Octadecane

Other names: Octadecan; n-Octadecane.

InChI: InChI=1S/C18H38/c1-3-5-7-9-11-13-15-17-18-16-14-12-10-8-6-4-2/h3-18H2,1-2H3

InChI Key: RZJRJXONCZWCBN-UHFFFAOYSA-N

Formula: C18H38

SMILES: CCCCCCCCCCCCCCCC

Molecular Weight: 254.49

CAS: 593-45-3

Physical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta_c H^\circ_{\text{liquid}}$</td>
<td>-12008.70 ± 2.40</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_c H^\circ_{\text{solid}}$</td>
<td>-11946.50 ± 4.80</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_f G^\circ$</td>
<td>100.68</td>
<td>kJ/mol</td>
<td>Joback Method</td>
</tr>
<tr>
<td>$\Delta f H^\circ_{\text{gas}}$</td>
<td>-414.60 ± 2.70</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta f H^\circ_{\text{liquid}}$</td>
<td>-505.40 ± 2.70</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta f H^\circ_{\text{solid}}$</td>
<td>-567.40 ± 4.80</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{luc}} H^\circ$</td>
<td>42.38</td>
<td>kJ/mol</td>
<td>Joback Method</td>
</tr>
<tr>
<td>$\Delta_{\text{sub}} H^\circ$</td>
<td>152.70</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}} H^\circ$</td>
<td>90.60 ± 1.00</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}} H^\circ$</td>
<td>91.30 ± 2.90</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}} H^\circ$</td>
<td>91.40 ± 1.30</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}} H^\circ$</td>
<td>91.80</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}} H^\circ$</td>
<td>91.80</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}} H^\circ$</td>
<td>92.80</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}} H^\circ$</td>
<td>91.40</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}} H^\circ$</td>
<td>90.80</td>
<td>kJ/mol</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\log P_{\text{oct/wat}}$</td>
<td>7.27</td>
<td></td>
<td>Crippen Method</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Unit</td>
<td>Source</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>P_c</td>
<td>1300.00 ± 200.00</td>
<td>kPa</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>P_c</td>
<td>1292.00 ± 110.00</td>
<td>kPa</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>S°_{liquid}</td>
<td>696.60</td>
<td>J/mol\timesK</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$S^\circ_{\text{solid,1 bar}}$</td>
<td>480.20</td>
<td>J/mol\timesK</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>589.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>581.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>581.65 ± 2.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{boil}</td>
<td>585.65 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_c</td>
<td>747.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_c</td>
<td>745.80 ± 3.40</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_c</td>
<td>747.70 ± 1.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_c</td>
<td>747.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_c</td>
<td>756.15 ± 0.01</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.65 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.00 ± 0.10</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.22 ± 0.15</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>300.95 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>300.70 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>300.30 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>299.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.40 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.31 ± 0.02</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.31 ± 0.02</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.33 ± 0.01</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.35 ± 0.15</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.23 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Unit</td>
<td>Source</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.25 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.25 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.15 ± 1.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.00 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.00 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>300.85 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.30 ± 0.60</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>300.15 ± 1.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.20 ± 0.60</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>300.90 ± 0.60</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.20 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>300.30 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>300.09 ± 0.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>302.90 ± 1.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>300.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.01 ± 0.30</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.00 ± 1.50</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.00 ± 2.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{fus}</td>
<td>301.00 ± 3.00</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{triple}</td>
<td>301.00 ± 0.04</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>T_{triple}</td>
<td>301.30 ± 0.20</td>
<td>K</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>V_c</td>
<td>1.19</td>
<td>m^3/kg-mol</td>
<td>NIST Webbook</td>
</tr>
</tbody>
</table>

Temperature Dependent Properties
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
<th>Temperature (K)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{p, \text{gas}}$</td>
<td>723.50</td>
<td>J/mol×K</td>
<td>611.24</td>
<td>Joback Method</td>
</tr>
<tr>
<td>$C_{p, \text{liquid}}$</td>
<td>564.40</td>
<td>J/mol×K</td>
<td>300.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p, \text{liquid}}$</td>
<td>568.00</td>
<td>J/mol×K</td>
<td>325.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$C_{p, \text{solid}}$</td>
<td>485.64</td>
<td>J/mol×K</td>
<td>298.15</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>η</td>
<td>0.00</td>
<td>Pa×s</td>
<td>611.24</td>
<td>Joback Method</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}}H$</td>
<td>60.76</td>
<td>kJ/mol</td>
<td>301.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}}H$</td>
<td>60.10</td>
<td>kJ/mol</td>
<td>301.1</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}}H$</td>
<td>61.50</td>
<td>kJ/mol</td>
<td>301.3</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}}H$</td>
<td>61.50</td>
<td>kJ/mol</td>
<td>301.3</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}}H$</td>
<td>60.48</td>
<td>kJ/mol</td>
<td>301.3</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}}H$</td>
<td>61.71</td>
<td>kJ/mol</td>
<td>301.33</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}}H$</td>
<td>61.50</td>
<td>kJ/mol</td>
<td>301.5</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{sub}}H$</td>
<td>153.10 ± 5.00</td>
<td>kJ/mol</td>
<td>288.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{sub}}H$</td>
<td>153.00 ± 5.00</td>
<td>kJ/mol</td>
<td>293.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>84.30</td>
<td>kJ/mol</td>
<td>339.5</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>72.50</td>
<td>kJ/mol</td>
<td>343.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>71.80</td>
<td>kJ/mol</td>
<td>353.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>71.10</td>
<td>kJ/mol</td>
<td>363.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>70.50</td>
<td>kJ/mol</td>
<td>373.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>69.80</td>
<td>kJ/mol</td>
<td>383.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>80.00</td>
<td>kJ/mol</td>
<td>387.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>78.10</td>
<td>kJ/mol</td>
<td>460.5</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>74.40</td>
<td>kJ/mol</td>
<td>500.5</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>69.40</td>
<td>kJ/mol</td>
<td>518.5</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{vap}}H$</td>
<td>64.80</td>
<td>kJ/mol</td>
<td>524.5</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}}S$</td>
<td>201.90</td>
<td>J/mol×K</td>
<td>301.0</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}}S$</td>
<td>200.70</td>
<td>J/mol×K</td>
<td>301.3</td>
<td>NIST Webbook</td>
</tr>
<tr>
<td>$\Delta_{\text{fus}}S$</td>
<td>204.60</td>
<td>J/mol×K</td>
<td>301.33</td>
<td>NIST Webbook</td>
</tr>
</tbody>
</table>
Sources

NIST Webbook: http://webbook.nist.gov/cgi/inchi/InChI=1S/C18H38/c1-3-5-7-9-11-13-15-17-18-16-14-12-10-8-6-4-2/h3-18H2,1-2H3
Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l

Legend

\[\Delta_c H^0_{\text{liquid}} \]: Standard liquid enthalpy of combustion (kJ/mol).
\[\Delta_c H^0_{\text{solid}} \]: Standard solid enthalpy of combustion (kJ/mol).
\[C_{p,\text{gas}} \]: Ideal gas heat capacity (J/mol×K).
\[C_{p,\text{liquid}} \]: Liquid phase heat capacity (J/mol×K).
\[C_{p,\text{solid}} \]: Solid phase heat capacity (J/mol×K).
\[\eta \]: Dynamic viscosity (Pa×s).
\[\Delta_f G^0 \]: Standard Gibbs free energy of formation (kJ/mol).
\[\Delta_f H^0_{\text{gas}} \]: Enthalpy of formation at standard conditions (kJ/mol).
\[\Delta_f H^0_{\text{liquid}} \]: Liquid phase enthalpy of formation at standard conditions (kJ/mol).
\[\Delta_f H^0_{\text{solid}} \]: Solid phase enthalpy of formation at standard conditions (kJ/mol).
\[\Delta_f H^0_{\text{fus}} \]: Enthalpy of fusion at standard conditions (kJ/mol).
\[\Delta_f H_{\text{fus}} \]: Enthalpy of fusion at a given temperature (kJ/mol).
\[\Delta_f H_{\text{sub}} \]: Enthalpy of sublimation at standard conditions (kJ/mol).
\[\Delta_f H_{\text{vap}} \]: Enthalpy of vaporization at standard conditions (kJ/mol).
\[\Delta_f H_{\text{vap}} \]: Enthalpy of vaporization at a given temperature (kJ/mol).
\[\log P_{\text{oct/wat}} \]: Octanol/Water partition coefficient.
\[P_c \]: Critical Pressure (kPa).
\[\Delta_f S_{\text{fus}} \]: Entropy of fusion at a given temperature (J/mol×K).
\[S^0_{\text{liquid}} \]: Liquid phase molar entropy at standard conditions (J/mol×K).
\[S^0_{\text{solid,1 bar}} \]: Solid phase molar entropy at standard conditions (J/mol×K).
\[T_{\text{boil}} \]: Normal Boiling Point Temperature (K).
\[T_c \]: Critical Temperature (K).
\[T_{\text{fus}} \]: Normal melting (fusion) point (K).
\[T_{\text{triple}} \]: Triple Point Temperature (K).
\[V_c \]: Critical Volume (m3/kg-mol).

Latest version available from:
https://www.chemeo.com/cid/68-847-7/Octadecane

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.