	4000.02	725.242
353.15	6001.27	727.698
353.15	8046.51	730.125
353.15	10046.10	732.423
353.15	11820.50	734.413
353.15	13860.00	736.633
353.15	15939.70	738.835
353.15	18023.40	740.978
353.15	20002.80	742.965
373.15	1115.51	701.065
373.15	1950.06	702.346
373.15	4154.07	705.638
373.15	6126.03	708.455
373.15	8029.39	711.079
373.15	9951.24	713.63
373.15	12097.10	716.383
373.15	13877.00	718.592
373.15	16148.10	721.319
373.15	18077.70	723.568
373.15	19877.00	725.607
393.15	1162.91	679.792
393.15	1960.31	681.265
393.15	3901.42	684.723

393.15	5983.91	688.253
393.15	7986.39	691.487
393.15	9903.28	694.452
393.15	11974.70	697.527
393.15	13821.00	700.163
393.15	16029.30	703.195
393.15	18027.30	705.845
393.15	20003.70	708.371
413.15	1196.72	657.32
413.15	2172.63	659.527
413.15	4146.43	663.767
413.15	6122.26	667.756
413.15	8132.63	671.583
413.15	10013.20	674.989
413.15	11993.30	678.397
413.15	14003.50	681.703
413.15	16052.90	684.936
413.15	18098.20	688.022
413.15	19934.80	690.694
433.15	1086.72	632.817
433.15	2070.58	635.63
433.15	4050.34	640.931
433.15	6077.00	645.937
433.15	8181.71	650.742
433.15	10076.70	654.811
433.15	12111.10	658.913
433.15	13890.30	662.325
433.15	15958.80	666.096
433.15	18073.30	669.76
433.15	20009.80	672.969
453.15	2100.81	609.942
453.15	4117.30	616.844
453.15	6121.33	623.004
453.15	8117.44	628.596
453.15	9915.40	633.254
453.15	11931.40	638.115
453.15	13934.70	642.628
453.15	15959.00	646.918
453.15	18103.10	651.206
453.15	19890.50	654.601
473.15	2403.47	582.448
473.15	3924.93	589.431
473.15	6045.23	597.933
473.15	8093.25	605.148

473.15	9884.30	610.832
473.15	11911.40	616.733
473.15	13942.60	622.171
473.15	16018.50	627.319
473.15	18132.60	632.216
473.15	20025.00	636.335

Reference

https://www.doi.org/10.1016/j.jct.2010.08.010

Temperature, K	Pressure, kPa	Mass density, kg/m3
288.15	100.00	782.7
288.15	1000.00	783.7
288.15	5000.00	787.0
288.15	10000.00	790.7
288.15	15000.00	794.1
298.15	100.00	773.2
298.15	1000.00	774.0
298.15	5000.00	777.6
298.15	10000.00	781.8
298.15	15000.00	785.6
298.15	20000.00	789.3
298.15	25000.00	792.9
298.15	30000.00	796.8
298.15	35000.00	799.7
308.15	100.00	763.6
308.15	1000.00	764.5
308.15	5000.00	768.2
308.15	10000.00	772.6
308.15	15000.00	776.8
308.15	20000.00	780.8
308.15	25000.00	784.6
308.15	30000.00	788.3
308.15	35000.00	791.8
308.15	40000.00	795.2
318.15	100.00	754.0
318.15	1000.00	755.0
318.15	5000.00	759.0
318.15	10000.00	763.7
318.15	15000.00	767.9
318.15	20000.00	772.4
318.15	25000.00	776.4
318.15	30000.00	780.3
318.15	35000.00	784.1

318.15	40000.00	787.7
318.15	45000.00	791.1
318.15	50000.00	794.4
328.15	100.00	744.4
328.15	1000.00	745.4
328.15	5000.00	749.7
328.15	10000.00	754.7
328.15	15000.00	759.5
328.15	20000.00	764.0
328.15	25000.00	768.2
328.15	30000.00	772.3
328.15	35000.00	776.1
328.15	40000.00	779.9
328.15	45000.00	783.5
328.15	50000.00	787.0
338.15	100.00	734.5
338.15	1000.00	735.6
338.15	5000.00	740.2
338.15	10000.00	745.7
338.15	15000.00	750.7
338.15	20000.00	755.5
338.15	25000.00	760.0
338.15	30000.00	764.3
338.15	35000.00	768.4
338.15	40000.00	772.3
338.15	45000.00	776.0
338.15	50000.00	779.7
338.15	55000.00	783.2
348.15	100.00	724.6
348.15	1000.00	725.7
348.15	5000.00	730.8
348.15	10000.00	736.5
348.15	15000.00	741.9
348.15	20000.00	747.0
348.15	25000.00	751.7
348.15	30000.00	756.2
348.15	35000.00	760.5
348.15	40000.00	764.6
348.15	45000.00	768.6
348.15	50000.00	772.3
348.15	55000.00	776.0
358.15	100.00	714.3
358.15	1000.00	715.6
358.15	5000.00	720.9

358.15 15000.00 732.9 358.15 20000.00 738.3 358.15 25000.00 743.3
358.15 25000.00 743.3
358.15 30000.00 748.1
358.15 35000.00 752.6
358.15 40000.00 757.0
358.15 45000.00 761.1
358.15 50000.00 765.0
358.15 55000.00 768.9

Reference

https://www.doi.org/10.1016/j.jct.2011.02.008

Temperature, K	Pressure, kPa	Mass density, kg/m3
283.15	100.00	788.0
283.15	1000.00	788.7
283.15	2000.00	789.5
283.15	5000.00	791.8
293.15	100.00	778.8
293.15	1000.00	779.5
293.15	2000.00	780.4
293.15	5000.00	782.8
293.15	10000.00	786.6
293.15	15000.00	790.4
293.15	20000.00	793.9
313.15	100.00	759.8
313.15	1000.00	760.6
313.15	2000.00	761.5
313.15	5000.00	764.4
313.15	10000.00	768.7
313.15	15000.00	772.9
313.15	20000.00	776.9
333.15	100.00	740.5
333.15	1000.00	741.5
333.15	2000.00	742.6
333.15	5000.00	745.8
333.15	10000.00	750.9
333.15	15000.00	755.6
333.15	20000.00	760.1

Reference

https://www.doi.org/10.1016/j.jct.2012.07.018

293.15	100.00	778.4
293.15	1000.00	779.1
293.15	2000.00	779.9
293.15	5000.00	782.4
293.15	10000.00	786.3
293.15	15000.00	789.9
293.15	20000.00	793.4
303.15	100.00	769.0
303.15	1000.00	769.8
303.15	2000.00	770.7
303.15	5000.00	773.3
303.15	10000.00	777.5
303.15	15000.00	781.3
303.15	20000.00	785.1
303.15	30000.00	792.1
303.15	40000.00	798.5
313.15	100.00	759.7
313.15	1000.00	760.3
313.15	2000.00	761.2
313.15	5000.00	764.0
313.15	10000.00	768.4
313.15	15000.00	772.6
313.15	20000.00	776.6
313.15	30000.00	784.1
313.15	40000.00	790.9
323.15	100.00	750.1
323.15	1000.00	750.8
323.15	2000.00	751.8
323.15	5000.00	754.8
323.15	10000.00	759.5
323.15	15000.00	763.9
323.15	20000.00	768.2
323.15	30000.00	776.1
323.15	40000.00	783.2
333.15	100.00	740.3
333.15	1000.00	741.1
333.15	2000.00	742.2
333.15	5000.00	745.5
333.15	10000.00	750.5
333.15	15000.00	755.3
333.15	20000.00	759.7
333.15	30000.00	768.1
333.15	40000.00	775.6

Temperature, K	Pressure, kPa	Mass density, kg/m3
318.15	6895.00	761.5
318.15	13789.00	767.7
318.15	20684.00	773.8
318.15	27579.00	779.0
318.15	34474.00	784.1
318.15	41369.00	788.7
318.15	48263.00	793.4
318.15	55158.00	797.4
318.15	62053.00	801.4
333.15	6895.00	747.3
333.15	13789.00	754.1
333.15	20684.00	760.5
333.15	27579.00	766.5
333.15	34474.00	772.0
333.15	41369.00	777.0
333.15	48263.00	781.7
333.15	55158.00	786.3
333.15	62053.00	790.7
348.15	6895.00	733.6
348.15	13789.00	741.2
348.15	20684.00	748.2
348.15	27579.00	754.5
348.15	34474.00	760.5
348.15	41369.00	766.1
348.15	48263.00	771.4
348.15	55158.00	776.2
348.15	62053.00	781.1
363.15	6895.00	719.6
363.15	13789.00	727.9
363.15	20684.00	735.7
363.15	27579.00	742.8
363.15	34474.00	749.1
363.15	41369.00	755.3
363.15	48263.00	760.7
363.15	55158.00	765.8
363.15	62053.00	771.0
388.15	6895.00	694.7
388.15	13789.00	705.0
388.15	20684.00	713.9

27579.00	721.9
34474.00	729.2
41369.00	736.0
48263.00	742.2
55158.00	747.8
62053.00	753.2
6895.00	669.7
13789.00	682.1
20684.00	692.5
27579.00	701.8
34474.00	710.1
41369.00	717.7
48263.00	724.9
55158.00	731.2
62053.00	737.2
	34474.00 41369.00 48263.00 55158.00 62053.00 6895.00 13789.00 20684.00 27579.00 34474.00 41369.00 48263.00 55158.00

Reference

https://www.doi.org/10.1021/je0605036

Sources

NLE and LLE Data for the System Cyclohexane + Cyclohexane + Water + Dynnifesa kigcosties, and Refractive Indices of Mixtures of Hexane with Westerheapel Bed and Pelakanevith Salubility and genistis, is gleven organic solvenes and probably decorpting and bility and genistis, is gleven organic solvenes and probably decorpting and bility and genistis, is gleven organic solvenes and probably decorpting and bility and genistis. It is gleven organic solvenes and probably decorpting and the supercritical Carbon Dioxide with high with the supercritical Carbon

```
Excess Gibbs Energies of the Ternary
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je100556t
 System 2-Methoxyethanol +
Soletbijiti of these are grofistes sitematic
Different Busany Shakett sitzm (396.15
togs 1, squid Extraction of Aromatic
Compounds from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic from Cycloalkanes Using
1 stanky 3-inetic fluid sequilibria
Menatic fluid sequilibria
Menatic fluid sequilibria
Metal sequi
         System 2-Methoxyethanol +
           Solutility of character of the same and
                                                                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1021/je700724r
                                                                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1007/s10765-012-1159-3
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2011.06.033
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2015.02.029
      Refractive Index for Binary Mixtures
Burky infing open bank in the street of the stree
        on activity coefficients at infinite
                                                                                                                                                                                                                                                                                                                                                  http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt
      1,3-didecyl-2-methylimidazolium
Siudahamioperties mi Buute Solutions
of Alkanes in Benzyl Alcohol:
Solubilities of the Gaseous and Liquid
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je050159x
    of Alkanes in Benzyl 'Alcohol:
Solubilities of the Gaseous and Liquid
Solutes and Their Thermodynamics of
Benasation of Alkanes and Education of
Benasation of Alkanes and Helphone and Education of Benasation and Education and Educati
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je700297c
GREAT TO A STATE OF THE PROPERTY OF THE PROPER
                                                                                                                                                                                                                                                                                                                                                    https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=470
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je4004993
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.7b00840
                                                                                                                                                                                                                                                                                                                                                    https://www.doi.org/10.1016/j.jct.2010.01.001
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.9b00693
                                                                                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.tca.2008.06.004
```

enthalpies and isentropic

compressibility changes of mixing:

Activity coefficients at infinite dilution of organic solutes in N-alkylpyridinium branch solutes in N-alkylpyridinium solutes in N-a Activity coefficients at infinite dilution of organic solutes in N-alkylpyridinium Systems of valer datable, 1 orderle, and 1 miles of the many entering methan of the many entering at systems son taining nicotine:

Thermodynamics of solvation in propylene glycol and methyl ြောစ်ချက် Vapor-Liquid-Liquid and Supercritical Pressure:

https://www.doi.org/10.1016/j.jct.2010.06.009 https://www.doi.org/10.1016/j.jct.2017.11.017 https://www.doi.org/10.1016/j.jct.2016.10.037 https://www.doi.org/10.1016/j.jct.2009.12.004 https://www.doi.org/10.1021/je800105r https://www.doi.org/10.1021/acs.jced.8b00600 https://www.doi.org/10.1021/je7007523 https://www.doi.org/10.1021/je060153n https://www.doi.org/10.1021/je0500375 https://www.doi.org/10.1016/j.jct.2018.02.014 https://www.doi.org/10.1016/j.fluid.2018.11.010 https://www.doi.org/10.1016/j.jct.2012.09.015 https://www.doi.org/10.1016/j.fluid.2012.01.007 https://www.doi.org/10.1021/je300692s https://www.doi.org/10.1016/j.tca.2006.06.018 https://www.doi.org/10.1016/j.fluid.2013.07.044 https://www.doi.org/10.1016/j.jct.2011.11.027 Indexpression of the ternary systems of the ternary the ternal ternary systems of the ternary the ternal ternary systems of the ternary that the ternary the ternal ternary systems of the ternary that the ternary systems of the ternary that the ternal ternary that the ternal ternary systems of the ternary that the ternal ternary that the ternal ternary that the ternal ternary systems of the ternal ternary that the ternal ternary systems of the ternal ternary that the ternal ternal ternary that the ternal ternal te https://www.doi.org/10.1016/j.fluid.2015.06.030 https://www.doi.org/10.1016/j.fluid.2007.02.016 https://www.doi.org/10.1016/j.jct.2014.06.006 https://www.doi.org/10.1021/je900604a Equilibrium and Vapor-Liquid
Equilibrium and https://www.doi.org/10.1016/j.fluid.2013.10.035

Solubility of Benzoic Acid in Pure https://www.doi.org/10.1021/je100675r Solvents and Binary Mixtures: Partition Coefficients of Organic https://www.doi.org/10.1021/je200637v Partition Coefficients of Organic Compounds in Four New Activities of Granic New Activities New Activ https://www.doi.org/10.1021/acs.jced.7b00721 https://www.doi.org/10.1021/acs.jced.5b00607 https://www.doi.org/10.1016/j.fluid.2012.05.006 Total in the stand of the stand http://link.springer.com/article/10.1007/BF02311772 In situ measurement of liquid-liquid equilibria by medium field nuclear heights at Infinite Dilution Measurements for Organic Solutes and whelen menerature lights are ments on Seme Binary Mystyrain named by refitting the properties of the provided and appear of the provided and https://www.doi.org/10.1016/j.tca.2008.11.007 https://www.doi.org/10.1016/j.jct.2016.10.013 https://www.doi.org/10.1016/j.fluid.2010.06.021 อบเบบแหง or benzoic acid in acetone, 2-propanol, acetic acid and solubilities acid and correlation of the solubilities and correlation of Diffusion Coefficients of Aromatic อิษท์สูงอนโดยงลัย เกลาสมาร์ เกลาสม https://www.doi.org/10.1021/je700069g https://www.doi.org/10.1021/je6005604 https://www.doi.org/10.1021/je034062r https://www.doi.org/10.1016/j.fluid.2005.09.021 1-methylimidazole with hydrocarbons Solubilities of Organic Semiconductors https://www.doi.org/10.1021/acs.jced.8b00536 and others or Organic Semiconductors and Nonsteroidal Anti-inflammatory Deleganin Piepe and Regalering in the Selvenity Measure of the Manual Regalering in the Selvenity Measure of the Manual Regalering in the Annual Regalering in the Service of Secular in the Colling of the Colling in the https://www.doi.org/10.1021/acs.jced.6b00325 https://www.doi.org/10.1016/j.jct.2012.03.015 https://www.doi.org/10.1021/acs.jced.5b00783 The state of the s https://www.doi.org/10.1021/acs.jced.9b00661 Selichiquidequilibria of
Dibenzothiophene and
Dibenzothiophene and
Dibenzothiophene and
Dibenzothiophene and
Dibenzothiophene and
Dibenzothiophene and
Dibenzothiophene Benzothiophene
Dibenzothiophene Benzothiophene
Dibenzothiophene Benzothiophene
Dibenzothiophene
Dibenzothioph https://www.doi.org/10.1016/j.jct.2012.04.015 http://www.ddbst.com/en/EED/VLE/VLE%20Acetonitrile%3BCyclohexane.php https://www.doi.org/10.1016/j.jct.2010.12.012 https://www.doi.org/10.1016/j.fluid.2007.07.062 https://www.doi.org/10.1016/j.fluid.2009.08.017 https://www.doi.org/10.1021/je900347f WARCHS HINNEAR EINTHAME TO THE BINARY 単いた天中のおりの例は対している。自己をはいないのは、 本籍は打りのは対象がはある。自己を行うできばればれるが、ium 多段ではいるでは、自己のは、自己のでは、自己のでは、自己のでは、自 https://www.doi.org/10.1016/j.jct.2016.06.028

bis{(trifluoromethyl)sulfonyl}imide

ionic liquid:

Isobaric Vapor-Liquid Equilibrium for https://www.doi.org/10.1021/je700285j the Binary Systems 1-Pentanol +
Cyclohostonaviaca errepachivityadditional action intitle religion for
grands allouis action intitle religion for
grands and provide action into action for
grands and provide action for grands and grands the Binary Systems 1-Pentanol + https://www.doi.org/10.1016/j.jct.2017.07.012 Cheroneskimataiga appeagaiyoty+ Solubility Modeling and Solvents:

Separation of binary mixtures based on gamma infinity data using the properties of Allopurinol in 15 Neat Solvents:

Separation of binary mixtures based on gamma infinity data using the properties of the propert with association equation of state

(GCA-EoS):

Solubility of a-Carotene in Binary https://www.doi.org/10.1021/je060376d Solvents Formed by Some Aphrecial Solvents Formed By So 4-Methylicultopylacytechenomo ine Nine Pane Servents line vertice Acethary

Mine serv https://www.doi.org/10.1016/j.jct.2005.03.014 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=470 hexyl-3-methyl-imidazolium pisi/Hity coefficien) suplentium promote in the superior of the su https://www.doi.org/10.1016/j.fluid.2007.03.029 infinite dilution in Infinite diution in Infinite diution in Infinite de li più sur le principi de la più sur le più sur https://www.doi.org/10.1021/je500050p https://www.doi.org/10.1021/acs.jced.9b00286 https://www.doi.org/10.1021/je050110r Recome and parting and eventually and the second of the se https://www.doi.org/10.1021/je049661s https://www.doi.org/10.1021/je100508y https://www.doi.org/10.1021/je200151j https://www.doi.org/10.1016/j.fluid.2007.03.010 https://www.doi.org/10.1016/j.fluid.2011.01.018 https://www.doi.org/10.1016/j.jct.2013.04.011 https://www.doi.org/10.1021/je8006138 https://www.doi.org/10.1021/je700759h https://www.doi.org/10.1016/j.fluid.2014.04.004 https://www.doi.org/10.1016/j.tca.2012.04.002 https://www.doi.org/10.1016/j.jct.2014.05.020 https://www.doi.org/10.1016/j.jct.2013.08.030 coefficients at infinite dilution for The melevisies at unware 1 in the same https://www.doi.org/10.1016/j.jct.2005.09.004 https://www.doi.org/10.1016/j.jct.2015.09.004
https://www.doi.org/10.1016/j.jct.2015.09.004
https://www.doi.org/10.1016/j.jct.2015.09.004
https://www.doi.org/10.1016/j.jct.2015.015
https://www.doi.org/10.1016/j.jct.2015.017
https://www.doi.org/10.1016/j.jct.2015.017
https://www.doi.org/10.1016/j.jct.2015.017
https://www.doi.org/10.1016/j.jct.2015.017
https://www.doi.org/10.1016/j.jct.2015.017
https://www.doi.org/10.1016/j.jct.2015.017
https://www.doi.org/10.1016/j.jct.2015.017
https://www.doi.org/10.1016/j.jct.2015.017
https://www.doi.org/10.1016/j.jct.2015.017 https://www.doi.org/10.1016/j.tca.2006.03.012 (ein) dene carbonate + aromatic sychologophes tien aud annocature hitps://www.doi.org/10.1021/je020064k ithnis consideration of the constant https://www.doi.org/10.1016/j.fluid.2005.06.011 interpretation of the property Retryin Manasillinuinitaviii seinne ond pinaeys sienne päärislusteet Norviic Manasillinuine pahaisillusteet Norviic at tuitibaekillinuin pahaisillinuin paha https://www.doi.org/10.1016/j.jct.2013.10.026 https://www.doi.org/10.1016/j.fluid.2018.01.019 https://www.doi.org/10.1021/je0500882 https://www.doi.org/10.1021/je900838a https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1016/j.jct.2012.03.005 Measurements of activity coefficients The standard of the standard o https://www.doi.org/10.1021/je900077g https://www.doi.org/10.1016/j.jct.2014.06.030 https://www.doi.org/10.1016/j.jct.2019.02.006

Activity coefficients at infinite dilution https://www.doi.org/10.1016/j.jct.2012.01.019 and physicochemical properties for Styling Solutions of https://www.doi.org/10.1021/je8004112 Addanes in Cyclohexanol at Different Persey of https://www.doi.org/10.1021/je3005408 | in Cyclohexanol at Different Persey of https://www.doi.org/10.1021/je3005408 | in Cyclohexanol at Different Persey of https://www.doi.org/10.1021/je3005408 | in Cyclohexanol at Different Persey of https://www.doi.org/10.1021/acs.jced.9b00497 | in Cyclohexanol at Different Persey of https://www.doi.org/10.1016/j.fluid.2008.08.012 https://www.doi.org/10.1016/j.fluid.2008.08.012 tensions in the systems methyl Mapority neight quality in and Excess https://www.doi.org/10.1021/je049681u The state of the s for Hydrocarbons in Fatty Alcohols
Beterty Acefficents at Infinite Dilution
on Alkanes at Infinite Dilution
beterty Acefficents at Infinite Dilution
on Alkanes at Infinite Dilution
beterty and Alkyl
Beterty and Acefficents are are at Infinite Dilution
of Acefficents at Infinite Dilution https://www.doi.org/10.1021/je800043a https://www.doi.org/10.1016/j.jct.2005.01.016 mixeyresoftine equilibria for the riary mixeyresoftiselyent casematic file pinary systems of the pinary system https://www.doi.org/10.1021/je020089j https://www.doi.org/10.1016/j.jct.2017.09.014 hexane/nex-1-ene and Eyasan Exhibitive long were in the Bryanium distillation of Cyclohexane + Cyclohexane the Bryanium Bashira and half and half and half and half and the Bryanium Bashira and half and the Bryanium Bashira and half and the Bryanium Bashira and https://www.doi.org/10.1021/je200784y https://www.doi.org/10.1007/s10765-014-1759-1 https://www.doi.org/10.1016/j.fluid.2011.11.016 https://www.doi.org/10.1016/j.jct.2011.12.006 Colly be the property of the partition o Hydrocar ligacy with a soft interpretation in the process of the p https://www.doi.org/10.1021/acs.jced.8b00292 https://www.doi.org/10.1021/acs.jced.7b00615 https://www.doi.org/10.1016/j.fluid.2014.10.013 And critical gas sawon for dinary: https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=470 (MTBE) + alcohol and MTBE + alkane: Separation of hex-1-ene/hexane and https://www.doi.org/10.1016/j.fluid.2016.08.008 cyclohexene/cyclohexane compounds https://www.doi.org/10.1021/acs.jced.9b00190 Svalu pėlinyn petaiso unotino nadios: Thermodynamic Modeling of https://www.doi.org/10.1016/j.jct.2007.0 https://www.doi.org/10.1016/j.jct.2007.0 https://www.doi.org/10.1016/j.jct.2007.0 https://www.doi.org/10.1021/je501008b Paraffins and Cycloalkanes Using Wayan biquid na Bulkeria and Literfacial https://www.doi.org/10.1016/j.fluid.2008 https://www.doi.org/10.1016/j.jct.2007.04.002 https://www.doi.org/10.1016/j.fluid.2008.06.006 Mapph intriding wilderia and interfacial tensions for the ternary system was mere of continuous for the ternary system was mere of continuous for the ternary system was mere of the tensions for the ternary system was mere of the partition of the ternary system for the cycloperation of the ternary system Toluene (1) + the partition of the ternary system Toluene (1) + the partition of the ternary system Toluene (1) + the partition of the ternary system toluene (1) + the partition of the ternary system toluene (1) + the partition of the ternary system toluene (1) + the partition of the ternary system toluene (1) + the partition of the ternary system toluene (1) + the partition of the ternary system toluene (1) + the partition of the ternary system toluene (1) + the partition of the ternary system to the ternary system to the ternary system to the systems of the systems of the ternary system to the systems of the systems of the ternary system to the systems of the systems of the ternary system to the systems of binary and ternary mixtures with cyclohexane, cyclohexene, and

morpholine at 100 kPa:

Determination of Activity Coefficients at Infinite Dilution of Polar and Rependential Infinite Dilutions of Polar Infinite Dilutions of Polar Infinite Dilution of Organic Solutes in the Infinite Dilution of Organic Solutes in the Infinite Dilution of Organic Solutes in Polar Infinite Dilution of Organic Solutes in the Infinite Dilutions of Organic Solutes in the Infinite Dilution Organic Solutes in the Infinite Dil **Determination of Activity Coefficients** https://www.doi.org/10.1021/je0498107 at Infinite Dilution of Polar and https://www.doi.org/10.1016/j.jct.2016.05.010 https://www.doi.org/10.1016/j.fluid.2008.10.008 https://www.doi.org/10.1016/j.jct.2012.11.021 https://www.doi.org/10.1021/acs.jced.5b00880 https://www.doi.org/10.1021/je100776x https://www.doi.org/10.1021/je400501z https://www.doi.org/10.1016/j.jct.2006.06.005 https://www.doi.org/10.1021/je800658v https://www.doi.org/10.1016/j.fluid.2011.09.010 https://www.doi.org/10.1016/j.fluid.2005.06.022 https://www.doi.org/10.1021/je025609p https://www.doi.org/10.1016/j.fluid.2018.07.028 https://www.doi.org/10.1021/je800218g https://www.doi.org/10.1016/j.jct.2015.07.046 https://www.doi.org/10.1021/je200195q https://www.doi.org/10.1016/j.jct.2010.12.019 of organic solutes in the ionic liquid Vอกกรุเนิงและเห็วใหญ่ไม่เลือนกับm https://www.doi.org/10.1021/je100474b Type of the first https://www.doi.org/10.1016/j.fluid.2013.05.038 thermodynamic parameters in a thermo https://www.doi.org/10.1016/j.jct.2011.02.008 https://www.doi.org/10.1016/j.fluid.2009.02.010 Experimental and predicted vapour liquid equilibrium of 1,4-dioxane with Activa Manegisiante at entering the did and the Activa Manegisiante at entering the did and the Activa Manegisiante for organic solutes and waters of the Mixed Carbonate or Dieteryl Carbonate or Bieteryl Carbonate or Bieteryl Carbonate or Bieteryl Carbonate or Bieteryl Carbonate Mixed Solvent Solvent Solvent of the Mixed Solvent So https://www.doi.org/10.1016/j.fluid.2005.09.010 https://www.doi.org/10.1016/j.jct.2009.06.011 https://www.doi.org/10.1021/je020131a https://www.doi.org/10.1021/je8002964 https://www.doi.org/10.1016/j.fluid.2005.07.015 https://www.doi.org/10.1016/j.tca.2011.04.012 https://www.doi.org/10.1021/je030187k
https://www.doi.org/10.1021/je00940j
https://www.doi.org/10.1021/je000599
https://www.doi.org/10.1021/je01044h
https://www.doi.org/10.1021/je01044h
https://www.doi.org/10.1021/je0605036
https://www.doi.org/10.1016/j.jct.2010.12.005
https://www.doi.org/10.1016/j.jct.2010.12.005
https://www.doi.org/10.1016/j.jct.2010.12.005
https://www.doi.org/10.1016/j.jct.2010.12.005 https://www.doi.org/10.1021/je030187k A TEXT TO THE STATE OF THE TEXT OF THE PROPERTY OF THE PROPERT https://www.doi.org/10.1016/j.fluid.2016.01.006 https://www.doi.org/10.1016/j.fluid.2010.06.007 https://www.doi.org/10.1021/je900324s https://www.doi.org/10.1016/j.jct.2015.01.013 (water + methanol + 2,4,4-trimethyl-1-pentene):

```
Screening of environmental friendly
                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.jct.2015.08.017
         ionic liquid as a solvent for the
      Maturantrigue or sover fatto reinary blem:
Maturantrigue or sepanation reinary blem:
Maturantrigue or wethy the sepanation reinary blem:
Maturantrigue or sepanation reinary blem.
Maturantrigue or se
                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1021/je800883b
                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2008.02.008
                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2012.04.008
         ไม่เราได้ ใช้ คงเลือง และ เลือง และ เล้า เลือง และ เลื
       diethylphosphate using gas liquid
Crivilia Goefficents at Iminite Dilution
of Alkanes, Alkenes, and Alkyl
                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je900686n
         Ben Zenes Hacoloeo blous in pogas-Liquid
                                                                                                                                                                                                                                                                                                                           https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
       Erganuse graphy:
(Liquid + liquid) equilibria for (benzene
                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.jct.2014.12.014
         (Elgulu + Induct) equilibria for (Serize)

Seselyeat Selembrof of 303.15) K:

Beneance Malaberana Seneration:in

Entrancov (Distribution) of

1,1,2,2-tetrachloroethane +
                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/je100081v
                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2006.10.013
       1,1,2,2-tetrachloroethane +
(lydrudanbonumikikineiineaeess and
(lydrudanbonumikikineiineaeess and
(lydrudanbonumikikineiineaeethyl Sulfoxide +
Cyclonestanome Bindrugian ne Mineures
Gontaining liputadauvitainen et Mineures
Gontaining liputadauvitainen et Dilution of
Impideaeinen ne mithen et Mineures anith
Indianalisei and Could hakalineiia of
Tuvalarolectone with Some
                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je900549r
                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1021/je050440b
                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/je200349t
  https://www.doi.org/10.1021/je0501074b
https://www.doi.org/10.1021/je0501074b
https://www.doi.org/10.1021/je0501074b
https://www.doi.org/10.1021/je0501074b
https://www.doi.org/10.1021/je050165y
https://www.doi.org/10.1021/je030165y
https://www.doi.org/10.1021/je030165y
https://www.doi.org/10.1016/j.tca.2005.06.007
https://www.doi.org/10.1016/j.jct.2005.01.015
https://www.doi.org/10.1016/j.jct.2005.01.015
https://www.doi.org/10.1016/j.jct.2005.01.015
https://www.doi.org/10.1016/j.jct.2015.04.025
https://www.doi.org/10.1021/je0604277
https://www.doi.org/10.1021/je0604277
https://www.doi.org/10.1021/je0604277
https://www.doi.org/10.1021/je060142u
https://www.doi.org/10.1021/je060380p
https://www.doi.org/10.1021/je060380p
https://www.doi.org/10.1021/je060354b
https://www.doi.org/10.1021/je050354b
https://www.doi.org/10.1016/j.fluid.2014.01.046
https://www.doi.org/10.1016/j.fluid.2014.01.046
https://www.doi.org/10.1016/j.fluid.2014.01.046
https://www.doi.org/10.1016/j.fluid.2014.01.046
https://www.doi.org/10.1016/j.fluid.2014.01.046
https://www.doi.org/10.1016/j.fluid.2014.01.046
https://www.doi.org/10.1021/je050354b
https://www.doi.org/10.1016/j.fluid.2006.07.015
https://www.doi.org/10.1016/j.fluid.2006.07.015
https://www.doi.org/10.1016/j.fluid.2006.07.015
https://www.doi.org/10.1016/j.fluid.2014.01.046
http
                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1021/je501074b
                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2014.01.046
ternary mixtures containing 1-alkanol -
thipical distributes activity social termany mixtures containing 1-alkanol -
thipical distributes activity social termany mixtures containing 1-alkanol -
thipical distributes activity social termany mixtures containing 1-alkanol -
thipical distributes activity social termany mixtures containing 1-alkanol -
thipical distributes activity social termany mixtures containing 1-alkanol -
thipical distributes activity social termany mixtures containing 1-alkanol -
thipical distributes activity social termany mixtures containing 1-alkanol -
thipical distributes activity social termany mixtures containing 1-alkanol -
thipical distributes activity social termany mixtures containing 1-alkanol -
thipical distributes activity social termany mixtures containing 1-alkanol -
thipical distributes activity social termany mixtures containing 1-alkanol -
thipical distributes activity social termany mixtures containing 1-alkanol -
thipical distributes activity social termany mixtures containing 1-alkanol -
thips://www.doi.org/10.1016/j.jct.2015.07.018
https://www.doi.org/10.1016/j.jct.2015.07.018
https://www.doi.org/10.1016/j.jct.2015.07.018
https://www.doi.org/10.1016/j.jct.2011.09.028
https://www.doi.org/10.1016/j.jct.2011.09.028
https://www.doi.org/10.1016/j.jct.2011.09.028
https://www.doi.org/10.1016/j.jct.2011.09.028
https://www.doi.org/10.1016/j.jct.2011.09.012
https://www.doi.org/10.1016/j.jct.2011.09.012
https://www.doi.org/10.1016/j.jct.2011.09.012
https://www.doi.org/10.1016/j.jct.2012.11.005
https://www.doi.org/10.1016/j.jct.2013.02.006
https://www.doi.org/10.1016/j.jct.2013.
      ternary mixtures containing 1-alkanol +
                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.fluid.2006.07.015
```

Cyclohexane and Water in Aqueous in 12 Pure Solvents from T : (22/19) president of the state of densities, Beningdy icomio restrictes standiral Beargonging to rectivity coefficients at intenting all wears, of a rectivity coefficients in the state of the Temary System Water Phosphority
Activity contications and ship of the properties of the properties of the properties of the physicochemical properties for solubility and solubility of the properties for the properties for solubility of the properties for the propertie type in a control of the control of 60 and 101.3 kPa:

Experimental Mutual Solubility Data for https://www.doi.org/10.1021/acs.jced.8b01179 Selutidity of Detharophenyeacetic Acid https://www.doi.org/10.1021/acs.jced.8b00139 https://www.doi.org/10.1016/j.tca.2012.08.011 https://www.doi.org/10.1021/je200840e https://www.doi.org/10.1021/je800751m https://www.doi.org/10.1021/je034005y https://www.doi.org/10.1016/j.jct.2010.12.004

https://www.doi.org/10.1016/j.jct.2010.12.004

https://www.doi.org/10.1021/je301202v

ht https://www.doi.org/10.1016/j.jct.2010.12.004 https://www.doi.org/10.1021/je900259b https://www.doi.org/10.1007/s10765-015-1922-3 https://www.doi.org/10.1021/acs.jced.8b00666 https://www.doi.org/10.1016/j.fluid.2016.02.004 https://www.doi.org/10.1021/acs.jced.8b00632 https://www.doi.org/10.1016/j.jct.2011.04.018 https://www.doi.org/10.1016/j.jct.2016.10.040 https://www.doi.org/10.1021/acs.jced.6b00116 https://www.doi.org/10.1021/acs.jced.7b01003 https://www.doi.org/10.1016/j.fluid.2018.06.003 https://www.doi.org/10.1021/acs.jced.5b00331 https://www.doi.org/10.1016/j.fluid.2005.11.026 https://www.doi.org/10.1021/acs.jced.9b00458 https://www.doi.org/10.1016/j.fluid.2008.12.007

Quaternary (liquid + liquid) equilibrium https://www.doi.org/10.1016/j.jct.2014.03.008 data for the extraction of toluene from **blydregensaglubility** incarchamical and physicochemical properties for deginite Source in the Buttery Systems of the control of th hapighing the separation processes: Speeds of Sound and Isentropic Speeds of Sound and Isentropic
Compressibilities for Binary Mixtures
bring dibution and Isentropic
Compressibilities for Binary Mixtures
bring dibution and Isentropic
Compressibilities for Binary Mixtures
bring dibution and Isentropic distribution
Is present the property of the (p,
track the property of the property of the (p,
track the property of the property of the (p,
track the property of the property of the (p,
track the property of the property of the (p,
track the property of the property of the (p,
track the property of the pro Containing Cycloalkanes and Aromatic Compounds at T = 313.15 K:

https://www.doi.org/10.1016/j.fluid.2004.07.013 ENGREPHISON AND ADDRESS AND AD https://www.doi.org/10.1021/acs.jced.5b00980 https://www.doi.org/10.1021/acs.jced.6b00761 https://www.doi.org/10.1016/j.fluid.2010.03.031 https://www.doi.org/10.1016/j.jct.2010.10.026 https://www.doi.org/10.1016/j.fluid.2010.06.003 https://www.doi.org/10.1016/j.jct.2009.08.012 https://www.doi.org/10.1016/j.jct.2018.01.003 https://www.doi.org/10.1021/acs.jced.8b01256 https://www.doi.org/10.1016/j.fluid.2018.09.024 Brace adiagrams in the series of butyric acid with the series https://www.doi.org/10.1021/acs.jced.9b00243 https://www.doi.org/10.1016/j.tca.2008.09.006 https://www.doi.org/10.1021/je800515w https://www.doi.org/10.1016/j.jct.2017.04.019 https://www.doi.org/10.1016/j.fluid.2008.09.018 https://www.doi.org/10.1021/je0341357 https://www.doi.org/10.1021/je800193a https://www.doi.org/10.1016/j.jct.2008.12.005 https://www.doi.org/10.1016/j.fluid.2015.03.022 https://www.doi.org/10.1021/je9002724 https://www.doi.org/10.1016/j.jct.2010.12.016 https://www.doi.org/10.1016/j.jct.2010.12.016
investigationsing palacetaring and topological
investigationsing palacetaring palacetaring investigation inves https://www.doi.org/10.1021/acs.jced.9b00441 https://www.doi.org/10.1007/s10765-006-0063-0 https://www.doi.org/10.1016/j.jct.2013.05.035 https://www.doi.org/10.1016/j.jct.2010.08.010 https://www.doi.org/10.1016/j.fluid.2009.01.011 https://www.doi.org/10.1016/j.fluid.2011.01.021 https://www.doi.org/10.1021/je060026r https://www.doi.org/10.1021/acs.jced.8b00635 https://www.doi.org/10.1021/acs.jced.9b00560 https://www.doi.org/10.1021/je8009336

```
"Vapor-liquid" equilibrium
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2010.06.013
     measurements and modeling for the
                                                                                                                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/je700282w
   cyclonexand 4 cyclonexand thinary tone of Alkyl Behyewes Alkenes, and Alkyl Behyewes Alkenes, and Alkyl Behyewes Alkenes at Infinite Dilution of Alkyl Behyewes Alkenes at Infinite Dilution of Alkyl Behyewes Alkenes at Infinite Dilution of Beginnesses at Infinite dilution for Beginnesses buildes shands as of mixing of a compressibilities shanges of mixing of
                                                                                                                                                                                                                                                                                                                                                                                                                             https://www.doi.org/10.1021/je6005696
                                                                                                                                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1021/acs.jced.9b00710
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.jct.2014.04.024
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.tca.2010.03.012
   Bryama Goldlesy which and drois in the party least of the party least 
                                                                                                                                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1021/je100410k
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je0201323
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.jct.2018.05.003
nttps://www.doi.org/10.1016/j.jct.2018.05.003
https://www.doi.org/10.1016/j.jct.2018.05.003
https://www.doi.org/10.1021/je7007236
https://www.doi.org/10.1021/je7007236
https://www.doi.org/10.1016/j.jct.2005.04.010
https://www.doi.org/10.1016/j.jct.2005.04.010
https://www.doi.org/10.1016/j.jct.2005.04.010
https://www.doi.org/10.1016/j.jct.2018.05.003
https://www.doi.org/10.1021/je025620p
https://www.doi.org/10.1021/je025620p
https://www.doi.org/10.1016/j.jct.2018.05.003
https://www.doi.org/10.1016/j.jct.2005.04.010
https://www.doi.org/10.1016/j.jct.2018.05.003
https://www.doi.org/10.1016/j.jct.2005.04.010
https://www.doi.org/10.1016/j.jct.2018.05.003
https://www.doi.org/10.1016/j.jct.2005.04.010
https://www.doi.org/10.1016/j.jct.2018.05.003
https://
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2006.03.020
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2009.09.019
   Mensylighbephsorias weise offic induses
as infinite didution promotioning
beparationy grock being pale prices, and
                                                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.jct.2008.01.004
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.jct.2018.05.023
      ampratio ny giovandrisy arcones, and wasserijes of swelses in the fighter of the fighter is call: heastrements and modeling for the sould be supported to the supported to 
                                                                                                                                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.fluid.2011.06.027
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/je901024t
   ভূপান্দ্রপ্রস্থান দ দ্বাধারস্কার বিপর্যালয় প্রত্যালয় বিপর্যালয় করিছিল।
প্রস্থান করিছিল বিদ্যালয় করিছিল।
করিছিল বিদ্যালয় করিছিল।
করিছিল বিদ্যালয় করিছিল।
করিছিল বিদ্যালয় বিদ্যালয়
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.jct.2016.10.005
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/acs.jced.9b00778
                                                                                                                                                                                                                                                                                                                                                                                                                               Solvents at Temperatures from 278.15

Experiment heaves,

Experime
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/acs.jced.8b01101
The continuous and the continuou
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.fluid.2015.09.035
      Containing lonia Could be so Activity
Obum And the Infinite milities dilution
                                                                                                                                                                                                                                                                                                                                                                                                                               https://www.doi.org/10.1016/j.jct.2012.01.004
   Geemolekis de kantale Dilition of ution of the property of the
                                                                                                                                                                                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.jct.2016.01.023
```

https://www.doi.org/10.1016/j.fluid.2019.06.004

solvent-antisolvent mixtures:

Liquid Liquid Equilibrium for Ternary System Water + Cyclohexane + Acetic Kappalicacid 2 guid 3 zinnik in the binary and ternary systems containing ethyl Brosso Farelleria for the Torkanevak rowich Systems of (Water + Tetrahydrofurfuryl Measure neutral solivent action in a Magauremantand & acception 19 fc km Activity Coefficients of Several Organic Solnes in Fiberaphyrmantarior the saparation of his properties of the saparation of his properties of the saparation of the saparatio Hearly anothe 20 a hivit gooefficients at infinite dilution for organic solutes Experimental place of engligation and prediction of the extraction and prediction of the extraction of the extra dicyanamide, IB4MPy[IDCA] using Activity coefficients at infinite dilution of organic solutes in the ionic liquid of organic solutes in the ionic liquid Intersyntation of States and Intersyntation of States and Intersyntation of States and Intersyntation of States and Intersyntation of Intersolution of Int Hexafluorophosphate from Gas-Liquid Chromatography:

https://www.doi.org/10.1021/je400704a https://www.doi.org/10.1016/j.fluid.2018.07.013 https://www.doi.org/10.1021/je049605r Interpretation using polar and sobaronal appropriate and sobaronal app https://www.doi.org/10.1016/j.jct.2005.07.003 https://www.doi.org/10.1021/acs.jced.8b00124 Measurement and Grace latining (that South litty of the want han if the Reven Magain varies in the Reven Magain of the Revenue o https://www.doi.org/10.1016/j.fluid.2018.01.020 https://www.doi.org/10.1016/j.fluid.2012.08.004 https://www.doi.org/10.1021/acs.jced.5b00500 https://www.doi.org/10.1016/j.jct.2013.07.004 https://www.doi.org/10.1016/j.fluid.2013.10.033 https://www.doi.org/10.1016/j.fluid.2006.02.009 https://www.doi.org/10.1016/j.tca.2005.10.008 https://www.doi.org/10.1016/j.fluid.2010.08.016 https://www.doi.org/10.1021/acs.jced.5b00011 https://www.doi.org/10.1016/j.jct.2013.09.007 http://pubs.acs.org/doi/abs/10.1021/ci990307l https://www.doi.org/10.1016/j.jct.2013.05.030

Thermodynamic Properties of Mixtures https://www.doi.org/10.1021/je060033f Accessis inthalpies of the Ternary
Mixtures: Tetrahydrofuran + (Hexane or Cotab Ressaue Process Teatib Bauth:
Measurements for the Binary Systems Measurements for the Binary Systems Measurements for the Binary Systems Measurements of the Binary Measu trinexyltetradecylphosphonium
Activities act understand the nature of molecular Free time recovers refallight the form Remains and alticular and the and Benneth And Bethe Bushing CAI) ionic I deing and maric Data of Mefenamic Aeld which are an are an area of Mefenamic Aeld which are an area of Mefenamic Aeld which are a second and a second area of Mefenamic Aeld which are a second and a second area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and a second area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which are a second and area of Mefenamic Aeld which Sobant Birtheres: Measurement and Correlation of Solubility of Amorphous Cefmetazole

Solubility of Amorphous Cefmetazole

Solubility of Amorphous Cefmetazole

Solubility of the azeotrope

(A) PRINCIPAL CONTROL CONT ļiquid-liquid equilibria of dilution activity coefficients of selected binary systems involving n-hexyl pyridinium his/trifluoreme hylsulphonyl)imide ionic arguro: Experimental and

Containing Ionic Liquids: Activity ២៤៤៣៤ និគ្គ៤៤៤៤៤ព្រះ អាច ប្រទេស and https://www.doi.org/10.1021/acs.jced.7b00873 Wittures: Tetrahydrofuran + (Heyane or Wittures: Tetrahydrofuran + (Heyane or Wittan) (Content of the first o https://www.doi.org/10.1021/acs.jced.5b00270 https://www.doi.org/10.1021/acs.jced.8b00765 https://www.doi.org/10.1021/je101008y https://www.doi.org/10.1016/j.jct.2015.03.004 https://www.doi.org/10.1021/acs.jced.8b00663 https://www.doi.org/10.1016/j.fluid.2009.10.009 https://www.doi.org/10.1021/je050544m https://www.doi.org/10.1016/j.fluid.2019.03.023 https://www.doi.org/10.1016/j.jct.2012.08.016 https://www.doi.org/10.1021/je1013262 https://www.doi.org/10.1021/je049776w https://www.doi.org/10.1016/j.jct.2015.02.024 https://www.doi.org/10.1016/j.fluid.2006.02.001 https://www.doi.org/10.1021/je800109s https://www.doi.org/10.1016/j.jct.2017.06.008 https://www.doi.org/10.1016/j.jct.2015.12.033 https://www.doi.org/10.1021/je400714f https://www.doi.org/10.1016/j.fluid.2011.02.018 https://www.doi.org/10.1021/acs.jced.6b00741 https://www.doi.org/10.1016/j.jct.2008.03.011 https://www.doi.org/10.1016/j.fluid.2013.10.048 https://www.doi.org/10.1016/j.fluid.2011.01.025 https://www.doi.org/10.1016/j.jct.2007.04.005
(p) 4 m Th megawisyneyts of selected

https://www.doi.org/10.1016/j.jct.2007.04.005

https://www.doi.org/10.1016/j.jct.2015.06.023

https://www.doi.org/10.1016/j.jct.2015.06.023

af: Acentric Factor affp: Proton affinity

predictions using modified UNIFAC

(Dortmund):

aigt: Autoignition Temperature

Aniline Point ap: Gas basicity basg:

chl: Standard liquid enthalpy of combustion

Ideal gas heat capacity cpg: Liquid phase heat capacity cpl:

dm: Dipole Momentdvisc: Dynamic viscosity

fli: Lower Flammability Limit flu: Upper Flammability Limit

fpo: Flash Point (Open Cup Method)

gf: Standard Gibbs free energy of formation

gyrad: Radius of Gyration

hcg: Heat of Combustion, Gross form hcn: Heat of Combustion, Net Form

hf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hsubt: Enthalpy of sublimation at a given temperaturehvap: Enthalpy of vaporization at standard conditionshvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

nfpaf:NFPA Fire Ratingnfpah:NFPA Health Ratingpc:Critical Pressure

pt: Triple Point Pressure

pvap: Vapor pressurerfi: Refractive Indexrhoc: Critical densityrhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices sdco: Self diffusion coefficient

sfust: Entropy of fusion at a given temperature **sg:** Molar entropy at standard conditions

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

svapt: Entropy of vaporization at a given temperature

tb: Normal Boiling Point Temperaturetbp: Boiling point at given pressure

tc: Critical Temperature

tcondl: Liquid thermal conductivity
tf: Normal melting (fusion) point
tt: Triple Point Temperature

vc: Critical Volume volm: Molar Volume

zc: Critical Compressibility

zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/66-104-3/Cyclohexane.pdf

Generated by Cheméo on 2025-12-22 01:30:46.548851294 +0000 UTC m=+6115244.078891948.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.