Glycine

Other names:	2-Aminoacetic acid Acetic acid, amino- Aciport Aminoacetic acid Aminoethanoic acid Amitone Athenon Glicoamin Gly Glycine, free base Glycine, non-medical Glycocoll Glycocoll Glycosthene Gyn-hydralin Hampshire glycine NH2CH2COOH NSC 25936 Padil
Inchi:	InChI=1S/C2H5NO2/c3-1-2(4)5/h1,3H2,(H,4,5) DHMQDGOQFOQNFH-UHFFFAOYSA-N
InchiKey: Formula:	C2H5NO2
SMILES:	NCC(=0)0
Mol. weight [g/mol]:	75.07
CAS:	56-40-6

Physical Properties

Property code	Value	Unit	Source
affp	886.50	kJ/mol	NIST Webbook
affp	883.10 ± 1.90	kJ/mol	NIST Webbook
affp	886.30 ± 3.10	kJ/mol	NIST Webbook
basg	856.00 ± 3.00	kJ/mol	NIST Webbook
basg	851.10 ± 1.90	kJ/mol	NIST Webbook
basg	855.40 ± 3.60	kJ/mol	NIST Webbook
basg	852.20	kJ/mol	NIST Webbook
ер	2.00 ± 6.00	J/mol×K	NIST Webbook
gf	-233.33	kJ/mol	Joback Method

hf	-390.50 ± 4.60	kJ/mol	NIST Webbook
hfs	-527.50 ± 0.50	kJ/mol	NIST Webbook
hfs	-528.61	kJ/mol	NIST Webbook
hfs	-537.20	kJ/mol	NIST Webbook
hfs	-528.52 ± 0.42	kJ/mol	NIST Webbook
hfus	11.82	kJ/mol	Joback Method
hsub	138.10 ± 4.60	kJ/mol	NIST Webbook
hsub	138.10 ± 4.60	kJ/mol	NIST Webbook
hvap	54.11	kJ/mol	Joback Method
ie	9.30	eV	NIST Webbook
ie	9.21 ± 0.05	eV	NIST Webbook
ie	8.80	eV	NIST Webbook
ie	10.00	eV	NIST Webbook
ie	8.90	eV	NIST Webbook
ie	9.25 ± 0.10	eV	NIST Webbook
log10ws	0.52		Aqueous Solubility Prediction Method
logp	-0.970		Crippen Method
mcvol	56.460	ml/mol	McGowan Method
рс	6967.65	kPa	Joback Method
SS	103.51	J/mol×K	NIST Webbook
SS	109.20	J/mol×K	NIST Webbook
tb	463.74	К	Joback Method
tc	653.39	К	Joback Method
tf	530.49	К	Solubility of alpha-glycine in water with additives at a temperature range of (293.15 - 343.15) K: Experimental data and results of thermodynamic modeling
tf	527.85	К	Artificial neural networks as a supporting tool for compatibility study based on thermogravimetric data
VC	0.202	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	126.92	J/mol×K	558.56	Joback Method
cpg	138.19	J/mol×K	653.39	Joback Method
cpg	134.62	J/mol×K	621.78	Joback Method
cpg	130.87	J/mol×K	590.17	Joback Method

cpg	113.87	J/mol×K	463.74	Joback Method
срд	118.43	J/mol×K	495.35	Joback Method
cpg	122.78	J/mol×K	526.96	Joback Method
cps	100.50	J/mol×K	299.50	NIST Webbook
cps	95.10	J/mol×K	298.00	NIST Webbook
cps	99.30	J/mol×K	298.15	NIST Webbook
cps	99.20	J/mol×K	298.15	NIST Webbook
cps	95.00	J/mol×K	298.00	NIST Webbook
hsubt	131.00 ± 2.00	kJ/mol	414.50	NIST Webbook
hsubt	136.40 ± 4.00	kJ/mol	462.00	NIST Webbook
hsubt	136.00 ± 0.40	kJ/mol	455.00	NIST Webbook
hsubt	137.00 ± 2.00	kJ/mol	419.50	NIST Webbook

Correlations

Information	Value
Property code	pvap
Equation	$ln(Pvp) = A + B/T + C^{*}ln(T) + D^{*}T^{2}$
Coeff. A	6.23648e+03
Coeff. B	-3.25024e+05
Coeff. C	-9.21946e+02
Coeff. D	5.92592e-04
Temperature range (K), min.	452.15
Temperature range (K), max.	470.15

Sources

Partial molar volume and partial molar compressibility of four homologous apharathina activis no situe constant glocine is chinic liquidin mater solutions compression Method:

Vapor Pressure Osmometry, Volumetry, and Compressibility Predenterastion betweene solution Anide contraction betweene solution acid Marie contraction acid Marie con biosphate on thermodynamic biosphate on thermodynamic biosphate on thermodynamic biosphate on thermodynamic and solution internations of biophysic is and particles with mathematical solution internations of biophysic is and particles with mathematical solution internations of biophysic is and particles with mathematical solution internations of biophysic is and particles with mathematical solution internations of biophysic is and particles with mathematical solution internations of biophysic is and particles with mathematical solution in a generation biophysic is and particles with index behaviour of a samino acids and biophysic is accurate the particles with index behaviour of a samino acids and biophysic is accurate the particles with index behaviour of a samino acids and biophysic is accurate the particles with index behaviour of a samino acids and biophysic is accurate the particles with index behaviour of a samino acids and biophysic is accurate the particles with index behaviour of a samino acids and biophysic is accurate the particles with index behaviour of a samino acids and biophysic is accurate the particles with index behaviour of a samino acids and biophysic is accurate the particles with index behaviour of a samino acids and biophysic is accurate the particles with accurate the p their groups? contribution in aqueous **D-glucose solution at different** temperatures:

https://www.doi.org/10.1016/j.jct.2011.01.004

https://www.doi.org/10.1016/j.jct.2018.09.036

Study of thermodynamic properties of aqueous binary mixtures of glycine, Denaiting, a sound a prodag row peptide backbone unit from water to blocomplane in monating af T = yourging methylimidazolium salicylate and the salid of the salid salid blocomplane of the salid salid blocomplane of the salid sali 1-Hexyl-3-methylimidazolium Salicylate The hydratio pristing people is the state of amino acids in L-ascorbic acid younnetwic and viscosity properties o Animo acia properties to selvicions of - services of the properties to selvicions of Viecosi con of the properties to selvicions of Curate (12 min problem) and the properties and the properties of the problem of any second constant of the properties of the properties of the properties of the properties provide a properties of the problem of the properties of the properties of the problem of the properties of the properties of the properties of the problem of the properties of the prope Solvent) Interactions of nomologous Yanes breakle appraint to acids in adternisation of the provide equilibria year of the provide the studies of provide the studies of the studies of the studies of the provide the studies of the studies Freedord by vapor pressure osmometry:

https://www.doi.org/10.1016/j.jct.2011.09.016 https://www.doi.org/10.1021/acs.jced.5b00198 **Densitines**, apolutical sinted allow Histoposities at Courter Antipo 270: des aviets Histoposities at Courter Antipo 270: des aviets Hittps://www.doi.org/10.1021/acs.jced.5600198 https://www.doi.org/10.1021/j.fluid.2015.05.043 https://www.doi.org/10.1016/j.fluid.2015.05.043 https://www.doi.org/10.1016/j.tca.2006.07.009 Https://www.doi.org/10.1016/j.tca.2006.07.009 https://www.doi.org/10.1016/j.tca.2008.09.019 https://www.doi.org/10.1021/je049927v of Some r-Amino Acids in Micellar Effect of al suge/bit methyl participantian bit Some r-Amino Acids in Micellar Strattoris drugstilumeday/puncinium iodide, [C4mpy]l, ionic liquid on Solutions and by anning Acidesus Solutions and Bold https://www.doi.org/10.1007/s10765-015-2006-0 https://www.doi.org/10.1016/j.tca.2016.05.013 https://www.doi.org/10.1016/j.jct.2005.03.015 https://www.doi.org/10.1021/acs.jced.8b00236 https://www.doi.org/10.1016/j.fluid.2010.04.002 https://www.doi.org/10.1021/je0600754 https://www.doi.org/10.1021/acs.jced.8b00644 https://www.doi.org/10.1016/j.jct.2013.01.023 as an yat involve harma central singreares in the s.//www.doi.org/10.1016/j.jct.2013.01.023 and the provided and the second seco **Sorting Ages and Refractive Indices Denaity and Market Sort Ag** https://www.doi.org/10.1016/j.jct.2015.08.009 https://www.doi.org/10.1016/j.jct.2015.08.009 https://www.doi.org/10.1021/acs.jced.6b00403 https://www.doi.org/10.1016/j.jct.2019.06.002 https://www.doi.org/10.1016/j.jct.2013.11.002 https://www.doi.org/10.1021/acs.jced.6b00403 https://www.doi.org/10.1016/j.tca.2005.04.002 https://www.doi.org/10.1016/j.jct.2011.12.020 https://www.doi.org/10.1016/j.jct.2016.07.046 https://www.doi.org/10.1021/je300673m https://www.doi.org/10.1021/acs.jced.7b00257 https://www.doi.org/10.1016/j.jct.2013.08.018 https://www.doi.org/10.1016/j.jct.2015.11.015 https://www.doi.org/10.1016/j.fluid.2017.05.019 https://www.doi.org/10.1021/je100909b https://www.doi.org/10.1016/j.fluid.2016.05.025

Temperature and concentration dependence towards physicochemical Andurraris decementing dates on grycine, and in the spectral stances of grycine, a when the spectral stances of grycine, a when is spectral stances of grycine, shall be spectral stances of grycine and the spectral stances of grycine by the solution singly of grycine si **Coefficients of Several r-Amino Acids**

Sennerstilvent hiterations of glycine, P-Mälfine, and 2-vanile glyzine, Molecular interactions of some amino acids in aqueous Thanypelynemjamatiezeinim bromide

1 July Payneth Him Riddzol Rim bromide sin series an a free in Querous alweise At conversion of the pays and the pay of the paynet pression of the paynet of the paynet and the series is an alweit of the paynet and the series of the paynet of the paynet of the series of the paynet of the paynet of the series of the paynet o Bronniers on the volumetric properties and provide the second second second second second and provide the second Densities of aqueous solutions containing model compounds of amino d-alanine and I-valine in aqueous Koletionecorranning Mggod4 at 298.15 from water to aqueous solutions of Scaleffe at the ten solution of solutions of solution of the solution of t and solute-solvent interactions of

and concept oproceeds fropic/chaotropic

behaviour of amino acids:

https://www.doi.org/10.1016/j.jct.2018.09.026 https://www.doi.org/10.1021/je100476h https://www.doi.org/10.1021/acs.jced.8b00349 https://www.doi.org/10.1016/j.jct.2012.07.009 https://www.doi.org/10.1021/je060149b https://www.doi.org/10.1016/j.jct.2016.06.030 https://www.doi.org/10.1016/j.jct.2016.06.030 https://www.doi.org/10.1021/je5003797 https://www.doi.org/10.1021/je5003797 https://www.doi.org/10.1021/je5003797 https://www.doi.org/10.1016/j.tca.2014.06.028 Constructions and C-value in aqueous Construction and C-value in aqueous Construction and C-value in aqueous Construction of C-value in aqueous the service in aqueous point of C-value in aqueous the service in aqueous point of C-value in aqueous the service in aqueous point of C-value in aqueous the service in aqueous point of C-value in aqueous the service in aqueous point of C-value in aqueous the service in aqueous point of C-value in aqueous the service in aqueous point of C-value in aqueous the service in aqueous point of C-value in aqueous the service in aque https://www.doi.org/10.1021/acs.jced.7b00549 https://www.doi.org/10.1016/j.jct.2018.05.008 https://www.doi.org/10.1016/j.jct.2005.06.017 https://www.doi.org/10.1021/je500271z https://www.doi.org/10.1016/j.jct.2015.07.038 https://www.doi.org/10.1021/je500975a https://www.doi.org/10.1016/j.jct.2016.03.016 https://www.doi.org/10.1016/j.jct.2003.09.008 https://www.doi.org/10.1016/j.tca.2004.05.030 https://www.doi.org/10.1016/j.jct.2006.11.014 https://www.doi.org/10.1016/j.fluid.2011.10.015 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1459 K: experimental determination and contracting myser at 230.13 https://www.chefterc.org/10221/je501178z https://www.doi.org/10.1021/je501178z sigonowstrigt study 33.95/201323.15/2010 glycylglycine in aqueous terearctary primario and ite https://www.doi.org/10.1016/j.jct.2004.07.006 https://www.doi.org/10.1016/j.jct.2012.10.018 glycylglycine in àqueous tetera componention in adueous approxime acting private and its approxime acting provide and its and their group contributions in the acting provide and its acting and their group contributions in the acting provide and its acting and their group contributions in the acting provide and its acting and their group contributions in the acting provide and its acting and their group contributions in the acting provide and its acting and their group contributions in the acting provide and its acting and their group contributions in the acting provide and its acting and their group contributions in the acting provide and its acting and their group contributions in the acting provide and its acting and their group contributions in the acting provide and its acting and their group contributions in the acting provide and its acting and their group contributions in the acting provide and its acting and their group contributions in the acting provide and its acting and their group contributions in the acting provide and its acting and the acting provide and its acting and the acting provide and its acting and the acting provide and its acting the acting provide and its acting and the acting and acting and acting the acting acting provide and acting and acting the acting ac https://www.doi.org/10.1016/j.tca.2012.10.018 https://www.doi.org/10.1016/j.fluid.2007.04.004 differentiation acids in water: Physicochemical study of solute-solute https://www.doi.org/10.1016/j.jct.2016.03.012 and solute-solvent interactions of yournetticannettic and hese connections of the solution and the solution of the solution

Joback Method:

Mutual Coexistence Curve Measurement of Aqueous Biphasic Systems CWater and Ponotic [BF4] Goefficients for Stwar and Three Basic Milling On Hill Fernany Sweeton St-dopa + (NaSO3)n-beta-cyclodextrin } solutions (Countrie Properties of Chycina in Countrie Properties of Chycina in Countries Properties of Chycina in Chycina Chycles of Chycina in Chycles of Chycina in Chycles of Chycles of Chycina in Chycles of Chycles of Chycina in Chycles of Chycles of Chycles of Chycina in Chycles of Chycl physicochemicalcontrivances: Intermolecular interactions of

Intermolecular interactions of alpha.-amino acids and glycyl intermolecular interactions of appendice in-alphabe sedil intralignatived signal an appendice sedil intralignatived signal an appendice of the solethology in the sediment of the solethology in the solethology of the solethology interaction of the solethology of the solethology of the interaction of the solethology of the solethology of the interaction of the solethology of the solethology of the interaction of the solethology of the solethology of the interaction of the solethology of the solethology of the interaction of the solethology of the solethology of the solethology of the interaction of the solethology of the soletholo Noncourter and the and the Addeous Southons of Brows Epictionytes at Purible Afflision and 205 (1510) 513.15) Investigations of aggregation and Adsomption benavior and and the addeous Auto Webpockyl-4-methyl pyridinium Adjacous probably -4-methyl pyridinium chloride ionic liquid solutions probed by physic achemical approach in the the product of a series size 15) K: Human solutions and solutions and solution glyging begins a similar active status and glyging begins a similar active status and glyging begins a similar active status and glyging begins a similar active status glyging begins a similar active glyging begins a similar active status glyging begins Wate Activity in Agueous of the Saturious Containing Amonium Sturiate as 29821 on consequences of alpha-amino acids in aqueous ionicliquid solution probed by physicochemical approach:

https://en.wikipedia.org/wiki/Joback_method https://www.doi.org/10.1021/je0601053 https://www.doi.org/10.1021/je300701m https://www.doi.org/10.1016/j.jct.2018.03.014 As you have the mark of the model of the mod https://www.doi.org/10.1007/s10765-010-0742-8 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1016/j.jct.2016.06.018 https://www.doi.org/10.1016/j.jct.2016.03.045 https://www.doi.org/10.1016/j.jct.2003.11.001 https://www.doi.org/10.1021/acs.jced.9b00295 https://www.doi.org/10.1016/j.jct.2013.08.010 https://www.doi.org/10.1021/je400894j https://www.doi.org/10.1021/acs.jced.7b00433 https://www.doi.org/10.1021/je7006988 https://www.doi.org/10.1016/j.fluid.2015.03.012 ivestigations of aggregation and solutions and solutions of aggregation https://www.doi.org/10.1021/je050412t https://www.doi.org/10.1021/acs.jced.7b00647 http://webbook.nist.gov/cgi/cbook.cgi?ID=C56406&Units=SI https://www.doi.org/10.1021/je5007899 https://www.doi.org/10.1016/j.jct.2003.09.010 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1459 https://www.doi.org/10.1016/j.jct.2015.04.024 https://www.doi.org/10.1021/je401034k https://www.doi.org/10.1016/j.fluid.2013.03.030

Solubility of glycine in binary system of https://www.doi.org/10.1016/j.fluid.2013.09.013 ethanol + water solvent mixtures: Experimentation of the solvent mixtures: https://www.doi.org/10.1021/je400415r Googlewees of Some alpha-Amino Acids:

Legend

affp:	Proton affinity
basg:	Gas basicity
срд:	Ideal gas heat capacity
cps:	Solid phase heat capacity
ep:	Protonation entropy at 298K
gf:	Standard Gibbs free energy of formation
hf:	Enthalpy of formation at standard conditions
hfs:	Solid phase enthalpy of formation at standard conditions
hfus:	Enthalpy of fusion at standard conditions
hsub:	Enthalpy of sublimation at standard conditions
hsubt:	Enthalpy of sublimation at a given temperature
hvap:	Enthalpy of vaporization at standard conditions
ie:	Ionization energy
log10ws:	Log10 of Water solubility in mol/l
logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
pc:	Critical Pressure
pvap:	Vapor pressure
SS:	Solid phase molar entropy at standard conditions
tb:	Normal Boiling Point Temperature
tc:	Critical Temperature
tf:	Normal melting (fusion) point
vc:	Critical Volume

Latest version available from:

https://www.chemeo.com/cid/67-762-2/Glycine.pdf

Generated by Cheméo on 2024-05-07 22:11:16.835338549 +0000 UTC m=+17409125.755915861. Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the

process industry.