Glycine

Other names: 2-Aminoacetic acid

Acetic acid, amino-

Aciport

Aminoacetic acid

Aminoethanoic acid

Amitone Athenon Glicoamin

Gly

Glycine, free base Glycine, non-medical

Glycocoll Glycolixir Glycosthene Gyn-hydralin

Hampshire glycine NH2CH2COOH NSC 25936

Padil

InChl=1S/C2H5NO2/c3-1-2(4)5/h1,3H2,(H,4,5)

InchiKey: DHMQDGOQFOQNFH-UHFFFAOYSA-N

Formula: C2H5NO2 SMILES: NCC(=O)O

Mol. weight [g/mol]: 75.07 CAS: 56-40-6

Physical Properties

Property code	Value	Unit	Source
affp	886.50	kJ/mol	NIST Webbook
affp	883.10 ± 1.90	kJ/mol	NIST Webbook
affp	886.30 ± 3.10	kJ/mol	NIST Webbook
basg	852.20	kJ/mol	NIST Webbook
basg	856.00 ± 3.00	kJ/mol	NIST Webbook
basg	851.10 ± 1.90	kJ/mol	NIST Webbook
basg	855.40 ± 3.60	kJ/mol	NIST Webbook
ер	2.00 ± 6.00	J/mol×K	NIST Webbook
gf	-233.33	kJ/mol	Joback Method

hf	-390.50 ± 4.60	kJ/mol	NIST Webbook	
hfs	-528.61	kJ/mol	NIST Webbook	
hfs	-537.20	kJ/mol	NIST Webbook	
hfs	-528.52 ± 0.42	kJ/mol	NIST Webbook	
hfs	-527.50 ± 0.50	kJ/mol	NIST Webbook	
hfus	11.82	kJ/mol	Joback Method	
hsub	138.10 ± 4.60	kJ/mol	NIST Webbook	
hsub	138.10 ± 4.60	kJ/mol	NIST Webbook	
hvap	54.11	kJ/mol	Joback Method	
ie	10.00	eV	NIST Webbook	
ie	9.25 ± 0.10	eV	NIST Webbook	
ie	9.30	eV	NIST Webbook	
ie	9.21 ± 0.05	eV	NIST Webbook	
ie	8.80	eV	NIST Webbook	
ie	8.90	eV	NIST Webbook	
log10ws	0.52		Aqueous Solubility Prediction Method	
logp	-0.970		Crippen Method	
mcvol	56.460	ml/mol	McGowan Method	
рс	6967.65	kPa	Joback Method	
SS	109.20	J/mol×K	NIST Webbook	
SS	103.51	J/mol×K	NIST Webbook	
tb	463.74	K	Joback Method	
tc	653.39	K	Joback Method	
tf	530.49	К	Solubility of alpha-glycine in water with additives at a temperature range of (293.15 - 343.15) K: Experimental data and results of thermodynamic modeling	
tf	527.85	К	Artificial neural networks as a supporting tool for compatibility study based on thermogravimetric data	
VC	0.202	m3/kmol	Joback Method	

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	113.87	J/mol×K	463.74	Joback Method	
cpg	118.43	J/mol×K	495.35	Joback Method	
cpg	122.78	J/mol×K	526.96	Joback Method	
cpg	126.92	J/mol×K	558.56	Joback Method	

cpg	130.87	J/mol×K	590.17	Joback Method
cpg	134.62	J/mol×K	621.78	Joback Method
cpg	138.19	J/mol×K	653.39	Joback Method
cps	95.10	J/mol×K	298.00	NIST Webbook
cps	95.00	J/mol×K	298.00	NIST Webbook
cps	99.30	J/mol×K	298.15	NIST Webbook
cps	99.20	J/mol×K	298.15	NIST Webbook
cps	100.50	J/mol×K	299.50	NIST Webbook
hsubt	137.00 ± 2.00	kJ/mol	419.50	NIST Webbook
hsubt	136.00 ± 0.40	kJ/mol	455.00	NIST Webbook
hsubt	136.40 ± 4.00	kJ/mol	462.00	NIST Webbook
hsubt	131.00 ± 2.00	kJ/mol	414.50	NIST Webbook

Correlations

Information	Value		

Property code	pvap	
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$	
Coeff. A	6.23648e+03	
Coeff. B	-3.25024e+05	
Coeff. C	-9.21946e+02	
Coeff. D	5.92592e-04	
Temperature range (K), min.	452.15	
Temperature range (K), max.	470.15	

Sources

Solvation behavior of some amino acids in aqueous solutions of Fibhalpies of diluting and latery drug salaring and begrined in aqueous solutions of https://www.doi.org/10.1016/j.tca.2004.05.021 https://www.doi.org/10.1016/j.tca.2004.05.021 https://www.doi.org/10.1016/j.tca.2004.05.021 https://www.doi.org/10.1016/j.fluid.2013.09.013 https://www.doi.org/10.1016/j.fluid.2013.09.013 https://www.doi.org/10.1016/j.fluid.2013.09.013 https://www.doi.org/10.1016/j.fluid.2015.03.012 https://www.doi.org/10.1016/j.fl Solvation behavior of some amino

https://www.doi.org/10.1016/j.jct.2016.03.016

different an ing spida in water in a spida in water in a spida in water in a spida in the spida in water in a spida in water in a spida in water in a spida in the spida in th

```
Volumetric, compressibility and
                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.tca.2015.02.014
    viscometric studies on sodium
Effect ครองเป็นคุมปัจจุปที่มีเพลากาก
                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2011.12.020
   entange and the properties and the properties of the properties o
                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.fluid.2010.04.002
                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.jct.2016.06.030
                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1021/acs.jced.5b00198
         Peneitiese es apares par de la constitue de la
    Nempites is such special and visit in the property of the control 
 phosphate on thermodynamic Bestial meeler golumesatul-alemine in adaecius olutioneanius deixtidine, surecius olutioneanius deixtidine, surecius olutioneanius deixtidine, surecius olutioneanius one and its surecius or and its surecius or and its surecius or allumes is and decu surecius or allumes or 
                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.jct.2005.03.015
                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1021/je5003797
                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.tca.2012.10.018
                                                                                                                                                                                                                                                                                                                                                                                        https://www.doi.org/10.1021/je034168m
                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2012.05.009
                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.fluid.2016.05.025
                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1021/je050296u
                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.jct.2016.06.018
   https://www.doi.org/10.1016/j.jct.2016.03.045
                                                                                                                                                                                                                                                                                                                                                                                            http://webbook.nist.gov/cgi/cbook.cgi?ID=C56406&Units=SI
 The property of the property o
                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.fluid.2006.10.012
 with the artial same of some o
                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.tca.2014.06.028
                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.fluid.2013.03.030
                                                                                                                                                                                                                                                                                                                                                                                           https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1459
      Kola Re Norman states by
Thysicochemical approach:

https://www.doi.org/10.1021/je1003466

https://www.doi.org/10.1021/je1003466

https://www.doi.org/10.1016/j.jct.2008.09.008

https://www.doi.org/10.1016/j.jct.2008.09.008

https://www.doi.org/10.1016/j.jct.2018.11.022

https://www.doi.org/10.1016/j.jct.2018.11.022

https://www.doi.org/10.1016/j.jct.2018.11.022

https://www.doi.org/10.1016/j.jct.2018.11.022

https://www.doi.org/10.1016/j.jct.2018.11.022

https://www.doi.org/10.1016/j.jct.2018.11.022

https://www.doi.org/10.1016/j.tca.2006.07.009

https://www.doi.org/10.1016/j.tca.2006.07.009

https://www.doi.org/10.1016/j.tca.2006.07.009

https://www.doi.org/10.1016/j.tca.2006.07.009

https://www.doi.org/10.1016/j.tca.2006.07.009

https://www.doi.org/10.1016/j.tca.2006.07.009
                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1007/s10765-010-0742-8
    Amino Acids/Glycylglycine in Aqueous

program by by lighting and yis posity

https://www.doi.org/10.1021/je7001418

per and finite and by the 
Avassigs Tolirans Plylans Plyl
                                                                                                                                                                                                                                                                                                                                                                                           https://www.doi.org/10.1016/j.jct.2014.11.007
                                                                                                                                                                                                                                                                                                                                                                                              https://www.doi.org/10.1016/j.tca.2017.12.015
                                                                                                                                                                                                                                                                                                                                                                                            https://www.doi.org/10.1016/j.jct.2006.11.014
```

acids and ionic salts at T = 298.15 K:

Surface Tension of Glycine, Alanine, Aminobutyric Acid, Norvaline, and Nurbueine Insulvaner ensemula need of Shoring and Nurbueine Insulvaner ensemula need of Shoring and Sho Surface Tension of Glycine, Alanine, Aminobutyric Acid, Norvaline, and Conductances name and invalues of a constant and invalues of the conductance of the conductance of the conductance of the conductance of a conductance of the conduct glycylglycine in aqueous
tewahogilgylwononRibttehrand feolute +
selvant interestions of homologous
denas of some lapha.-amino acids in aqueous-streptomycin sulfate solution is a difficultier of the sulfate Amino Acids In Illaning of The Sulface Benuface and the sulface of Nd(Gly)2(Ala)3Cl3*2H2O(s): Mode of action of betaine on some Interaction of some hydrophobic amino acids, peptides, and protein with Molecular properties and protein with Molecular polymoistic and protein and polymoistic and protein and prot some bio-active solutes inaqueous Bartiahmalaresbumpansharisiabaselar anystossibilitzatéantivantelegous approprietishiitzatéantivantelegous approprietis inschululus eacht a lagueous approprietis properties approprietis at I.-.202.15 K. pitessu2498:15 K:

https://www.doi.org/10.1021/acs.jced.7b00433 https://www.doi.org/10.1016/j.jct.2017.02.021 https://www.doi.org/10.1016/j.jct.2018.09.036 https://www.doi.org/10.1016/j.jct.2018.09.026 https://www.doi.org/10.1016/j.jct.2008.09.019 https://www.doi.org/10.1016/j.fluid.2015.05.043 https://www.doi.org/10.1021/acs.jced.7b00549 https://www.doi.org/10.1016/j.jct.2005.06.017 https://www.doi.org/10.1016/j.jct.2011.09.017 https://www.doi.org/10.1016/j.fluid.2017.05.019 https://www.doi.org/10.1021/je500271z https://www.doi.org/10.1021/je401034k https://www.doi.org/10.1021/je8001464 https://www.doi.org/10.1016/j.jct.2010.08.021 https://www.doi.org/10.1007/s10765-015-2006-0 https://www.doi.org/10.1016/j.jct.2015.04.024 https://www.doi.org/10.1016/j.jct.2011.05.012 https://www.doi.org/10.1021/je900882r https://www.doi.org/10.1021/je300701m https://www.doi.org/10.1016/j.jct.2011.09.016 https://www.doi.org/10.1016/j.jct.2012.07.009 compartible solventy for glyrines, and beliging behaviour of biologically active compounds in aqueous Enhancing patransace reliaming acids in agreeus solutions for glycine, L-alanine, https://www.doi.org/10.1016/j.jct.2014.03.015 https://www.doi.org/10.1016/j.jct.2004.07.006 https://www.doi.org/10.1016/j.tca.2005.04.002 https://www.doi.org/10.1016/j.jct.2015.11.015 https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1021/je501178z https://www.doi.org/10.1016/j.tca.2004.05.030 https://www.doi.org/10.1016/j.jct.2017.03.025 Mode of action of betaine on some amino acids and globular proteins:

PRESITION AND REPORTS IN THE PROTECTION OF SOLUTIONS OF Glycine, I-Alanine, and Avainity proteins an incomplete and the proteins of Glycine, I-Alanine, and Avainity proteins an incomplete and the proteins of Glycine, I-Alanine, and Avainity proteins an incomplete and the protein of some interesting of the protein of some hydrophobic amino acids, peptides, and protein with https://www.doi.org/10.1021/acs.jced.7b00257 https://www.doi.org/10.1016/j.fluid.2011.10.015 https://www.doi.org/10.1016/j.jct.2005.04.011 https://www.doi.org/10.1016/j.jct.2003.11.001 https://www.doi.org/10.1021/je100476h https://www.doi.org/10.1021/je400077c https://www.doi.org/10.1016/j.tca.2013.06.017 https://www.doi.org/10.1016/j.jct.2011.01.004 https://www.doi.org/10.1016/j.jct.2016.07.046 https://www.doi.org/10.1016/j.jct.2003.09.008

```
Solubilities of Glycine and Its
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/je0600754
    Oligopeptides in Aqueous Solutions: Density and Viscosity Study of
                                                                                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/acs.jced.5b01031
   Interactions of Some Amino Acids in Aquebilities and Madeliss of Flycine in Mixed MaCI MgCI2 Solutions in a Highly Ciscomica of Regime. I-Alanine, and I-Valine in (0.2, 0.4, 0.6, and 0.8) mol*kg
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/acs.jced.6b00403
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/je400894j
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.tca.2005.10.013
       Enthabolas of iteolarian citamino orgidons
   Hopification of Some Sulfa Melogistics (2005) https://www.doi.org/10.1016/j.jct.2009.10.002 https://www.doi.org/10.1021/je300455e https://www.doi.org/10.1016/j.jct.2019.06.002
The large of sections of some surfaces:

| Indian acids and a pharmaceutically solve its and a pharmaceutically solve its acids and pertices and the solve its acids and pertices of solve its acids acid
                                                                                                                                                                                                                                                                                                                                                                                         https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1459
   apple and peptides with deceyariment plants and peptides with deceyariment plants and tetradecyltrimethylammonium programs on molecular interaction of amino acids in aqueous disodium physical physical plants and the programs of the plants. The programs of the plants are plants and the programs of the plants and the programs of the plants. The programs of the plants are plants and the programs of the plants are plants.
                                                                                                                                                                                                                                                                                                                                                                                          http://link.springer.com/article/10.1007/BF02311772
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2013.11.015
   Transport a mino acids in aqueous disodium
Ryariogen smissiphated order of the ministration of the ministr
                                                                                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1021/acs.jced.8b00644
BE สิลิ Web เอียต์ กละคลย่อยโปก แบบคลับ ient Chreine เม่นใสมาวย ลาย Avglions การเป็นหน้าเลี้ยม เป็นเหลียม เป็นเป็นเหลียม เป็นเหลียม เป็นเหลียม
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/je050412t
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2017.02.024
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1021/je049927v
                                                                                                                                                                                                                                                                                                                                                                                          https://www.doi.org/10.1016/j.jct.2016.07.047
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2013.08.010
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2015.10.002
                                                                                                                                                                                                                                                                                                                                                                                         https://www.doi.org/10.1016/j.jct.2019.03.011
       Pitteiderptunden bitter bitter
                                                                                                                                                                                                                                                                                                                                                                                      https://www.doi.org/10.1016/j.jct.2018.03.014
 https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
https://www.doi.org/10.1016/j.jct.2018.03.014
 Therannel/Bannics of $2069.5 Rolute) and (solute + solvent) interactions of Exhibiting the distributions of Exhibiting the distributions of Exhibiting the distributions of Exhibiting the distributions of Exhibiting the distribution of Exhibiting th
    electrolyte/amino-acid solutions with
```

ePC-SAFT:

Crippen Method:

http://pubs.acs.org/doi/abs/10.1021/ci990307l

Thermophysical Properties of Dicationic Ionic Liquids under the Influence of Amino Acid:

https://www.doi.org/10.1021/acs.jced.8b00349

Legend

affp: Proton affinity **basg:** Gas basicity

cpg: Ideal gas heat capacitycps: Solid phase heat capacityep: Protonation entropy at 298K

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditions

hfs: Solid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions

hsub: Enthalpy of sublimation at standard conditionshsubt: Enthalpy of sublimation at a given temperaturehvap: Enthalpy of vaporization at standard conditions

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressure

ss: Solid phase molar entropy at standard conditions

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/67-762-2/Glycine.pdf

Generated by Cheméo on 2024-03-13 07:53:27.524918277 +0000 UTC m=+12605656.445495593.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.