Methyl Alcohol

Other names: Alcool methylique

Alcool metilico

Bieleski's solution

CARBINOL CH3OH

Colonial spirit Columbian spirit Columbian spirits Hydroxymethane METHANOL

METHYLHYDROXIDE

Metanolo

Methyl hydroxide Methylalkohol Methylol

Metylowy alkohol

Monohydroxymethane

NSC 85232 Pyro alcohol Pyroxylic spirit

Rcra waste number U154

Spirit of wood UN 1230

Wood alcohol Wood naphtha Wood spirit

Inchi: InChl=1S/CH4O/c1-2/h2H,1H3

InchiKey: OKKJLVBELUTLKV-UHFFFAOYSA-N

Formula: CH4O
SMILES: CO
Mol. weight [g/mol]: 32.04
CAS: 67-56-1

Physical Properties

Property code	Value	Unit	Source
af	0.5560		KDB

affp	754.30	kJ/mol	NIST Webbook
aigt	737.04	K	KDB
basg	724.50	kJ/mol	NIST Webbook
chg	-763.68 ± 0.20	kJ/mol	NIST Webbook
chl	-725.70 ± 0.10	kJ/mol	NIST Webbook
chl	-715.05	kJ/mol	NIST Webbook
chl	-726.50 ± 0.20	kJ/mol	NIST Webbook
chl	-713.83	kJ/mol	NIST Webbook
chl	-726.34 ± 0.20	kJ/mol	NIST Webbook
cpl	80.81 J/m		THERMODYNAMICS OF MIXTURES CONTAINING AMINES. XIV. CPEM OF BENZYLAMINE WITH HEPTANE AT 293.15 K OR WITH METHANOL, 1-PROPANOL OR 1-PENTANOL AT (293.15-308.15) K
cpl	81.38	J/mol×K	Molar heat capacities for {isomer of butanediol + methanol} as function of mixture composition and temperature
dm	1.70	debye	KDB
dvisc	0.0005482	Paxs	Densities and Viscosities of Binary Liquid Mixtures of Trichloroethylene and Tetrachloroethylene with Some Polar and Nonpolar Solvents
dvisc	0.0005500	Paxs	Densities and Viscosities for the Ternary Systems of Methyl tert-Butyl Ether + Methanol + Benzene and Methyl tert-Butyl Ether + Methanol + Toluene and Their Sub-binary Systems at 298.15 K
fII	6.00	% in Air	KDB
flu	36.50	% in Air	KDB
fpc	289.26	K	KDB
fpo	285.37	K	KDB
gf	-162.60	kJ/mol	KDB
gyrad	1.5360		KDB
hf	-201.30	kJ/mol	KDB
hfl	-251.30 ± 5.00	kJ/mol	NIST Webbook
hfl	-238.90 ± 3.60	kJ/mol	NIST Webbook
hfl	-239.50 ± 0.20	kJ/mol	NIST Webbook
hfl	-238.40	kJ/mol	NIST Webbook
hfl	-250.60	kJ/mol	NIST Webbook
hfus	2.43	kJ/mol	Joback Method
hvap	37.43 ± 0.02	kJ/mol	NIST Webbook

hvap	37.80	kJ/mol	NIST Webbook
hvap	38.00	kJ/mol	NIST Webbook
hvap	37.40 ± 0.10	kJ/mol	NIST Webbook
hvap	37.43 ± 0.02	kJ/mol	NIST Webbook
hvap	37.83	kJ/mol	NIST Webbook
hvap	37.30 ± 0.10	kJ/mol	NIST Webbook
hvap	37.40 ± 0.04	kJ/mol	NIST Webbook
hvap	37.30 ± 0.08	kJ/mol	NIST Webbook
hvap	37.70 ± 0.10	kJ/mol	NIST Webbook
hvap	37.80	kJ/mol	NIST Webbook
hvap	35.30 ± 0.04	kJ/mol	NIST Webbook
ie	10.95	eV	NIST Webbook
ie	10.84 ± 0.02	eV	NIST Webbook
ie	10.83	eV	NIST Webbook
ie	10.85	eV	NIST Webbook
ie	10.83 ± 0.01	eV	NIST Webbook
ie	10.85	eV	NIST Webbook
ie	10.85	eV	NIST Webbook
ie	10.85	eV	NIST Webbook
ie	10.83 ± 0.03	eV	NIST Webbook
ie	10.90 ± 0.12	eV	NIST Webbook
ie	10.85 ± 0.00	eV	NIST Webbook
ie	10.85 ± 0.01	eV	NIST Webbook
ie	10.85 ± 0.02	eV	NIST Webbook
ie	10.96	eV	NIST Webbook
ie	10.90 ± 0.03	eV	NIST Webbook
ie	11.00	eV	NIST Webbook
ie	10.95	eV	NIST Webbook
ie	10.86	eV	NIST Webbook
ie	10.97 ± 0.03	eV	NIST Webbook
ie	10.96	eV	NIST Webbook
ie	10.95	eV	NIST Webbook
ie	10.94	eV	NIST Webbook
ie	10.95	eV	NIST Webbook
ie	10.84 ± 0.08	eV	NIST Webbook
ie	10.96	eV	NIST Webbook
ie	10.90	eV	NIST Webbook
ie	10.84 ± 0.07	eV	NIST Webbook
ie	10.83	eV	NIST Webbook
ie	10.84 ± 0.01	eV	NIST Webbook
ie	10.85 ± 0.03	eV	NIST Webbook
ie	10.85 ± 0.02	eV	NIST Webbook
ie	10.82 ± 0.05	eV	NIST Webbook
log10ws	1.57		Aqueous Solubility
10910113	1.07		Prediction Method

log10ws	1.57	Estimated Solut Method	
logp	-0.391		Crippen Method
mcvol	30.820	ml/mol	McGowan Method
nfpaf	%!d(float64=3)		KDB
nfpah	%!d(float64=1)		KDB
pc	8120.00	kPa	Critical Properties of Binary and Ternary Mixtures of Hexane + Methanol, Hexane + Carbon Dioxide, Methanol + Carbon Dioxide and Hexane + Carbon Dioxide + Methanol
pc	8084.00	kPa	KDB
rinpol	336.00		NIST Webbook
rinpol	356.00		NIST Webbook
rinpol	368.00		NIST Webbook
rinpol	382.00		NIST Webbook
rinpol	338.00		NIST Webbook
rinpol	370.00		NIST Webbook
rinpol	348.00		NIST Webbook
rinpol	395.00		NIST Webbook
rinpol	379.00		NIST Webbook
rinpol	367.50	NIST Webbo	
rinpol	381.00		NIST Webbook
rinpol	370.00		NIST Webbook
rinpol	353.50		NIST Webbook
rinpol	381.00		NIST Webbook
rinpol	373.00		NIST Webbook
rinpol	373.00		NIST Webbook
rinpol	408.00		NIST Webbook
rinpol	384.00		NIST Webbook
rinpol	362.00		NIST Webbook
rinpol	381.00		NIST Webbook
rinpol	381.00		NIST Webbook
rinpol	381.00		NIST Webbook
rinpol	353.00		NIST Webbook
rinpol	381.00		NIST Webbook
rinpol	381.00		NIST Webbook
rinpol	348.00		NIST Webbook
rinpol	353.00		NIST Webbook
rinpol	391.00		NIST Webbook
rinpol	404.00		NIST Webbook
rinpol	340.00		NIST Webbook
rinpol	382.00		NIST Webbook
rinpol	380.00		NIST Webbook

rinpol	381.00	NIST Webbook
rinpol	362.00	NIST Webbook
rinpol	404.00	NIST Webbook
rinpol	400.00	NIST Webbook
rinpol	400.00	NIST Webbook
rinpol	378.20	NIST Webbook
rinpol	372.70	NIST Webbook
rinpol	380.00	NIST Webbook
rinpol	373.00	NIST Webbook
rinpol	330.00	NIST Webbook
rinpol	355.00	NIST Webbook
rinpol	373.00	NIST Webbook
rinpol	384.00	NIST Webbook
rinpol	361.00	NIST Webbook
ripol	891.00	NIST Webbook
ripol	917.00	NIST Webbook
ripol	860.00	NIST Webbook
ripol	899.00	NIST Webbook
ripol	910.40	NIST Webbook
ripol	883.00	NIST Webbook
ripol	920.00	NIST Webbook
ripol	907.00	NIST Webbook
ripol	909.00	NIST Webbook
ripol	897.00	NIST Webbook
ripol	920.00	NIST Webbook
ripol	905.00	NIST Webbook
ripol	898.00	NIST Webbook
ripol	905.00	NIST Webbook
ripol	903.00	NIST Webbook
ripol	911.00	NIST Webbook
ripol	907.00	NIST Webbook
ripol	911.00	NIST Webbook
ripol	921.00	NIST Webbook
ripol	895.00	NIST Webbook
ripol	899.00	NIST Webbook
ripol	892.00	NIST Webbook
ripol	866.00	NIST Webbook
ripol	916.00	NIST Webbook
ripol	910.40	NIST Webbook
ripol	869.00	NIST Webbook
ripol	888.00	NIST Webbook
ripol	899.00	NIST Webbook
ripol	914.00	NIST Webbook
ripol	886.00	NIST Webbook

ripol	897.00		NIST Webbook
ripol	904.00		NIST Webbook
ripol	892.00		NIST Webbook
ripol	881.00		NIST Webbook
sl	127.19	J/mol×K	NIST Webbook
sl	129.70	J/mol×K	NIST Webbook
sl	136.40	J/mol×K	NIST Webbook
sl	126.80	J/mol×K	NIST Webbook
SS	1.12	J/mol×K	NIST Webbook
tb	337.70	K	KDB
tb	337.80	К	Effect of Dissolved Salts on the Enthalpy of Mixing of the Methanol + Formic Acid System at 303.15 K
tb	337.64	К	Vapor Liquid Equilibrium Behaviors of 5-Methyl-2-(1-methylethyl)pheno in Alcohol
tb	337.65	К	Experimental Measurements of Vapor Liquid Equilibrium Data for the Binary Systems of Methanol + 2-Butyl Acetate, 2-Butyl Alcohol + 2-Butyl Acetate, and Methyl Acetate + 2-Butyl Acetate at 101.33 kPa
tb	337.82	К	Isobaric Vapor Liquid Equilibrium for the Binary Systems of Methanol, Diethylamine, and N,N-Diethylethanolamine at p = (60.0 and 101.3) kPa
tb	337.75	К	Vapor Liquid Equilibrium at p/kPa = 101.3 of the Binary Mixtures of Ethenyl Acetate with Methanol and Butan-1-ol
tb	337.85	К	Vapor Liquid Equilibrium Data for Methanol + tert-Butylamine + N,N-Dimethylformamide and Constituent Binary Systems at Atmospheric Pressure
tb	337.84	К	Organic Salt Effect of Tetramethylammonium Bicarbonate on Vapor-Liquid Equilibrium of the Dimehyl Carbonate + Methanol System
tb	337.85	K	Isobaric Vapor Liquid Equilibrium for Methanol + Dimethyl Carbonate + 1-Octyl-3-methylimidazolium Tetrafluoroborate

tb	337.84	K	Organic Salt Effect of Tetramethylammonium Bicarbonate on the Vapor Liquid Equilibrium of the Methanol Water System
tb	337.57	К	Vapor-Liquid Equilibrium and Liquid-Liquid Equilibrium of Methyl Acetate + Methanol + 1-Ethyl-3-methylimidazolium Acetate
tb	337.67	К	Vapor-Liquid Equilibrium Behavior of Tolan in Alcohol
tb	337.75	К	Isobaric Vapor-Liquid Equilibrium of Acetone + Methanol System in the Presence of Calcium Bromide
tb	337.90	К	Vapor-Liquid Equilibrium and Mixing Properties of Methanol + Diethyl Carbonate and Vinyl Acetate + Diethyl Carbonate Systems
tb	337.83	К	Isobaric Vapor-Liquid Equilibrium Measurements and Separation Process for the Quinary Methanol + Methylal + 2-Butanol + 2-(Methoxymethoxy)-butane +
			(+-)-Di-sec-butoxymethane System
tb	337.62	К	Measurement and Correlation of Excess Molar Enthalpies for Ethylene Glycol + Alkanol Systems at the Temperatures (298.15, 308.15, and 323.15) K
tb	337.69	К	Vapor-Liquid Equilibrium Data for Methanol + 1,3-Dioxolane + Water and Constituent Binary Systems at 101.3 kPa.
tb	337.83	К	Isobaric Phase Equilibria of Diethyl Carbonate with Five Alcohols at 101.3 kPa
tb	337.69	K	Isobaric Vapor-Liquid Equilibrium for the Binary System of Dimethyl Adipate and 1,6-Hexanediol at 10, 20, and 99 kPa
tb	337.67	К	Vapor-Liquid Equilibrium of Durene in Methanol or Ethanol

tb	337.68	К	Determination of Ternary Vapor-Liquid Equilibrium of Dimethyl Oxalate-Methanol-1,2-Butanediol under Atmosphere Pressure
tb	337.83	К	Isobaric Vapor-Liquid Equilibrium for the Binary Systems of 2-Butanol + 2-(Methoxymethoxy)-butane and 1-Butanol + 2-(Methoxymethoxy)-butane at 101.3 kPa
tb	337.45	К	Effect of Ionic Liquids on the Binary Vapor-Liquid Equilibrium of Ethyl Acetate + Methanol System at 101.3 kPa
tb	337.85	К	Vapor Liquid Equilibria Measurement of (Methanol + Ethanenitrile + Bis(trifluoromethylsulfonyl) Imide)-Based Ionic Liquids at 101.3 kPa
tb	337.68	К	Isobaric Vapor - Liquid Equilibrium for Ethyl acetate + Methanol + Ionic Liquids Ternary systems at 101.3 kPa
tb	337.78	К	A new analysis method for improving collection of vapor-liquid equilibrium (VLE) data of binary mixtures using differential scanning calorimetry (DSC)
tb	337.68	K	Experimental determination of vapor liquid equilibrium for methanol + methyl propionate + 1-butyl-3-methylimidazo-lium bis(trifluoromethylsulfonyl)imide at atmospheric pressure
tb	337.45	К	Measurements and correlations of density, viscosity, and vapour-liquid equilibrium for fluoro alcohols
tb	337.65	К	Isobaric (vapor + liquid) equilibrium data for the binary system methanol + 2-butyl alcohol and the quaternary system methyl acetate + methanol + 2-butyl alcohol + 2-butyl acetate at P = 101.33 kPa

tb	363.41	K	Measurement of (vapor + liquid) equilibrium for the systems {methanol + dimethyl carbonate} and {methanol + dimethyl carbonate + tetramethylammonium bicarbonate} at p = (34.43, 67.74) kPa
tb	337.65	K	Isobaric vapor-liquid equilibrium for methanol + methyl acetate with ionic liquids [OMMIM][Tf2N] and [OMIM][Tf2N] as entrainers at 101.3 kPa
tb	337.65	K	Isobaric vapor-liquid equilibrium for acetone + methanol system containing different ionic liquids at 101.3 kPa
tb	337.85	K	Measurement and correlation of isobaric vapor-liquid equilibria of methanol + tetrahydrofuran + 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide at 101.3 kPa
tb	337.85	K	Measurement and Modelization of VLE for Butyl Acetate with Methanol, Ethanol, 1-Propanol, and 1-Butanol. Experimental Data at 0.15 MPa
tb	337.86	K	Isobaric (vapor-liquid) equilibria for binary systems of methanol + 1-(methoxymethoxy)- propane and 1-propanol + 1-(methoxymethoxy)-propane at 101.33 kPa
tb	337.83	K	Experimental isobaric vapor-liquid equilibrium for the binary and ternary systems with methanol, methyl acetate and dimethyl sulfoxide at 101.3 kPa
tb	337.70	K	Isobaric vapor-liquid equilibria of the binary mixtures propylene glycol methyl ether + propylene glycol methyl ether acetate, methyl acetate + propylene glycol methyl ether and methanol + propylene glycol methyl ether acetate at 101.3 kPa

tb	337.75	К	Isobaric vapor-liquid equilibrium data for the binary system methyl acetate + isopropyl acetate and the quaternary system methyl acetate + methanol + isopropanol + isopropyl acetate at 101.3 kPa
tb	337.50	K	Isobaric vapor liquid equilibria of 1,1-dimethylethoxy-butane + methanol or ethanol +water at 101.32 kPa
tb	337.50	K	Isobaric vapor liquid equilibria for systems composed by 2-ethoxy-2-methylbutane, methanol or ethanol and water at 101.32 kPa
tb	337.65	К	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K
tc	512.30	K	Measurement of critical temperatures and critical pressures for binary mixtures of methyl tert-butyl ether (MTBE) + alcohol and MTBE + alkane
tc	506.20	K	NIST Webbook
tc	513.20	K	NIST Webbook
tc	536.00	K	NIST Webbook
tc	515.20	K	NIST Webbook
tc	514.35 ± 1.00	K	NIST Webbook
tc	513.40 ± 0.50	K	NIST Webbook
tc	513.20	K	NIST Webbook
tc	513.20	K	NIST Webbook
tc	513.80	K	NIST Webbook
tc	512.60	K	NIST Webbook
tc	505.20	K	NIST Webbook
tc	513.20	K	NIST Webbook
tc	513.90	K	NIST Webbook
tc	513.15 ± 2.77	K	NIST Webbook
tc	512.68	K	NIST Webbook
tc	513.40	K	NIST Webbook
tc	513.00	K	NIST Webbook
tc	512.65 ± 0.30	K	NIST Webbook
tc	514.70	K	NIST Webbook
tc	512.36 ± 0.20	K	NIST Webbook
tc	512.36 ± 0.20	K	NIST Webbook

tc	512.36 ± 0.15	512.36 ± 0.15 K		
tc	512.50 ± 1.00	K	NIST Webbook	
tc	512.60	K	NIST Webbook	
tc	512.64	K	NIST Webbook	
tc	512.50	K	NIST Webbook	
tc	512.47 ± 0.10	K	NIST Webbook	
tc	512.64	K	NIST Webbook	
tc	512.50	K	NIST Webbook	
tc	512.50	K	KDB	
tc	512.50 ± 0.20	K	NIST Webbook	
tc	512.30	Κ	Measurement and correlation of critical properties for binary mixtures and ternary mixtures containing gasoline additives	
tc	505.90	K	NIST Webbook	
tf	175.47	K	KDB	
tf	175.25	K	Aqueous Solubility Prediction Method	
tf	175.15	K	Solid-liquid equilibria and the physical properties of binary systems of diphenyl carbonate, dimethyl carbonate, methyl phenyl carbonate, anisole, methanol and phenol	
tt	175.37 ± 0.08	K	NIST Webbook	
tt	175.59	K	KDB	
tt	175.61 ± 0.05	K	NIST Webbook	
tt	175.30 ± 0.10	K	NIST Webbook	
tt	175.60 ± 0.10	K	NIST Webbook	
tt	175.22 ± 0.10	K	NIST Webbook	
tt	175.67 ± 0.20	K	NIST Webbook	
tt	176.00 ± 1.00	K	NIST Webbook	
tt	175.59 ± 0.02	K	NIST Webbook	
VC	0.117	m3/kmol	NIST Webbook	
VC	0.113	m3/kmol	NIST Webbook	
VC	0.118 ± 0.004	m3/kmol	NIST Webbook	
	0.110 ± 0.004			
VC	0.117 ± 0.004	m3/kmol	NIST Webbook	
vc vc			NIST Webbook KDB	
	0.117 ± 0.004	m3/kmol		
VC	0.117 ± 0.004 0.117	m3/kmol	KDB	

Temperature Dependent Properties

Property code	Value	Unit	Temperature [F	(] Source	
cpg	66.80 ± 1.20	J/mol×K	585.35	NIST Webbook	
cpg	50.30 ± 1.30	J/mol×K	368.15	NIST Webbook	
cpg	42.40 ± 1.30	J/mol×K	279.00	NIST Webbook	
cpg	48.00 ± 1.30	J/mol×K	345.60	NIST Webbook	
cpg	46.80 ± 1.20	J/mol×K	347.35	NIST Webbook	
cpg	46.10 ± 1.30	J/mol×K	349.65	NIST Webbook	
cpg	47.60 ± 1.20	J/mol×K	356.55	NIST Webbook	
cpg	46.70 ± 1.30	J/mol×K	358.15	NIST Webbook	
cpg	48.20 ± 1.30	J/mol×K	358.85	NIST Webbook	
cpg	48.80 ± 1.30	J/mol×K	359.85	NIST Webbook	
cpg	49.00 ± 1.20	J/mol×K	373.35	NIST Webbook	
cpg	51.30 ± 1.30	J/mol×K	382.15	NIST Webbook	
cpg	51.10 ± 1.20	J/mol×K	398.95	NIST Webbook	
cpg	52.30 ± 1.30	J/mol×K	401.15	NIST Webbook	
cpg	51.30 ± 1.20	J/mol×K	401.35	NIST Webbook	
cpg	52.01 ± 0.42	J/mol×K	403.20	NIST Webbook	
cpg	53.20 ± 1.30	J/mol×K	420.15	NIST Webbook	
cpg	53.90 ± 1.20	J/mol×K	431.45	NIST Webbook	
cpg	54.80 ± 1.20	J/mol×K	442.15	NIST Webbook	
cpg	55.90 ± 1.30	J/mol×K	442.65	NIST Webbook	
cpg	56.00 ± 1.20	J/mol×K	457.35	NIST Webbook	
cpg	57.20 ± 0.42	J/mol×K	464.00	NIST Webbook	
cpg	57.80 ± 1.20	J/mol×K	477.75	NIST Webbook	
cpg	58.40 ± 1.20	J/mol×K	485.05	NIST Webbook	
cpg	59.50 ± 1.20	J/mol×K	498.95	NIST Webbook	
cpg	60.40 ± 1.30	J/mol×K	521.20	NIST Webbook	
cpg	61.40 ± 1.20	J/mol×K	521.35	NIST Webbook	
cpg	64.30 ± 1.20	J/mol×K	555.95	NIST Webbook	
cpg	66.40 ± 1.20	J/mol×K	581.35	NIST Webbook	
cpl	85.51	J/mol×K		Thermodynamic properties of mixtures of -methyl-2-pyrrolidinor and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa	ne
cpl	80.40	J/mol×K	293.15	Heat capacities of the mixtures of ionic liquids with methanol at temperatures from 283.15 K to 323.15 K	
cpl	78.20	J/mol×K	270.00	NIST Webbook	
cpl	79.90	J/mol×K	290.10	NIST Webbook	

cpl	166.94	J/mol×K	512.35	Thermodynamic Properties of Methanol in the Critical and Supercritical Regions	
cpl	184.24	J/mol×K	512.73	Thermodynamic Properties of Methanol in the Critical and Supercritical Regions	
cpl	194.49	J/mol×K	512.77	Thermodynamic Properties of Methanol in the Critical and Supercritical Regions	
cpl	202.18	J/mol×K	512.78	Thermodynamic Properties of Methanol in the Critical and Supercritical Regions	
cpl	78.60	J/mol×K	283.15	Heat capacities of the mixtures of ionic liquids with methanol at temperatures from 283.15 K to 323.15 K	
cpl	79.50	J/mol×K	288.15	Heat capacities of the mixtures of ionic liquids with methanol at temperatures from 283.15 K to 323.15 K	
cpl	78.90	J/mol×K	288.15	NIST Webbook	
cpl	81.30	J/mol×K	298.15	Heat capacities of the mixtures of ionic liquids with methanol at temperatures from 283.15 K to 323.15 K	
cpl	82.30	J/mol×K	303.15	Heat capacities of the mixtures of ionic liquids with methanol at temperatures from 283.15 K to 323.15 K	
cpl	83.40	J/mol×K	308.15	Heat capacities of the mixtures of ionic liquids with methanol at temperatures from 283.15 K to	

cpl	84.50	J/mol×K	313.15	Heat capacities of the mixtures of ionic liquids with methanol at temperatures from 283.15 K to 323.15 K
cpl	85.70	J/mol×K	318.15	Heat capacities of the mixtures of ionic liquids with methanol at temperatures from 283.15 K to 323.15 K
cpl	87.00	J/mol×K	323.15	Heat capacities of the mixtures of ionic liquids with methanol at temperatures from 283.15 K to 323.15 K
cpl	81.17	J/mol×K	298.15	Thermodynamic properties of mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa
cpl	83.01	J/mol×K	308.15	Thermodynamic properties of mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa
cpl	79.90	J/mol×K	292.00	NIST Webbook
cpl	88.64	J/mol×K	328.15	Thermodynamic properties of mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa
cpl	92.43	J/mol×K	338.15	Thermodynamic properties of mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa

cpl	96.88	J/mol×K	348.15	Thermodynamic properties of mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and pressures up to 60 MPa
cpl	79.50	J/mol×K	298.15	NIST Webbook
cpl	81.11	J/mol×K	298.15	NIST Webbook
cpl	80.24	J/mol×K	298.15	NIST Webbook
cpl	80.35	J/mol×K	298.15	NIST Webbook
cpl	81.00	J/mol×K	298.15	NIST Webbook
cpl	81.32	J/mol×K	298.00	NIST Webbook
cpl	80.28	J/mol×K	298.15	NIST Webbook
cpl	81.56	J/mol×K	298.15	NIST Webbook
cpl	80.22	J/mol×K	298.15	NIST Webbook
cpl	81.47	J/mol×K	298.15	NIST Webbook
срІ	206.35	J/mol×K	512.78	Thermodynamic Properties of Methanol in the Critical and Supercritical Regions
cpl	81.92	J/mol×K	298.15	NIST Webbook
cpl	80.80	J/mol×K	293.15	NIST Webbook
cpl	81.13	J/mol×K	298.15	NIST Webbook
cpl	83.70	J/mol×K	298.00	NIST Webbook
cpl	85.80	J/mol×K	313.20	NIST Webbook
cpl	85.80	J/mol×K	298.20	NIST Webbook
cpl	80.80	J/mol×K	311.00	NIST Webbook
cpl	86.20	J/mol×K	323.00	NIST Webbook
cpl	75.77	J/mol×K	270.00	NIST Webbook
cpl	86.60	J/mol×K	300.80	NIST Webbook
cpl	83.56	J/mol×K	313.15	NIST Webbook
cpl	83.30	J/mol×K	298.00	NIST Webbook
cps	5.40	J/mol×K	20.50	NIST Webbook
cps	68.39	J/mol×K	120.00	NIST Webbook
cps	105.00	J/mol×K	173.00	NIST Webbook
dvisc	0.0003720	Paxs	328.15	Densities and Viscosities of Binary Mixtures of m-Cresol with Ethylene Glycol or Methanol over Several Temperatures

dvisc	0.0005090	Paxs	303.15	Viscosities and densities for binary mixtures of N-methylpiperazine with methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol at 293.15, 298.15 and 303.15K
dvisc	0.0005510	Paxs	298.15	Viscosities and densities for binary mixtures of N-methylpiperazine with methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol at 293.15, 298.15 and 303.15K
dvisc	0.0008699	Paxs	298.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K
dvisc	0.0003490	Paxs	333.15	Densities and Viscosities of Binary Mixtures of Methanol with Dimethyl Methylphosphonate and Dimethyl Phosphite from (293.15 to 333.15) K
dvisc	0.0003940	Paxs	323.15	Densities and Viscosities of Binary Mixtures of Methanol with Dimethyl Methylphosphonate and Dimethyl Phosphite from (293.15 to 333.15) K

dvisc	0.0004490	Pa×s	313.15	Densities and Viscosities of Binary Mixtures of Methanol with Dimethyl Methylphosphonate and Dimethyl Phosphite from (293.15 to 333.15) K
dvisc	0.0004780	Paxs	308.15	Densities and Viscosities of Binary Mixtures of Methanol with Dimethyl Methylphosphonate and Dimethyl Phosphite from (293.15 to 333.15) K
dvisc	0.0005140	Paxs	303.15	Densities and Viscosities of Binary Mixtures of Methanol with Dimethyl Methylphosphonate and Dimethyl Phosphite from (293.15 to 333.15) K
dvisc	0.0006781	Paxs	283.15	Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K
dvisc	0.0005950	Paxs	293.15	Densities and Viscosities of Binary Mixtures of Methanol with Dimethyl Methylphosphonate and Dimethyl Phosphite from (293.15 to 333.15) K
dvisc	0.0004500	Paxs	313.00	Thermophysical Properties of Binary Mixtures of Methanol with Chlorobenzene and Bromobenzene from 293K to 313K

dvisc	0.0005180	Paxs	303.00	Thermophysical Properties of Binary Mixtures of Methanol with Chlorobenzene and Bromobenzene from 293K to 313K
dvisc	0.0005910	Paxs	293.00	Thermophysical Properties of Binary Mixtures of Methanol with Chlorobenzene and Bromobenzene from 293K to 313K
dvisc	0.0007287	Paxs	308.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K
dvisc	0.0005962	Paxs	318.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K
dvisc	0.0004792	Paxs	328.15	Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15 - 328.15) K
dvisc	0.0005810	Paxs	293.15	Dynamic viscosities of the ternary liquid mixtures (dimethyl carbonate + methanol + ethanol) and (dimethyl carbonate + methanol + several temperatures

dvisc	0.0005530	Paxs	298.15	Dynamic viscosities of the ternary liquid mixtures (dimethyl carbonate + methanol + ethanol) and (dimethyl carbonate + methanol + hexane) at several temperatures	
dvisc	0.0005060	Paxs	303.15	Dynamic viscosities of the ternary liquid mixtures (dimethyl carbonate + methanol + ethanol) and (dimethyl carbonate + methanol + dimethyl carbonate + methanol + methanol + hexane) at several temperatures	
dvisc	0.0004430	Paxs	313.15	Dynamic viscosities of the ternary liquid mixtures (dimethyl carbonate + methanol + ethanol) and (dimethyl carbonate + methanol + several temperatures	
dvisc	0.0005510	Paxs	298.15	Densities, viscosities, and ultrasonic velocity studies of binary mixtures of trichloromethane with methanol, ethanol, propan-1-ol, and butan-1-ol at T=(298.15 and 308.15) K	

dvisc	0.0004930	Paxs	308.15	Densities, viscosities, and ultrasonic velocity studies of binary mixtures of trichloromethane with methanol, ethanol, propan-1-ol, and butan-1-ol at T=(298.15 and 308.15) K
dvisc	0.0005446	Paxs	298.15	Electrical Conductances of Tetrabutylammonium Bromide, Sodium Tetraphenylborate, and Sodium Bromide in Methanol (1) + Water (2) Mixtures at (298.15, 308.15, and 318.15) K
dvisc	0.0004747	Paxs	308.15	Electrical Conductances of Tetrabutylammonium Bromide, Sodium Tetraphenylborate, and Sodium Bromide in Methanol (1) + Water (2) Mixtures at (298.15, 308.15, and 318.15) K
dvisc	0.0004185	Paxs	318.15	Electrical Conductances of Tetrabutylammonium Bromide, Sodium Tetraphenylborate, and Sodium Bromide in Methanol (1) + Water (2) Mixtures at (298.15, 308.15, and 318.15) K
dvisc	0.0007418	Paxs	278.15	Density and Viscosity of Clopidogrel Hydrogen Sulfate + Methanol and Clopidogrel Hydrogen Sulfate + Ethanol from (278.15 to 313.15) K

dvisc	0.0006890	Paxs	283.15	Density and Viscosity of Clopidogrel Hydrogen Sulfate + Methanol and Clopidogrel Hydrogen Sulfate + Ethanol from (278.15 to 313.15) K	
dvisc	0.0006410	Paxs	288.15	Density and Viscosity of Clopidogrel Hydrogen Sulfate + Methanol and Clopidogrel Hydrogen Sulfate + Ethanol from (278.15 to 313.15) K	
dvisc	0.0005990	Paxs	293.15	Density and Viscosity of Clopidogrel Hydrogen Sulfate + Methanol and Clopidogrel Hydrogen Sulfate + Ethanol from (278.15 to 313.15) K	
dvisc	0.0005585	Paxs	298.15	Density and Viscosity of Clopidogrel Hydrogen Sulfate + Methanol and Clopidogrel Hydrogen Sulfate + Ethanol from (278.15 to 313.15) K	
dvisc	0.0005199	Paxs	303.15	Density and Viscosity of Clopidogrel Hydrogen Sulfate + Methanol and Clopidogrel Hydrogen Sulfate + Ethanol from (278.15 to 313.15) K	
dvisc	0.0004857	Paxs	308.15	Density and Viscosity of Clopidogrel Hydrogen Sulfate + Methanol and Clopidogrel Hydrogen Sulfate + Ethanol from (278.15 to 313.15) K	

dvisc	0.0004559	Pa×s	313.15 Density and Viscosity of Clopidogrel Hydrogen Sulfate + Methanol and Clopidogrel Hydrogen Sulfate + Ethanol from (278.15 to 313.15) K
dvisc	0.0006075	Paxs	293.15 Densities and Viscosities of Binary Mixture of the lonic Liquid Bis(2-hydroxyethyl)ammonium Propionate with Methanol, Ethanol, and 1-Propanol at T = (293.15, 303.15, 313.15, and 323.15) K and at P = 0.1 MPa
dvisc	0.0005535	Paxs	303.15 Densities and Viscosities of Binary Mixture of the lonic Liquid Bis(2-hydroxyethyl)ammonium Propionate with Methanol, Ethanol, and 1-Propanol at T = (293.15, 303.15, 313.15, and 323.15) K and at P = 0.1 MPa
dvisc	0.0005010	Paxs	313.15 Densities and Viscosities of Binary Mixture of the lonic Liquid Bis(2-hydroxyethyl)ammonium Propionate with Methanol, Ethanol, and 1-Propanol at T = (293.15, 303.15, 313.15, and 323.15) K and at P = 0.1 MPa
dvisc	0.0004601	Paxs	323.15 Densities and Viscosities of Binary Mixture of the lonic Liquid Bis(2-hydroxyethyl)ammonium Propionate with Methanol, Ethanol, and 1-Propanol at T = (293.15, 303.15, 313.15, and 323.15) K and at P = 0.1 MPa

dvisc	0.0005320	Paxs	298.15	Densities, Viscosities, and Refractive Properties of the Binary Mixtures of the Amino Acid Ionic Liquid [bmim][Ala] with Methanol or Benzylalcohol at T = (298.15 to 313.15) K	
dvisc	0.0005150	Paxs	303.15	Densities, Viscosities, and Refractive Properties of the Binary Mixtures of the Amino Acid Ionic Liquid [bmim][Ala] with Methanol or Benzylalcohol at T = (298.15 to 313.15) K	
dvisc	0.0004650	Paxs	308.15	Densities, Viscosities, and Refractive Properties of the Binary Mixtures of the Amino Acid Ionic Liquid [bmim][Ala] with Methanol or Benzylalcohol at T = (298.15 to 313.15) K	
dvisc	0.0004410	Paxs	313.15	Densities, Viscosities, and Refractive Properties of the Binary Mixtures of the Amino Acid Ionic Liquid [bmim][Ala] with Methanol or Benzylalcohol at T = (298.15 to 313.15) K	
dvisc	0.0005676	Paxs	293.15	Viscosity and density measurement for six binary mixtures of water (methanol or ethanol) with an ionic liquid [BMIM][DMP] or [EMIM][DMP] at atmospheric pressure in the temperature range of (293.15 to 333.15) K	

dvisc	0.0005318	Paxs	298.15	Viscosity and density measurement for six binary mixtures of water (methanol or ethanol) with an ionic liquid [BMIM][DMP] or [EMIM][DMP] at atmospheric pressure in the temperature range of (293.15 to 333.15) K	
dvisc	0.0005008	Paxs	303.15	Viscosity and density measurement for six binary mixtures of water (methanol or ethanol) with an ionic liquid [BMIM][DMP] or [EMIM][DMP] at atmospheric pressure in the temperature range of (293.15 to 333.15) K	
dvisc	0.0004729	Paxs	308.15	Viscosity and density measurement for six binary mixtures of water (methanol or ethanol) with an ionic liquid [BMIM][DMP] or [EMIM][DMP] at atmospheric pressure in the temperature range of (293.15 to 333.15) K	
dvisc	0.0004482	Paxs	313.15	Viscosity and density measurement for six binary mixtures of water (methanol or ethanol) with an ionic liquid [BMIM][DMP] or [EMIM][DMP] at atmospheric pressure in the temperature range of (293.15 to 333.15) K	

dvisc	0.0004259	Paxs	318.15	Viscosity and density measurement for six binary mixtures of water (methanol or ethanol) with an ionic liquid [BMIM][DMP] or [EMIM][DMP] at atmospheric pressure in the temperature range of (293.15 to 333.15) K	
dvisc	0.0004055	Paxs	323.15	Viscosity and density measurement for six binary mixtures of water (methanol or ethanol) with an ionic liquid [BMIM][DMP] or [EMIM][DMP] at atmospheric pressure in the temperature range of (293.15 to 333.15) K	
dvisc	0.0003872	Paxs	328.15	Viscosity and density measurement for six binary mixtures of water (methanol or ethanol) with an ionic liquid [BMIM][DMP] or [EMIM][DMP] at atmospheric pressure in the temperature range of (293.15 to 333.15) K	
dvisc	0.0003710	Paxs	333.15	Viscosity and density measurement for six binary mixtures of water (methanol or ethanol) with an ionic liquid [BMIM][DMP] or [EMIM][DMP] at atmospheric pressure in the temperature range of (293.15 to 333.15) K	

dvisc	0.0005580	Paxs	298.15	Densities and Viscosities for Binary Mixtures of the Ionic Liquid N-Ethyl Piperazinium Propionate with n-Alcohols at Several Temperatures	
dvisc	0.0005261	Paxs	303.15	Densities and Viscosities for Binary Mixtures of the Ionic Liquid N-Ethyl Piperazinium Propionate with n-Alcohols at Several Temperatures	
dvisc	0.0004966	Paxs	308.15	Densities and Viscosities for Binary Mixtures of the Ionic Liquid N-Ethyl Piperazinium Propionate with n-Alcohols at Several Temperatures	
dvisc	0.0004702	Paxs	313.15	Densities and Viscosities for Binary Mixtures of the Ionic Liquid N-Ethyl Piperazinium Propionate with n-Alcohols at Several Temperatures	
dvisc	0.0005930	Paxs	293.15 N	Viscosities and densities for binary mixtures of I-methylpiperazine with methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol at 293.15, 298.15 and 303.15K	
dvisc	0.0004747	Paxs	1-But <u>y</u> 1-Butyl-3	Electrical Conductances of yl-3-propylimidazol Bromide and 3-propylbenzimidaz Bromide in Water, Methanol, and Acetonitrile at (308, 313, and 318) K at 0.1 MPa	

dvisc	0.0004440	Paxs	313.15 Electrical Conductances of 1-Butyl-3-propylimidazolium Bromide and 1-Butyl-3-propylbenzimidazolium Bromide in Water, Methanol, and Acetonitrile at (308, 313, and 318) K at 0.1 MPa
dvisc	0.0004185	Paxs	318.15 Electrical Conductances of 1-Butyl-3-propylimidazolium Bromide and 1-Butyl-3-propylbenzimidazolium Bromide in Water, Methanol, and Acetonitrile at (308, 313, and 318) K at 0.1 MPa
dvisc	0.0005833	Paxs	293.15 Viscosimetric Study of Binary Mixtures Containing Pyridinium-Based Ionic Liquids and Alkanols
dvisc	0.0005070	Paxs	303.15 Viscosimetric Study of Binary Mixtures Containing Pyridinium-Based Ionic Liquids and Alkanols
dvisc	0.0004438	Paxs	313.15 Viscosimetric Study of Binary Mixtures Containing Pyridinium-Based Ionic Liquids and Alkanols
dvisc	0.0003873	Paxs	323.15 Viscosimetric Study of Binary Mixtures Containing Pyridinium-Based Ionic Liquids and Alkanols
dvisc	0.0005870	Paxs	293.15 Volumetric Properties and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Methanol and Ethanol in the Temperature Range (293.15 to 333.15) K

dvisc	0.0005470	Paxs	298.15	Volumetric Properties and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Methanol and Ethanol in the Temperature Range (293.15 to 333.15) K
dvisc	0.0005100	Paxs	303.15	Volumetric Properties and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Methanol and Ethanol in the Temperature Range (293.15 to 333.15) K
dvisc	0.0004470	Paxs	313.15	Volumetric Properties and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Methanol and Ethanol in the Temperature Range (293.15 to 333.15) K
dvisc	0.0003940	Paxs	323.15	Volumetric Properties and Viscosities of Binary Mixtures of N,N-Dimethylformamide with Methanol and Ethanol in the Temperature Range (293.15 to 333.15) K
dvisc	0.0006315	Paxs	288.15	Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K
dvisc	0.0005884	Paxs	293.15	Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K

dvisc	0.0005509	Paxs	298.15	Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to	
dvisc	0.0005154	Paxs	303.15	333.15) K Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K	
dvisc	0.0004849	Paxs	308.15	Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K	
dvisc	0.0004576	Paxs	313.15	Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K	
dvisc	0.0004324	Paxs	318.15	Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K	
dvisc	0.0004093	Paxs	323.15	Excess Molar Volume and Viscosity Deviation for the Methanol + Methyl Methacrylate Binary System at T) (283.15 to 333.15) K	

dvisc	0.0003903	Paxs	328.15 Excess Molar	
			Volume and Viscosity Deviation for th Methanol + Methyl Methacrylate Binary System T) (283.15 to 333.15) K	
dvisc	0.0003724	Paxs	333.15 Excess Molar Volume and Viscosity Deviation for th Methanol + Methyl Methacrylate Binary System T) (283.15 to 333.15) K	е
dvisc	0.0005770	Paxs	298.15 Temperature ar Composition Dependence of the Density an Viscosity of Binary Mixture of {1-Butyl-3-methylimid Thiocyanate + 1-Alcohols}	of d s azolium
dvisc	0.0005250	Paxs	308.15 Temperature ar Composition Dependence of the Density an Viscosity of Binary Mixture of {1-Butyl-3-methylimid Thiocyanate + 1-Alcohols}	of d s azolium
dvisc	0.0004810	Paxs	318.15 Temperature ar Composition Dependence of the Density an Viscosity of Binary Mixture of {1-Butyl-3-methylimid Thiocyanate + 1-Alcohols}	of d s azolium
dvisc	0.0005178	Paxs	303.15 Densities and viscosities of binary mixtures of {dimethylsulfoxis + aliphatic lower alkanols (C1 C3 at temperature from T = 303.1 K to T = 323.15	s de er 3)} s 5

		_		
dvisc	0.0004843	Paxs	308.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K
dvisc	0.0005080	Paxs	303.15	Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K
dvisc	0.0004515	Paxs	313.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K
dvisc	0.0004233	Paxs	318.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K
dvisc	0.0003950	Paxs	323.15	Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1 C3)} at temperatures from T = 303.15 K to T = 323.15 K

dvisc	0.0005850	Paxs	293.15 Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K
dvisc	0.0004430	Paxs	328.15 Temperature and Composition Dependence of the Density and Viscosity of Binary Mixtures of {1-Butyl-3-methylimidazolium Thiocyanate + 1-Alcohols}
dvisc	0.0005560	Paxs	298.15 Densities and Viscosities of Binary Mixtures of Cyclopropanecarboxylic Acid with Methanol, Ethanol, Propan-1-ol, and Butan-1-ol at Different Temperatures
dvisc	0.0004840	Paxs	308.15 Densities and Viscosities of Binary Mixtures of Cyclopropanecarboxylic Acid with Methanol, Ethanol, Propan-1-ol, and Butan-1-ol at Different Temperatures
dvisc	0.0004240	Paxs	318.15 Densities and Viscosities of Binary Mixtures of Cyclopropanecarboxylic Acid with Methanol, Ethanol, Propan-1-ol, and Butan-1-ol at Different Temperatures

dvisc	0.0005880	Paxs	293.15	Properties of pure 1-methylimidazolium acetate ionic liquid and its binary mixtures with alcohols
dvisc	0.0005510	Paxs	298.15	Properties of pure 1-methylimidazolium acetate ionic liquid and its binary mixtures with alcohols
dvisc	0.0005170	Paxs	303.15	Properties of pure 1-methylimidazolium acetate ionic liquid and its binary mixtures with alcohols
dvisc	0.0004860	Paxs	308.15	Properties of pure 1-methylimidazolium acetate ionic liquid and its binary mixtures with alcohols
dvisc	0.0004600	Paxs	313.15	Properties of pure 1-methylimidazolium acetate ionic liquid and its binary mixtures with alcohols
dvisc	0.0005130	Paxs	302.45	Density, viscosity, and saturated vapor pressure of ethyl trifluoroacetate
dvisc	0.0004430	Paxs	313.50	Density, viscosity, and saturated vapor pressure of ethyl trifluoroacetate
dvisc	0.0003860	Paxs	323.55	Density, viscosity, and saturated vapor pressure of ethyl trifluoroacetate
dvisc	0.0003450	Paxs	333.85	Density, viscosity, and saturated vapor pressure of ethyl trifluoroacetate

dvisc	0.0005840	Paxs	293.15 Densities and viscosities of binary mixtures of 2,2-diethyl-1,1,3,3-tetramethylguanidinium bis(trifluoromethylsulfonyl)imide with methanol
			and ethanol
dvisc	0.0005520	Paxs	298.15 Densities and viscosities of binary mixtures of 2,2-diethyl-1,1,3,3-tetramethylguanidinium
			bis(trifluoromethylsulfonyl)imide with methanol and ethanol
dvisc	0.0005240	Paxs	303.15 Densities and viscosities of binary mixtures
			of 2,2-diethyl-1,1,3,3-tetramethylguanidinium bis(trifluoromethylsulfonyl)imide with methanol and ethanol
dvisc	0.0004900	Paxs	308.15 Densities and viscosities of binary mixtures of
			2,2-diethyl-1,1,3,3-tetramethylguanidinium bis(trifluoromethylsulfonyl)imide with methanol and ethanol
dvisc	0.0004590	Paxs	313.15 Densities and viscosities of binary mixtures of
			2,2-diethyl-1,1,3,3-tetramethylguanidinium bis(trifluoromethylsulfonyl)imide with methanol and ethanol
dvisc	0.0004390	Paxs	318.15 Densities and viscosities of binary mixtures of
			2,2-diethyl-1,1,3,3-tetramethylguanidinium bis(trifluoromethylsulfonyl)imide with methanol and ethanol
dvisc	0.0004170	Paxs	323.15 Densities and viscosities of binary mixtures of
			2,2-diethyl-1,1,3,3-tetramethylguanidinium bis(trifluoromethylsulfonyl)imide with methanol and ethanol

dvisc	0.0005130	Paxs	303.15	Viscometric Studies of Molecular Interactions in Binary Liquid Mixtures of Isomeric Xylenes with Methanol
dvisc	0.0003720	Paxs	328.15	Densities and Viscosities of Binary Mixtures of Cyclopropanecarboxylic Acid with Methanol, Ethanol, Propan-1-ol, and Butan-1-ol at Different Temperatures
dvisc	0.0004500	Paxs	313.15	Viscometric Studies of Molecular Interactions in Binary Liquid Mixtures of Isomeric Xylenes with Methanol
dvisc	0.0004220	Paxs	318.15	Viscometric Studies of Molecular Interactions in Binary Liquid Mixtures of Isomeric Xylenes with Methanol
dvisc	0.0003970	Paxs	323.15	Viscometric Studies of Molecular Interactions in Binary Liquid Mixtures of Isomeric Xylenes with Methanol
dvisc	0.0005850	Paxs	293.15	Dynamic Viscosities, Densities, and Speed of Sound and Derived Properties of the Binary Systems Acetic Acid with Water, Methanol, Ethanol, Ethyl Acetate and Methyl Acetate at T = (293.15, 298.15, and 303.15) K at Atmospheric Pressure

dvisc	0.0005450	Paxs	298.15	Dynamic Viscosities, Densities, and Speed of Sound and Derived Properties of the Binary Systems Acetic Acid with Water, Methanol, Ethanol, Ethyl Acetate and Methyl Acetate at T = (293.15, 298.15, and 303.15) K at Atmospheric Pressure
dvisc	0.0005080	Paxs	303.15	Dynamic Viscosities, Densities, and Speed of Sound and Derived Properties of the Binary Systems Acetic Acid with Water, Methanol, Ethanol, Ethyl Acetate and Methyl Acetate at T = (293.15, 298.15, and 303.15) K at Atmospheric Pressure
dvisc	0.0005770	Paxs	293.15	Density and Viscosity of Binary Mixtures of Ethyl-2-methylbutyrate and Ethyl Hexanoate with Methanol, Ethanol, and 1-Propanol at (293.15, 303.15, and 313.15) K
dvisc	0.0005120	Paxs	303.15	Density and Viscosity of Binary Mixtures of Ethyl-2-methylbutyrate and Ethyl Hexanoate with Methanol, Ethanol, and 1-Propanol at (293.15, 303.15, and 313.15) K

dvisc	0.0004470	Paxs	313.15	Density and Viscosity of Binary Mixtures of Ethyl-2-methylbutyrate and Ethyl Hexanoate with Methanol, Ethanol, and 1-Propanol at (293.15, 303.15, and 313.15) K	
dvisc	0.0004760	Paxs	308.15	Excess Molar Volumes and Viscosities of Binary Mixtures of p-Cresol with Ethylene Glycol and Methanol at Different Temperature and Atmospheric Pressure	
dvisc	0.0004450	Paxs	313.15	Excess Molar Volumes and Viscosities of Binary Mixtures of p-Cresol with Ethylene Glycol and Methanol at Different Temperature and Atmospheric Pressure	
dvisc	0.0004210	Paxs	318.15	Excess Molar Volumes and Viscosities of Binary Mixtures of p-Cresol with Ethylene Glycol and Methanol at Different Temperature and Atmospheric Pressure	
dvisc	0.0003950	Paxs	323.15	Excess Molar Volumes and Viscosities of Binary Mixtures of p-Cresol with Ethylene Glycol and Methanol at Different Temperature and Atmospheric Pressure	

dvisc	0.0003720	Paxs	328.15	Excess Molar Volumes and Viscosities of Binary Mixtures of p-Cresol with Ethylene Glycol and Methanol at Different Temperature and Atmospheric Pressure	
dvisc	0.0005820	Paxs	293.15	Densities and Viscosities of Diethyl Carbonate + Toluene, + Methanol, and + 2-Propanol from (293.15 to 363.15) K	
dvisc	0.0005500	Paxs	298.15	Densities and Viscosities of Diethyl Carbonate + Toluene, + Methanol, and + 2-Propanol from (293.15 to 363.15) K	
dvisc	0.0005520	Paxs	298.15	Densities and Viscosities of Binary Mixtures of Methanol with Dimethyl Methylphosphonate and Dimethyl Phosphite from (293.15 to 333.15) K	
dvisc	0.0005120	Paxs	303.15	Densities and Viscosities of Diethyl Carbonate + Toluene, + Methanol, and + 2-Propanol from (293.15 to 363.15) K	
dvisc	0.0004480	Paxs	313.15	Densities and Viscosities of Diethyl Carbonate + Toluene, + Methanol, and + 2-Propanol from (293.15 to 363.15) K	

dvisc	0.0003950	Paxs	323.15	Densities and Viscosities of Diethyl Carbonate + Toluene, + Methanol, and + 2-Propanol from (293.15 to 363.15) K	
dvisc	0.0003510	Paxs	333.15	Densities and Viscosities of Diethyl Carbonate + Toluene, + Methanol, and + 2-Propanol from (293.15 to 363.15) K	
dvisc	0.0004760	Paxs	308.15	Densities and Viscosities of Binary Mixtures of m-Cresol with Ethylene Glycol or Methanol over Several Temperatures	
dvisc	0.0004450	Paxs	313.15	Densities and Viscosities of Binary Mixtures of m-Cresol with Ethylene Glycol or Methanol over Several Temperatures	
dvisc	0.0004210	Paxs	318.15	Densities and Viscosities of Binary Mixtures of m-Cresol with Ethylene Glycol or Methanol over Several Temperatures	
dvisc	0.0003950	Paxs	323.15	Densities and Viscosities of Binary Mixtures of m-Cresol with Ethylene Glycol or Methanol over Several Temperatures	
dvisc	0.0004800	Paxs	308.15	Viscometric Studies of Molecular Interactions in Binary Liquid Mixtures of Isomeric Xylenes with Methanol	

dvisc	0.0005450	Paxs	298.15	Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K	
hfust	3.18	kJ/mol	175.30	NIST Webbook	
hfust	3.22	kJ/mol	175.60	NIST Webbook	
hfust	0.64	kJ/mol	157.30	NIST Webbook	
hfust	3.18	kJ/mol	175.30	NIST Webbook	
hfust	0.59	kJ/mol	161.10	NIST Webbook	
hfust	2.20	kJ/mol	176.00	NIST Webbook	
hvapt	34.70 ± 0.10	kJ/mol	343.00	NIST Webbook	
hvapt	35.25	kJ/mol	337.80	KDB	
hvapt	35.21	kJ/mol	337.70	NIST Webbook	
hvapt	39.20	kJ/mol	224.00	NIST Webbook	
hvapt	36.90	kJ/mol	412.50	NIST Webbook	
hvapt	43.70	kJ/mol	208.00	NIST Webbook	
hvapt	38.90	kJ/mol	257.00	NIST Webbook	
hvapt	38.30	kJ/mol	315.00	NIST Webbook	
hvapt	37.00	kJ/mol	355.50	NIST Webbook	
hvapt	36.10	kJ/mol	415.50	NIST Webbook	
hvapt	35.10	kJ/mol	483.00	NIST Webbook	
hvapt	32.70	kJ/mol	373.00	NIST Webbook	
hvapt	28.10	kJ/mol	423.00	NIST Webbook	
hvapt	20.60	kJ/mol	473.00	NIST Webbook	
hvapt	7.40	kJ/mol	510.00	NIST Webbook	
hvapt	37.50	kJ/mol	326.00	NIST Webbook	
hvapt	38.30	kJ/mol	312.50	NIST Webbook	
hvapt	35.20 ± 0.10	kJ/mol	338.00	NIST Webbook	
hvapt	35.60 ± 0.10	kJ/mol	331.00	NIST Webbook	
hvapt	36.20 ± 0.10	kJ/mol	321.00	NIST Webbook	
hvapt	37.00 ± 0.10	kJ/mol	306.00	NIST Webbook	
hvapt	36.70 ± 0.10	kJ/mol	313.00	NIST Webbook	
hvapt	36.20 ± 0.10	kJ/mol	323.00	NIST Webbook	
hvapt	35.60 ± 0.10	kJ/mol	333.00	NIST Webbook	
hvapt	35.30 ± 0.10	kJ/mol	338.00	NIST Webbook	
hvapt	37.00	kJ/mol	360.00	NIST Webbook	
hvapt	38.70	kJ/mol	305.50	NIST Webbook	
hvapt	38.30	kJ/mol	322.50	NIST Webbook	
hvapt	36.30	kJ/mol	418.00	NIST Webbook	

hvapt	38.40	kJ/mol	300.50	NIST Webbook	
pvap	60.00	kPa	324.65	Thermophysical properties of biodiesel and related systems. Part I. Vapour liquid equilibrium at low pressures of binary and ternary systems involving methanol, ethanol, glycerol, water and NaCl	
pvap	35.51	kPa	313.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
pvap	44.59	kPa	318.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
pvap	55.65	kPa	323.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
pvap	68.94	kPa	328.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	

nyan	84.62	kPa	333.15	Vapor-Pressure	
pvap	04.02	NI a	000.10	Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
pvap	101.30	kPa	337.90	Vapor-Liquid Equilibrium and Mixing Properties of Methanol + Diethyl Carbonate and Vinyl Acetate + Diethyl Carbonate Systems	
pvap	101.00	kPa	337.75	Isobaric Vapor-Liquid Equilibrium of Acetone + Methanol System in the Presence of Calcium Bromide	
pvap	267.00	kPa	364.47	Isothermal Vapor Liquid Equilibrium for 2-Methylpropene + Methanol, + 1-Propanol, + 2-Propanol, + 2-Butanol, and + 2-Methyl-2-propanol Binary Systems at 364.5 K	
pvap	30.33	kPa	309.79	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	35.42	kPa	313.06	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	35.52	kPa	313.15	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	

pvap	40.00	kPa	315.73	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	40.41	kPa	316.02	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	45.11	kPa	318.43	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	50.30	kPa	320.90	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	55.39	kPa	323.14	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	55.69	kPa	323.15	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	59.99	kPa	324.96	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	65.28	kPa	326.95	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	
pvap	84.72	kPa	333.15	Vapor-Liquid Equilibrium for Binary Systems of Diacetyl with Methanol and Acetone	

pvap	55.30	kPa	323.15	Vapor-Liquid Equilibria and HE for Binary Systems of Dimethyl Ether (DME) with C1-C4 Alkan-1-ols at 323.15 K and Liquid-Liquid Equilibria for Ternary System of DME + Methanol + Water at 313.15 K	
pvap	101.30	kPa	337.57	Vapor-Liquid Equilibrium and Liquid-Liquid Equilibrium of Methyl Acetate + Methanol + -Ethyl-3-methylimidazolium Acetate	
pvap	85.40	kPa	333.42	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	89.50	kPa	334.56	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	101.30	kPa	337.65	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	120.90	kPa	342.17	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	124.80	kPa	343.06	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	

pvap	142.60	kPa	346.64	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	163.20	kPa	350.25	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	181.00	kPa	353.17	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	181.70	kPa	353.27	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	202.70	kPa	356.35	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	221.30	kPa	358.91	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	241.40	kPa	361.45	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	

pvap	255.90	kPa	363.19	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	261.60	kPa	363.85	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	288.90	kPa	366.88	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	321.30	kPa	370.13	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	341.20	kPa	372.04	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	350.90	kPa	372.90	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	
pvap	385.40	kPa	375.89	Isothermal Vapor-Liquid Equilibrium for Methanol and 2,3-Dimethyl-1-butene at 343.06 K, 353.27 K, 363.19 K, and 372.90 K	

pvap	100.00	kPa	337.42 Influence of Some Ionic Liquids Containing the Trifluoromethanesulfonate Anion on the Vapor Liquid Equilibria of the Acetone + Methanol System
pvap	101.32	kPa	337.84 Organic Salt Effect of Tetramethylammonium Bicarbonate on the Vapor Liquid Equilibrium of the Methanol Water System
pvap	101.32	kPa	337.85 Isobaric Vapor Liquid Equilibrium for Methanol + Dimethyl Carbonate + 1-Octyl-3-methylimidazolium Tetrafluoroborate
pvap	101.32	kPa	337.84 Organic Salt Effect of Tetramethylammonium Bicarbonate on Vapor-Liquid Equilibrium of the Dimehyl Carbonate + Methanol System
pvap	100.00	kPa	337.42 1-Ethyl-3-methylimidazolium Dicyanamide as a Very Efficient Entrainer for the Extractive Distillation of the Acetone + Methanol System
pvap	101.00	kPa	337.85 Vapor Liquid Equilibrium Data for Methanol + tert-Butylamine + N,N-Dimethylformamide and Constituent Binary Systems at Atmospheric Pressure
pvap	101.30	kPa	337.75 Vapor Liquid Equilibrium at p/kPa = 101.3 of the Binary Mixtures of Ethenyl Acetate with Methanol and Butan-1-ol

pvap	60.00	kPa	324.92 Isobaric Vapor Liquid Equilibrium for the Binary Systems of Methanol, Diethylamine, and N,N-Diethylethanolamine at p = (60.0 and 101.3) kPa
pvap	101.30	kPa	337.82 Isobaric Vapor Liquid Equilibrium for the Binary Systems of Methanol, Diethylamine, and N,N-Diethylethanolamine at p = (60.0 and 101.3) kPa
pvap	101.33	kPa	337.65 Experimental Measurements of Vapor Liquid Equilibrium Data for the Binary Systems of Methanol + 2-Butyl Acetate, 2-Butyl Alcohol + 2-Butyl Acetate, and Methyl Acetate + 2-Butyl Acetate at 101.33 kPa
pvap	4.25	kPa	274.15 Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide
pvap	5.50	kPa	278.15 Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide
pvap	7.41	kPa	283.15 Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide

pvap	13.00	kPa	293.15 Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide
pvap	21.86	kPa	303.15 Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide
pvap	35.43	kPa	313.15 Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide
pvap	55.54	kPa	323.15 Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide
pvap	84.93	kPa	333.15 Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide
pvap	125.74	kPa	343.15 Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide
pvap	181.56	kPa	353.15 Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide

pvap	256.27	kPa	363.15 Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide
pvap	354.35	kPa	373.15 Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide
pvap	480.82	kPa	383.15 Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide
pvap	641.27	kPa	393.15 Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide
pvap	27.98	kPa	308.15 Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data
pvap	1089.15	kPa	413.15 Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide
pvap	180.50	kPa	353.15 Vapor-Liquid Equilibrium of Mixtures Containing Adipic Acid, Glutaric Acid, Dimethyl Adipate, Dimethyl Glutarate, Methanol, and Water

pvap	352.80	kPa	373.15	Vapor-Liquid Equilibrium of Mixtures Containing Adipic Acid, Glutaric Acid, Dimethyl Adipate, Dimethyl Glutarate, Methanol, and Water	
pvap	641.30	kPa	393.15	Vapor-Liquid Equilibrium of Mixtures Containing Adipic Acid, Glutaric Acid, Dimethyl Adipate, Dimethyl Glutarate, Methanol, and Water	
pvap	840.10	kPa	403.15	Vapor-Liquid Equilibrium of Mixtures Containing Adipic Acid, Glutaric Acid, Dimethyl Adipate, Dimethyl Glutarate, Methanol, and Water	
pvap	1087.30	kPa	413.15	Vapor-Liquid Equilibrium of Mixtures Containing Adipic Acid, Glutaric Acid, Dimethyl Adipate, Dimethyl Glutarate, Methanol, and Water	
pvap	1754.90	kPa	433.15	Vapor-Liquid Equilibrium of Mixtures Containing Adipic Acid, Glutaric Acid, Dimethyl Adipate, Dimethyl Glutarate, Methanol, and Water	
pvap	181.00	kPa	353.10	Experimental Investigation of the Solubility of Ammonia in Methanol	
pvap	635.00	kPa	393.10	Experimental Investigation of the Solubility of Ammonia in Methanol	

pvap	55.50	kPa	323.13	Vapor Liquid Equilibrium for Butane + Methanol, + Ethanol, + 2-Propanol, + 2-Butanol, and + 2-Methyl-2-Propanol (TBA) at 323 K
pvap	267.60	kPa	364.52	Vapor Liquid Equilibrium for the Systems trans-2-Butene + Methanol, + 1-Propanol, + 2-Propanol, + 2-Butanol, and + 2-Methyl-2-propanol at 364.5 K
pvap	267.50	kPa	364.51	Vapor Liquid Equilibrium for the Systems 2-Methylpropane + Methanol, + 2-Propanol, + 2-Butanol, and + 2-Methyl-2-propanol at 364.5 K
pvap	267.30	kPa	364.52	Vapor-Liquid Equilibrium for the cis-2-Butene + Methanol, + 2-Propanol, + 2-Butanol, + 2-Methyl-2-propanol Systems at 364.5 K
pvap	40.00	kPa	315.75	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems
pvap	53.33	kPa	322.15	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems
pvap	66.66	kPa	327.34	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems
pvap	79.99	kPa	331.73	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems

pvap	93.32	kPa	335.57	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems	
pvap	98.66	kPa	336.98	Isobaric Vapor-Liquid Equilibria for Tetrahydropyran and Alcohol Systems	
pvap	27.96	kPa	308.15	Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: Binary solutions of lithium nitrate with methanol	
pvap	21.88	kPa	303.15	Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: Binary solutions of lithium nitrate with methanol	
pvap	16.97	kPa	298.15	Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: Binary solutions of lithium nitrate with methanol	
pvap	101.30	kPa	337.65	Isobaric vapor-liquid equilibrium for acetone + methanol system containing different ionic liquids at 101.3 kPa	
pvap	101.30	kPa	337.85 1-a bis(tri	Measurement and correlation of isobaric vapor-liquid equilibria of methanol + tetrahydrofuran + lkyl-3-methylimidazol fluoromethylsulfonyl at 101.3 kPa	lium iimide

pvap	352.70	kPa	373.15	Measurement, correlation and prediction of isothermal vapor liquid equilibria of different systems containing vegetable oils	
pvap	150.67	kPa	348.15	Measurement, correlation and prediction of isothermal vapor liquid equilibria of different systems containing vegetable oils	
pvap	352.62	kPa	373.15	Measurement, correlation and prediction of isothermal vapor liquid equilibria of different systems containing vegetable oils	
pvap	150.69	kPa	348.15	Measurement, correlation and prediction of isothermal vapor liquid equilibria of different systems containing vegetable oils	
pvap	352.64	kPa	373.15	Measurement, correlation and prediction of isothermal vapor liquid equilibria of different systems containing vegetable oils	
pvap	150.71	kPa	348.15	Measurement, correlation and prediction of isothermal vapor liquid equilibria of different systems containing vegetable oils	
pvap	268.10	kPa	364.50	Vapour liquid equilibrium for the systems butane + methanol, +2-propanol, +1-butanol, +2-butanol, +2-methyl-2-propano at 364.5K	I

pvap	134.07	kPa	345.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa
pvap	841.83	kPa	403.15 1-He Bis(tri	Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with exyl-3-methylimidazolium fluoromethylsulfonyl)imide
pvap	106.47	kPa	339.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa
pvap	94.55	kPa	336.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa
pvap	83.76	kPa	333.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa
pvap	74.02	kPa	330.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa
pvap	65.25	kPa	327.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa
pvap	57.36	kPa	324.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa
pvap	50.29	kPa	321.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa
pvap	43.97	kPa	318.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa

pvap	38.33	kPa	315.00 Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa
pvap	55.61	kPa	323.15 Isothermal vapour liquid equilibrium with chemical reaction in the quaternary water + methanol + acetic acid + methyl acetate system, and in five binary subsystems
pvap	55.58	kPa	323.15 Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl) imide
pvap	44.54	kPa	318.15 Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl) imide
pvap	35.45	kPa	313.15 Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl) imide

pvap	35.44	kPa	313.15 Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl) imide
pvap	27.96	kPa	308.15 Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl) imide
pvap	27.96	kPa	308.15 Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl) imide
рvар	21.88	kPa	303.15 Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl) imide

pvap	21.88	kPa	303.15 1-m bis	Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with ethyl-3-butyl-imidazolium (trifluoromethyl-sulfonyl) imide
pvap	16.96	kPa		Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with ethyl-3-butyl-imidazolium (trifluoromethyl-sulfonyl) imide
pvap	16.97	kPa		Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with ethyl-3-butyl-imidazolium (trifluoromethyl-sulfonyl) imide
pvap	1565.62	kPa	428.15	Measurements of isothermal vapor-liquid equilibrium of binary methanol/dimethyl carbonate system under pressure
pvap	1042.57	kPa	411.15	Measurements of isothermal vapor-liquid equilibrium of binary methanol/dimethyl carbonate system under pressure

pvap	604.68	kPa	391.15	Measurements of isothermal vapor-liquid equilibrium of binary methanol/dimethyl carbonate system under pressure
pvap	400.41	kPa	377.15	Measurements of isothermal vapor-liquid equilibrium of binary methanol/dimethyl carbonate system under pressure
pvap	99.91	kPa	337.35	Measurements of isothermal vapor-liquid equilibrium of binary methanol/dimethyl carbonate system under pressure
pvap	35.27	kPa	313.07	Vapour liquid equilibrium for the 2-methylpropane + methanol, +ethanol, +2-propanol, +2-butanol and +2-methyl-2-propanol systems at 313.15K
pvap	182.61	kPa	353.15	Measurement and correlation of vapor liquid equilibria of binary systems containing the ionic liquids [EMIM][(CF3SO2)2N], [BMIM][(CF3SO2)2N], [MMIM][(CH3)2PO4] and oxygenated organic compounds respectively water
pvap	21.88	kPa	303.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data

pvap	16.95	kPa	298.15	Vapor-Pressure Measurements of Liquid Solutions at Different Temperatures: Apparatus for Use over an Extended Temperature Range and Some New Data	
pvap	55.57	kPa	323.14	Isothermal Vapor Liquid Equilibrium for Binary 2-Methylpropene - C1-C4 Alcohol-Systems	
pvap	80.97	kPa	332.08	Vapor Liquid Equilibrium for the Trans-2-Butene + Methanol, + Ethanol, + 2-Propanol, + 2-Butanol and + 2-Methyl-2-Propanol Systems at 332 K	
pvap	101.30	kPa	337.69	Isobaric Vapor-Liquid Equilibrium for the Binary System of Dimethyl Adipate and 1,6-Hexanediol at 10, 20, and 99 kPa	
pvap	119.61	kPa	342.00	Isobaric vapor liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa	
pvap	101.30	kPa	·	Isobaric Vapor-Liquid Equilibrium Measurements and Separation Process for the Quinary Methanol + Methylal + 2-Butanol + Methoxymethoxy)-but + -)-Di-sec-butoxymetha	

pvap	101.33	kPa	337.68 Oxalate	Determination of Ternary Vapor-Liquid Equilibrium of Dimethyl e-Methanol-1,2-Buta under Atmosphere Pressure	nediol
pvap	101.30	kPa		Isobaric Vapor-Liquid Equilibrium for the Binary Systems of 2-Butanol + lethoxymethoxy)-but and 1-Butanol + lethoxymethoxy)-but at 101.3 kPa	
pvap	35.44	kPa	313.15	Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: Binary solutions of lithium nitrate with methanol	
pvap	85.00	kPa	333.15	Experimental Vapor-Liquid Equilibria and Thermodynamic Modeling of the Methanol + n-Heptane and 1-Butanol + Aniline Binary Systems	
pvap	44.86	kPa	318.15	Isothermal Vapor-Liquid Equilibria for Binary Mixtures of Methyl Nonafluorobutyl Ether + Acetone, Cyclopentyl Methyl Ether, Ethyl Acetate, n-Heptane, Methanol, and Toluene	
pvap	125.65	kPa	343.15 N,	Vapor Liquid Equilibrium and Excess Enthalpy Data for Systems Containing N-Dimethylacetamic	le

pvap	101.32	kPa	337.85 Vapor Liquid Equilibria Measurement of (Methanol + Ethanenitrile + Bis(trifluoromethylsulfonyl) Imide)-Based Ionic Liquids at 101.3 kPa
pvap	101.30	kPa	337.68 Isobaric Vapor - Liquid Equilibrium for Ethyl acetate + Methanol + Ionic Liquids Ternary systems at 101.3 kPa
pvap	101.30	kPa	337.78 A new analysis method for improving collection of vapor-liquid equilibrium (VLE) data of binary mixtures using differential scanning calorimetry (DSC)
pvap	101.30	kPa	337.68 Experimental determination of vapor liquid equilibrium for methanol + methyl propionate + 1-butyl-3-methylimidazo-lium bis(trifluoromethylsulfonyl)imide at atmospheric pressure
pvap	101.30	kPa	337.45 Measurements and correlations of density, viscosity, and vapour-liquid equilibrium for fluoro alcohols
pvap	35.60	kPa	313.15 Measuring the solubility of CO2 and H2S in sulfolane and the density and viscosity of saturated liquid binary mixtures of (sulfolane + CO2) and (sulfolane + H2S)

pvap	27.90	kPa	308.15	Measuring the solubility of CO2 and H2S in sulfolane and the density and viscosity of saturated liquid binary mixtures of (sulfolane + CO2) and (sulfolane + H2S)	
pvap	21.90	kPa	303.15	Measuring the solubility of CO2 and H2S in sulfolane and the density and viscosity of saturated liquid binary mixtures of (sulfolane + CO2) and (sulfolane + H2S)	
pvap	17.00	kPa	298.15	Measuring the solubility of CO2 and H2S in sulfolane and the density and viscosity of saturated liquid binary mixtures of (sulfolane + CO2) and (sulfolane + H2S)	
pvap	66.70	kPa	327.25	Thermophysical properties of biodiesel and related systems. Part I. Vapour liquid equilibrium at low pressures of binary and ternary systems involving methanol, ethanol, glycerol, water and NaCl	
pvap	44.54	kPa	318.15	Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: Binary solutions of lithium nitrate with methanol	

pva	p	53.30	kPa	322.05	Thermophysical properties of biodiesel and related systems. Part I. Vapour liquid equilibrium at low pressures of binary and ternary systems involving methanol, ethanol, glycerol, water and NaCl	
pva	D.	46.70	kPa	319.05	Thermophysical properties of biodiesel and related systems. Part I. Vapour liquid equilibrium at low pressures of binary and ternary systems involving methanol, ethanol, glycerol, water and NaCl	
pva	Þ	40.00	kPa	315.75	Thermophysical properties of biodiesel and related systems. Part I. Vapour liquid equilibrium at low pressures of binary and ternary systems involving methanol, ethanol, glycerol, water and NaCl	
pva	D.	33.30	kPa	311.85	Thermophysical properties of biodiesel and related systems. Part I. Vapour liquid equilibrium at low pressures of binary and ternary systems involving methanol, ethanol, glycerol, water and NaCl	
pva	p	26.70	kPa	307.35	Thermophysical properties of biodiesel and related systems. Part I. Vapour liquid equilibrium at low pressures of binary and ternary systems involving methanol, ethanol, glycerol, water and NaCl	

pvap	20.00	kPa	301.45	Thermophysical properties of biodiesel and related systems. Part I. Vapour liquid equilibrium at low pressures of binary and ternary systems involving methanol, ethanol, glycerol, water and NaCl	
pvap	13.30	kPa	293.75	Thermophysical properties of biodiesel and related systems. Part I. Vapour liquid equilibrium at low pressures of binary and ternary systems involving methanol, ethanol, glycerol, water and NaCl	
pvap	6.70	kPa	282.55	Thermophysical properties of biodiesel and related systems. Part I. Vapour liquid equilibrium at low pressures of binary and ternary systems involving methanol, ethanol, glycerol, water and NaCl	
pvap	55.78	kPa	323.15	Thermodynamic properties of binary mixtures combining two pyridinium-based ionic liquids and two alkanols	
pvap	21.93	kPa	303.15	Thermodynamic properties of binary mixtures combining two pyridinium-based ionic liquids and two alkanols	
pvap	55.78	kPa	323.15	Thermodynamic study of binary mixtures containing 1-butylpyridinium tetrafluoroborate and methanol, or ethanol	

pvap	21.93	kPa	303.15	Thermodynamic study of binary mixtures containing 1-butylpyridinium tetrafluoroborate and methanol, or ethanol	
pvap	101.30	kPa	337.45	Effect of Ionic Liquids on the Binary Vapor-Liquid Equilibrium of Ethyl Acetate + Methanol System at 101.3 kPa	
pvap	55.58	kPa	323.15	Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: Binary solutions of lithium nitrate with methanol	
rfi	1.32700		298.15	Temperature Dependence of the Volumetric Properties of Binary and Ternary Mixtures of Water (1) + Methanol (2) + Ethanol (3) at Ambient Pressure (81.5 kPa)	
rfi	1.32687		298.15 1-E	Physical Properties of Binary Mixtures of the Ionic Liquid thyl-3-methylimidazoli Ethyl Sulfate with Several Alcohols at T = (298.15, 313.15, and 328.15) K and Atmospheric Pressure	um
rfi	1.32870		293.15	Isothermal Vapor Liquid Equilibrium Data for the Butan-2-one + Methanol or Ethanol Systems Using a Static-Analytic Microcell	

rfi	1.32850	293.15	Isobaric Vapor Liquid Equilibrium Data of 2-Methyl-propan-2-ol (1) + Heptan-1-ol (2), Methanol (1) + Heptan-1-ol (2), Ethanol (1) + Heptan-1-ol (2), and Propan-1-ol (1) + Heptan-1-ol (2) at 96.5 kPa	
rfi	1.32860	293.15	Liquid liquid equilibrium for the ternary systems of water + methanol + acrylonitrile	
rfi	1.32650	298.15	Density, Viscosity, and Refractive Index Properties for the Binary Mixtures of n-Butylammonium Acetate Ionic Liquid + Alkanols at Several Temperatures	
rfi	1.32862	293.15	Liquid Liquid Equilibria of Methanol, Ethanol, and Propan-2-ol with Water and Dodecane	
rfi	1.32853	293.10	Vapor-Liquid Equilibrium for Methoxymethane + Methyl Formate, Methoxymethane + Hexane, and Methyl Formate + Methanol	
rfi	1.32640	298.15	Excess Molar Enthalpies of 2-Methyl-2-butanol (1) + 1-Alkanols (C1-C5) (2) at 298.15 K	
rfi	1.32700	298.15	Vapor-Liquid Equilibria for Ethyl Acetate + Methanol at (0.1, 0.5, and 0.7) MPa. Measurements with a New Ebulliometer	

rfi	1.33010	293.15 Solubilities of Phosphorus-Containing Compounds in Selected Solvents
rfi	1.32660	298.15 Excess Molar Enthalpies of Benzyl Alcohol + Alkanols (C1-C6) and Their Correlations at 298.15 K and Ambient Pressure
rfi	1.32630	298.15 Isobaric Vapor-Liquid Equilibria for Binary and Ternary Mixtures of Methanol, Ethanoic Acid, and Propanoic Acid
rfi	1.32610	298.15 Vapor-Liquid Equilibria Data for Methanol + 2-Propanol+ 2-Methyl-2-butanol and Constituent Binary Systems at 101.3 kPa
rfi	1.32660	298.15 Effect of Pressure on the Static Relative Permittivities of Alkan-1-ols at 298.15 K
rfi	1.32687	298.15 Physical Properties of Binary Mixtures of the Ionic Liquid 1-Methyl-3-octylimidazolium Chloride with Methanol, Ethanol, and 1-Propanol at T = (298.15, 313.15, and 328.15) K and at P) 0.1 MPa
rfi	1.32690	298.15 Viscosity, Density, Speed of Sound, and Refractive Index of Binary Mixtures of Organic Solvent + Ionic Liquid, 1-ButyI-3-methylimidazolium Hexafluorophosphate at 298.15 K

rfi	1.32667	298.15	Density, Refractive Index, Speed of Sound at 298.15 K, and Vapor-Liquid Equilibria at 101.3 kPa for Binary Mixtures of Methanol + 2-Methyl-1-butanol and Ethanol + 2-Methyl-1-butanol
rfi	1.32890	293.15	Isothermal and Isobaric Vapor-Liquid Equilibria of the Ternary System of 2,2-Dimethoxypropane + Acetone + Methanol
rfi	1.32634	298.15	Density, Refractive Index, Speed of Sound, and Vapor-Liquid Equilibria for Binary Mixtures of Methanol + Vinyl Propionate and Vinyl Acetate + Vinyl Propionate. Vapor Pressures of Vinyl Propionate
rfi	1.32890	293.00	Liquid-Liquid Equilibria for the Epichlorohydrin + Water + Methanol and Allyl Chloride + Water + Methanol Systems
rfi	1.32540	308.15	Excess Molar Volumes, Viscosities, and Refractive Indexes for Binary Mixtures of 1-Chlorobutane with Four Alcohols at T = (288.15, 298.15 and 308.15) K

rfi	1.32750	298.15	Excess Molar Volumes, Viscosities, and Refractive Indexes for Binary Mixtures of 1-Chlorobutane with Four Alcohols at T = (288.15, 298.15 and 308.15) K	
rfi	1.33030	288.15	Excess Molar Volumes, Viscosities, and Refractive Indexes for Binary Mixtures of 1-Chlorobutane with Four Alcohols at T = (288.15, 298.15 and 308.15) K	
rfi	1.32750	298.15	Isobaric Vapor-Liquid Equilibria of Binary Mixtures of Diethyl Carbonate with Methyl Acetate, n-Propyl Acetate at 100.17 kPa	
rfi	1.32850	293.15	Measurement and Correlation of Phase Equilibria for Isobutyl Acetate + {Ethanol or Methanol} + Water at 303.15 and 323.15 K	
rfi	1.32680	298.20	Isobaric Vapor Liquid Equilibria for Binary Mixtures of .gammaValerolactone + Methanol, Ethanol, and 2-Propanol	
rfi	1.32900	293.20	Isobaric Vapor Liquid Equilibria for Binary Mixtures of .gammaValerolactone + Methanol, Ethanol, and 2-Propanol	

rfi	1.32860	293.15	Isobaric Vapor
111	1.02000	293.13	Liquid Equilibrium for Nine Binary Systems of Cracking C5 Fraction at 250 kPa
rfi	1.32655	298.15	Sucrose Solubility in Binary Liquid Mixtures Formed by Water Methanol, Water Ethanol, and Methanol Ethanol at 303 and 313 K
rfi	1.32850	293.15	Vapor-liquid equilibria, density and sound velocity measurements of (water or methanol or ethanol + 1,3-propanediol) binary systems at different temperatures
rfi	1.31670	323.15	Refractive properties of binary mixtures containing pyridinium-basedionic liquids and alkanols
rfi	1.32015	313.15	Refractive properties of binary mixtures containing pyridinium-basedionic liquids and alkanols
rfi	1.32433	303.15	Refractive properties of binary mixtures containing pyridinium-basedionic liquids and alkanols
rfi	1.32843	293.15	Refractive properties of binary mixtures containing pyridinium-basedionic liquids and alkanols

rfi	1.32670	298.15 Binary LLE for Propyl Vinyl Ether (PVE) + Water, Ternary LLE for PVE + Methanol or Ethanol + Water at 298.15 K, and VE and centsR at 293.15 K for the Mixture of PVE + Ethanol + 2,2,4-Trimethylpentane
rfi	1.32858	293.15 Synergistic effect of salts and methanol in thermodynamic inhibition of sII gas hydrates
rfi	1.32610	thermodynamic properties of ester-containing solutions: A study on the ternary (methyl alkanoate (pentanoate and methanoate) + methanol) and the corresponding binaries. New contributions to the (ester + ester) interactions
rfi	1.32649	298.15 Effect of the temperature on the physical properties of the pure ionic liquid 1-ethyl-3-methylimidazolium methylsulfate and characterization of its binary mixtures with alcohols
rfi	1.32640	298.15 Properties of pure n-butylammonium nitrate ionic liquid and its binary mixtures of with alcohols at T = (293.15 to 313.15) K

rfi	1.32171	313.15 Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K
rfi	1.32362	308.15 Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K
rfi	1.32552	303.15 Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K
rfi	1.32720	298.15 Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K
rfi	1.32550	303.15 Experimental study on the calorimetric data of cyclohexanol with alkanols (C1-C4) and correlation with Wilson, NRTL and UNIQUAC models at 300 K

rfi	1.32648	298.15 Effect of the temperature on the physical properties of pure 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and characterization of its binary mixtures with alcohols
rfi	1.32570	298.15 Application of the ERAS model to volumetric properties of binary mixtures of banana oil with primary and secondary alcohols (C1- C4) at different temperatures
rfi	1.32900	298.15 Volumetric properties, viscosity and refractive index of the protic ionic liquid, pyrrolidinium octanoate, in molecular solvents
rfi	1.32800	293.15 Experimental (vapour + liquid) equilibrium data of (methanol + water), (water + glycerol) and (methanol + glycerol) systems at atmospheric and sub-atmospheric pressures
rfi	1.32645	298.15 Excess volumes of mixing in (N,N-dimethylacetamide + methanol + water) and (N,N-dimethylacetamide + ethanol + water) at the temperature 313.15 K
rfi	1.32880	293.15 Study of activity coefficients for sodium iodide in (methanol + benzene) system by (vapour + liquid) equilibrium measurements

rfi	1.32650	298.15 (Vapor + liquid) equilibria of the binary mixtures of m-cresol with C1 C4 aliphatic alcohols at 95.5 kPa
rfi	1.32650	298.15 Excess molar volumes and partial molar volumes for (propionitrile + an alkanol) at T = 298.15 K and p = 0.1 MPa
rfi	1.32620	298.15 Experimental and predicted volumetric and refractive index properties of ternary mixtures of iodoethane with toluene and alcohols at temperature 298.15 K and pressure 101 kPa
rfi	1.32640	298.15 (Liquid + liquid) equilibrium of (dibutyl ether + methanol + water) at different temperatures
rfi	1.32930	293.15 Liquid-liquid equilibria of water + solutes (acetic acid/ acetol/furfural/guaiacol/methanol/phenol/propanal) + solvents (isopropyl acetate/toluene) ternary systems for pyrolysis oil fractionation
rfi	1.32640	298.15 Excess molar volumes and excess molar enthalpies in binary systems N-alkyl-triethylammonium bis(trifluoromethylsulfonyl)imide +methanol
rfi	1.32880	298.15 Investigation on vapor liquid equilibrium for 2-propanol + 1-butanol + 1-pentanol at 101.3 kPa

rfi	1.32870	293.15 A novel static analytical apparatus for phase equilibrium measurements
rfi	1.32620	298.15 Liquid liquid equlibria of the system dimethyl carbonate + methanol +water at different temperatures
rfi	1.32650	298.15 Activity coefficients of the binary mixtures of a-cresol or p-cresol with C I-C4 aliphatic alcohols near ambient pressure
rfi	1.32640	298.15 Effect of anion fluorination in 1-ethyl-3-methylimidazolium as solvent for the liquid extraction of ethanol from ethyl tert-butyl ether
rfi	1.32870	293.15 Solubilities of 2-(6-Oxido-6H-dibenz[c,e][1,2]oxaphosphorin-6-yl)-1,4-dihydroxy Phenylene in the Selected Solvents
rfi	1.32910	293.15 Measurement and Correlation of the Solubilities of m-Phthalic Acid in Monobasic Alcohols
rfi	1.32700	298.15 Densities, Excess Molar Volumes, Viscosity, and Refractive Indices of Binary and Ternary Liquid Mixtures of Methanol (1) + Ethanol (2) + 1,2-Propanediol (3) at P = 81.5 kPa
rfi	1.33010	293.15 Solubilities of 3,9-Dimethyl-3,9-dioxide-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]unded in Selected Solvents
rfi	1.33010	293.15 Solubilities of (2,5-Dihydroxyphenyl)diphenyl Phosphine Oxide in Selected Solvents

rfi	1.32668		298.15 Isothermal Vapor-Liquid Equilibrium Data at T = 333.15 K and Excess Molar Volumes and Refractive Indices at T = 298.15 K for the Dimethyl Carbonate + Methanol and Isopropanol + Water with Ionic Liquids
rfi	1.32640		298.10 PHYSICAL AND EXCESS PROPERTIES OF BINARY AND TERNARY MIXTURES OF 1,1-DIMETHYLETHOXY-BUTANE, METHANOL, ETHANOL AND WATER AT 298.15K.
rfi	1.32700		298.15 Excess Molar Enthalpies of 1,2-Propanediol + Alkan-1-ols (C1-C6) and Their Correlations at 298.15 K and Ambient Pressure (81.5 kPa)
rhol	774.60	kg/m3	313.15 Ternary Excess Molar Volumes of {Methyltrioctylammonium Bis[(trifluoromethyl)sulfonyl]imide + Methanol + Methyl Acetate or Ethyl Acetate} Systems at (298.15, 303.15, and 313.15) K
rhol	783.40	kg/m3	303.15 Ternary Excess Molar Volumes of {Methyltrioctylammonium Bis[(trifluoromethyl)sulfonyl]imide + Methanol + Methyl Acetate or Ethyl Acetate} Systems at (298.15, 303.15, and 313.15) K

rhol	786.00	kg/m3	298.15 Ternary Excess Molar Volumes of {Methyltrioctylammonium Bis[(trifluoromethyl)sulfonyl]imide + Methanol + Methyl Acetate or Ethyl Acetate} Systems at (298.15, 303.15, and 313.15) K
rhol	767.52	kg/m3	318.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures
rhol	772.33	kg/m3	313.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures
rhol	777.11	kg/m3	308.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures
rhol	781.86	kg/m3	303.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures
rhol	786.58	kg/m3	298.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures

rhol	791.30	kg/m3	293.15 Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures
rhol	786.49	kg/m3	298.15 Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate with Methanol, Ethanol, 1-Propanol, and 2-Propanol at Several Temperatures
rhol	796.00	kg/m3	298.20 Solubility of Phenanthrene in Binary Mixtures of C1-C4 Alcohols at 298.2 K
rhol	786.38	kg/m3	298.15 Partial Molar Volumes of Butyltriethylammonium lodide in Single Nonaqueous Solvents at 298.15 K
rhol	772.11	kg/m3	313.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO
rhol	776.89	kg/m3	308.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO

rhol	781.65	kg/m3	303.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO
rhol	786.37	kg/m3	298.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO
rhol	791.08	kg/m3	293.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO
rhol	795.77	kg/m3	288.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO
rhol	800.45	kg/m3	283.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO
rhol	805.11	kg/m3	278.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO

rhol	809.77	kg/m3	273.15 Molar Conductivities and Association Constants of 1-Butyl-3-methylimidazolium Chloride and 1-Butyl-3-methylimidazolium Tetrafluoroborate in Methanol and DMSO	
rhol	787.00	kg/m3	298.15 Solubility and Liquid-Liquid Equilibrium of Aqueous Systems of Iodoethane with Methanol, Ethanol, or 1-Propanol at Temperature 298.15 K and Pressure 101.2 kPa	
rhol	786.64	kg/m3	298.15 Binary Liquid-Liquid Equilibrium (LLE) for Methyl tert-Amyl Ether (TAME) + Water from (288.15 to 313.15) K and Ternary LLE for Systems of TAME + C1-C4 Alcohols + Water at 298.15 K	
rhol	786.57	kg/m3	298.15 Binary Liquid-Liquid Equilibrium (LLE) for Dibutyl Ether (DBE) + Water from (288.15 to 318.15) K and Ternary LLE for Systems of DBE + C1 !less thanless than C4 Alcohols + Water at 298.15 K	
rhol	866.84	kg/m3	298.15 Temperature Dependence on Mutual Solubility Data of the Binary (Methanol + r-Pinene or -Pinene) Systems and Ternary Liquid-Liquid Equilibria for the (Methanol + Ethanol + r-Pinene or -Pinene) Systems	

rhol	787.00	kg/m3	298.15	Effect of Temperature on Phase Equilibrium of the Mixed-Solvent System of (2,2,2-Trifluoroethanol + Methanol + Cyclohexane)
rhol	787.00	kg/m3	298.15	Liquid-Liquid Equilibrium of (Cyclohexane + 2,2,2-Trifluoroethanol) and (Cyclohexane + Methanol) from (278.15 to 318.15) K
rhol	768.04	kg/m3	318.15	Thermodynamic Properties of 1-Butyl-3-methylpyridinium Tetrafluoroborate and Its Mixtures with Water and Alkanols
rhol	786.44	kg/m3	298.15	Thermodynamic Properties of 1-Butyl-3-methylpyridinium Tetrafluoroborate and Its Mixtures with Water and Alkanols
rhol	767.50	kg/m3	318.15	Density of Methanolic Alkali Halide Salt Solutions by Experiment and Molecular Simulation
rhol	777.10	kg/m3	308.15	Density of Methanolic Alkali Halide Salt Solutions by Experiment and Molecular Simulation
rhol	786.50	kg/m3	298.15	Density of Methanolic Alkali Halide Salt Solutions by Experiment and Molecular Simulation
rhol	762.67	kg/m3	323.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform

rhol	767.51	kg/m3	318.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	772.32	kg/m3	313.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	777.10	kg/m3	308.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	781.85	kg/m3	303.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	786.58	kg/m3	298.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	
rhol	791.28	kg/m3	293.15	Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1-C4 nalkanols and chloroform	

rhol	786.40	kg/m3	298.15	Liquid Liquid Equilibrium for Ternary System Methanol + Methyl Acetate + 1,3-Dimethylimidazolium Dimethylphosphate at Several Temperatures and Atmospheric Pressure
rhol	786.58	kg/m3	298.15	Liquid Liquid Equilibria in Ternary Systems of Hexafluoroisopropanol + Perfluorocarbon + Water or Methanol at 298.15 K
rhol	789.70	kg/m3	298.15	Phase equilibrium study of binary and ternary mixtures of ionic liquids + acetone + methanol
rhol	786.67	kg/m3	298.15 N-(:	Density, Viscosity, and Conductivity of Binary Mixtures of the Ionic Liquid 2-Hydroxyethyl)piperazinium Propionate with Water, Methanol, or Ethanol
rhol	763.47	kg/m3	323.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	768.32	kg/m3	318.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	773.14	kg/m3	313.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols

rhol	777.91	kg/m3	308.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	782.68	kg/m3	303.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	787.43	kg/m3	298.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	792.12	kg/m3	293.15	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols
rhol	762.83	kg/m3	323.15	Thermophysical Properties of the Binary Mixture 1-Propylpyridinium Tetrafluoroborate with Methanol
rhol	772.29	kg/m3	313.15	Thermophysical Properties of the Binary Mixture 1-Propylpyridinium Tetrafluoroborate with Methanol
rhol	781.81	kg/m3	303.15	Thermophysical Properties of the Binary Mixture 1-Propylpyridinium Tetrafluoroborate with Methanol
rhol	791.24	kg/m3	293.15	Thermophysical Properties of the Binary Mixture 1-Propylpyridinium Tetrafluoroborate with Methanol
rhol	791.28	kg/m3	293.15	Viscosity of Associated Mixtures Approximated by the Grunberg-Nissan Model

rhol	786.59	kg/m3	298.15	Liquid Liquid Equilibria for Ternary Mixtures of Methylphenyl Carbonate, Dimethyl Carbonate, Diphenyl Carbonate, Anisole, Methanol, Phenol, and Water at Several Temperatures	
rhol	786.55	kg/m3	298.15	Surface Tension Measurements for Seven Imidazolium-Based Dialkylphosphate Ionic Liquids and Their Binary Mixtures with Water (Methanol or Ethanol) at 298.15 K and 1 atm	
rhol	753.39	kg/m3	333.15	Densities and Excess Properties of Primary Amines in Alcoholic Solutions	
rhol	763.24	kg/m3	323.15	Densities and Excess Properties of Primary Amines in Alcoholic Solutions	
rhol	772.90	kg/m3	313.15	Densities and Excess Properties of Primary Amines in Alcoholic Solutions	
rhol	782.43	kg/m3	303.15	Densities and Excess Properties of Primary Amines in Alcoholic Solutions	
rhol	791.87	kg/m3	293.15	Densities and Excess Properties of Primary Amines in Alcoholic Solutions	
rhol	801.25	kg/m3	283.15	Densities and Excess Properties of Primary Amines in Alcoholic Solutions	

rhol	786.56	kg/m3	298.15	Excess Volumes of Ternary Mixtures 2,2,4-Trimethylpentane + Diisopropyl Ether or Methyl tert-Butyl Ether + Methanol, Ethanol, or 1-Propanol at 298.15 K
rhol	786.30	kg/m3	298.15	Volumetric Properties for (Ionic Liquid + Methanol or Ethanol or 1-Propanol + Nitromethane) at 298.15 K and Atmospheric Pressure
rhol	758.20	kg/m3	328.15	Excess Molar Volumes of 1,3-Diethyl Propanedioate with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-2-ol, 2-Methyl-propan-1-ol, and Pentan-1-ol at T = (288.15, 298.15, 313.15, and 328.15) K
rhol	772.74	kg/m3	313.15	Excess Molar Volumes of 1,3-Diethyl Propanedioate with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-2-ol, 2-Methyl-propan-1-ol, and Pentan-1-ol at T = (288.15, 298.15, 313.15, and 328.15) K
rhol	786.99	kg/m3	298.15	Excess Molar Volumes of 1,3-Diethyl Propanedioate with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-2-ol, 2-Methyl-propan-1-ol, and Pentan-1-ol at T = (288.15, 298.15, 313.15, and 328.15) K

rhol	796.41	kg/m3	288.15	Excess Molar Volumes of 1,3-Diethyl Propanedioate with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-2-ol, 2-Methyl-propan-1-ol, and Pentan-1-ol at T = (288.15, 298.15, 313.15, and 328.15) K
rhol	772.44	kg/m3	313.15	Volumetric Properties of the Binary Methanol + Chloroform and Ternary Methanol + Chloroform + Benzene Mixtures at (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K
rhol	777.21	kg/m3	308.15	Volumetric Properties of the Binary Methanol + Chloroform and Ternary Methanol + Chloroform + Benzene Mixtures at (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K
rhol	781.97	kg/m3	303.15	Volumetric Properties of the Binary Methanol + Chloroform and Ternary Methanol + Chloroform + Benzene Mixtures at (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K
rhol	786.69	kg/m3	298.15	Volumetric Properties of the Binary Methanol + Chloroform and Ternary Methanol + Chloroform + Benzene Mixtures at (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K

rhol	791.40	kg/m3	293.15	Volumetric Properties of the Binary Methanol + Chloroform and Ternary Methanol + Chloroform + Benzene Mixtures at (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K	
rhol	796.09	kg/m3	288.15	Volumetric Properties of the Binary Methanol + Chloroform and Ternary Methanol + Chloroform + Benzene Mixtures at (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K	
rhol	786.46	kg/m3	298.15	Measurement and Modeling of Phase Equilibria for Ethanol + Water + Methanol at Isobaric Condition	
rhol	786.59	kg/m3	298.15	Vapor Pressure Measurement and Prediction for Ethanol + Methanol and Ethanol + Water Systems Containing Ionic Liquids	
rhol	786.67	kg/m3	298.15	Ebulliometric Determination of Vapor-Liquid Equilibria for Methanol + Ethanol + Dimethyl Carbonate	
rhol	786.62	kg/m3	298.15	Mutual Solubilities of Terpene in Methanol and Water and Their Multicomponent Liquid-Liquid Equilibria	

rhol	786.80	kg/m3	298.15	Vapor-Liquid Equilibria for the Ternary Systems of Methyl tert-Butyl Ether + Methanol + Methylcyclohexane and Methyl tert-Butyl Ether + Methanol + n-Heptane and Constituent Binary Systems at 313.15 K	
rhol	786.20	kg/m3	298.15	Dynamic Viscosities of KI or NH4I in Methanol and NH4I in Ethanol at Several Temperatures and 0.1 MPa	
rhol	768.00	kg/m3	323.00	Saturation Composition and Density Data for the Sodium Sulfate + Sulfuric Acid + Methanol System	
rhol	779.00	kg/m3	313.00	Saturation Composition and Density Data for the Sodium Sulfate + Sulfuric Acid + Methanol System	
rhol	786.00	kg/m3	303.00	Saturation Composition and Density Data for the Sodium Sulfate + Sulfuric Acid + Methanol System	
rhol	787.00	kg/m3	298.00	Saturation Composition and Density Data for the Sodium Sulfate + Sulfuric Acid + Methanol System	
rhol	800.00	kg/m3	273.00	Saturation Composition and Density Data for the Sodium Sulfate + Sulfuric Acid + Methanol System	

	700 70		222 :-		
rhol	786.58	kg/m3	298.15	Volumetric Properties of Water + Monoethanolamine + Methanol Mixtures at Atmospheric Pressure from 283.15 to 353.15 K	
rhol	786.60	kg/m3	298.15	Dynamic Viscosities of Diethyl Carbonate with Linear and Secondary Alcohols at Several Temperatures	
rhol	781.91	kg/m3	303.15	Densities, Viscosities, and Surface and Interfacial Tensions of the Ternary Mixture Water + Ethyl Butyrate + Methanol at 303.15 K.	
rhol	786.27	kg/m3	298.20 1-ľ	Ternary Liquid-Liquid Equilibria for Mixtures of Methyl-3-octylimidazo Chloride + an Alkanol + an Alkane at 298.2 K and 1 bar	lium
rhol	786.55	kg/m3	298.15	Liquid-Liquid Equilibrium and Excess Enthalpies in Binary Systems Methylcyclohexane + Methanol and Methylcyclohexane + N,N-Dimethylformamic	de
rhol	786.70	kg/m3	298.15	Liquid-Liquid Equilibrium Data for Ternary Systems Containing Alkanes (n-Pentane, n-Hexane, n-Heptane, and n-Octane) + Alcohol (Methanol and Ethanol) + Protic Ionic Liquid (2-HEAF)	

rhol	752.86	kg/m3	333.15	A Volumetric and Viscosity Study for the Binary Mixtures of Ammonium-Based Asymmetrical Gemini Ionic Liquids with Alcohols at T = 293.15-333.15 K
rhol	762.70	kg/m3	323.15	A Volumetric and Viscosity Study for the Binary Mixtures of Ammonium-Based Asymmetrical Gemini Ionic Liquids with Alcohols at T = 293.15-333.15 K
rhol	772.36	kg/m3	313.15	A Volumetric and Viscosity Study for the Binary Mixtures of Ammonium-Based Asymmetrical Gemini Ionic Liquids with Alcohols at T = 293.15-333.15 K
rhol	781.90	kg/m3	303.15	A Volumetric and Viscosity Study for the Binary Mixtures of Ammonium-Based Asymmetrical Gemini Ionic Liquids with Alcohols at T = 293.15-333.15 K
rhol	791.34	kg/m3	293.15	A Volumetric and Viscosity Study for the Binary Mixtures of Ammonium-Based Asymmetrical Gemini Ionic Liquids with Alcohols at T = 293.15-333.15 K
rhol	791.81	kg/m3	298.15	Liquid-Liquid Equilibrium for Ternary Systems, Water + 5-Hydroxymethylfurfural + (1-Butanol, Isobutanol, Methyl Isobutyl Ketone), at 313.15, 323.15, and 333.15 K

rhol	786.56	kg/m3	298.15	Separation Effects of Renewable Solvent Ethyl Lactate on the Vapor Liquid Equilibria of the Methanol + Dimethyl Carbonate Azeotropic System
rhol	781.81	kg/m3	303.15	Isobaric Vapor Liquid Equilibrium for the Binary Systems Dimethyl Disulfide + C1 C4 n-Alkanol at 40.000 and 101.325 kPa
rhol	786.59	kg/m3	298.15	Isobaric Vapor Liquid Equilibria for Two Binary Systems {Propylene Glycol Methyl Ether Acetate + Methanol} and {Propylene Glycol Methyl Ether Acetate + N,N-Dimethylformamide} at p = 30.0, 50.0, and 70.0 kPa
rhol	786.61	kg/m3	298.15	Isobaric Vapor Liquid Equilibrium for Two Binary Systems (Methanol + Dibutyl Carbonate) and (n-Butanol + Dibutyl Carbonate) at p = 40.0, 70.0, and 100.0 kPa
rhol	786.10	kg/m3	298.15	Liquid Liquid Equilibria for the Ternary System n-Butyl Acetate + Pyrocatechol + Water at Different Temperatures at 101.3 kPa

rhol	792.20	kg/m3	293.15	Isobaric Vapor Liquid Equilibrium for Binary Systems of Allyl Alcohol with Water, Methanol, and Ethanol at 101.3 kPa
rhol	772.31	kg/m3	313.15	Density, Speed of Sound, Refractive Index, and Viscosity of the Binary Mixtures of N,N-dimethylacetamide with Methanol and Ethanol
rhol	786.61	kg/m3	298.15	Density, Speed of Sound, Refractive Index, and Viscosity of the Binary Mixtures of N,N-dimethylacetamide with Methanol and Ethanol
rhol	791.00	kg/m3	293.00	KDB
rhol	786.53	kg/m3	298.15 1	Volumetric Properties of the Ionic Liquid, -Butyl-3-methylimidazolium Tetrafluoroborate, in Organic Solvents at T = 298.15 K
rhol	800.71	kg/m3	283.15	Density, Speed of Sound, Refractive Index, and Viscosity of the Binary Mixtures of N,N-dimethylacetamide with Methanol and Ethanol
rhol	807.18	kg/m3	276.15	Volumetric Properties of Binary Mixtures of 2,4,6-Trimethylpyridine with 1,2-Ethanediol, Methanol, and Water, and the Association Energies of the O-H***N Bonded Complexes

rhol	806.25	kg/m3	277.15	Volumetric Properties of Binary Mixtures of 2,4,6-Trimethylpyridir with 1,2-Ethanediol, Methanol, and Water, and the Association Energies of the O-H***N Bonded Complexes	ne
rhol	800.64	kg/m3	283.15	Volumetric Properties of Binary Mixtures of 2,4,6-Trimethylpyridir with 1,2-Ethanediol, Methanol, and Water, and the Association Energies of the O-H***N Bonded Complexes	ne
rhol	795.96	kg/m3	288.15	Volumetric Properties of Binary Mixtures of 2,4,6-Trimethylpyridin with 1,2-Ethanediol, Methanol, and Water, and the Association Energies of the O-H***N Bonded Complexes	ne
rhol	791.26	kg/m3	293.15	Volumetric Properties of Binary Mixtures of 2,4,6-Trimethylpyridir with 1,2-Ethanediol, Methanol, and Water, and the Association Energies of the O-H***N Bonded Complexes	ne
rhol	786.55	kg/m3	298.15	Volumetric Properties of Binary Mixtures of 2,4,6-Trimethylpyridir with 1,2-Ethanediol, Methanol, and Water, and the Association Energies of the O-H***N Bonded Complexes	ne

rhol	781.83	kg/m3	303.15	Volumetric Properties of Binary Mixtures of 2,4,6-Trimethylpyridine with 1,2-Ethanediol, Methanol, and Water, and the Association Energies of the O-H***N Bonded Complexes
rhol	777.08	kg/m3	308.15	Volumetric Properties of Binary Mixtures of 2,4,6-Trimethylpyridine with 1,2-Ethanediol, Methanol, and Water, and the Association Energies of the O-H***N Bonded Complexes
rhol	772.31	kg/m3	313.14	Volumetric Properties of Binary Mixtures of 2,4,6-Trimethylpyridine with 1,2-Ethanediol, Methanol, and Water, and the Association Energies of the O-H***N Bonded Complexes
rhol	786.55	kg/m3	298.15	Liquid liquid equilibrium in ternary systems N,N-dimethylformamide + 2-methylpentane + methanol and N,N-dimethylformamide + methylcyclohexane + methanol
rhol	796.09	kg/m3	288.15	Effect of temperature on the excess molar volumes of some alcohol + aromatic mixtures and modelling by cubic EOS mixing rules

rhol	791.40	kg/m3	293.15	Effect of	
		G T		temperature on the excess molar volumes of some alcohol + aromatic mixtures and modelling by cubic EOS mixing rules	
rhol	786.69	kg/m3	298.15	Effect of temperature on the excess molar volumes of some alcohol + aromatic mixtures and modelling by cubic EOS mixing rules	
rhol	781.97	kg/m3	303.15	Effect of temperature on the excess molar volumes of some alcohol + aromatic mixtures and modelling by cubic EOS mixing rules	
rhol	777.21	kg/m3	308.15	Effect of temperature on the excess molar volumes of some alcohol + aromatic mixtures and modelling by cubic EOS mixing rules	
rhol	772.44	kg/m3	313.15	Effect of temperature on the excess molar volumes of some alcohol + aromatic mixtures and modelling by cubic EOS mixing rules	
rhol	782.40	kg/m3	303.15	Viscous synergy and antagonism and isentropic compressibility of ternary mixtures containing 1,3-dioxolane, water and monoalkanols at 303.15K	

rhol	787.50	kg/m3	298.10	Activity coefficients of the species in the methanol solutions of acetaminophen and two silylated derivatives at 298.15K	
rhol	801.08	kg/m3	283.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	796.41	kg/m3	288.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	791.71	kg/m3	293.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	787.01	kg/m3	298.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	

rhol	782.29	kg/m3	303.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	777.55	kg/m3	308.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	772.78	kg/m3	313.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	767.97	kg/m3	318.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	763.12	kg/m3	323.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	

rhol	758.23	kg/m3	328.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	753.29	kg/m3	333.15	Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15K A new method for the determination of the density of pure boldine	
rhol	795.97	kg/m3	288.15	Thermodynamic properties of mixtures containing alkoxypropanol and n-alkanol	
rhol	786.55	kg/m3	298.15	Thermodynamic properties of mixtures containing alkoxypropanol and n-alkanol	
rhol	777.07	kg/m3	308.15	Thermodynamic properties of mixtures containing alkoxypropanol and n-alkanol	
rhol	786.57	kg/m3	298.15	Liquid liquid equilibria for the binary system of di-isopropyl ether (DIPE) +water in between 288.15 and 323.15K and the ternary systems of DIPE +water + C1 C4 alcohols at 298.15K	
rhol	791.82	kg/m3	293.15	Isobaric vapor liquid equilibrium for binary system of methanol and acetonitrile	

rhol	786.69	kg/m3	298.15	Isobaric vapor-liquid equilibrium at 101.3 kPa and excess properties at 298.15 K for binary mixtures of methyl phenyl carbonate with methanol or dimethyl carbonate	
rhol	785.90	kg/m3	298.15	Solubility of androstenedione in lower alcohols	
rhol	786.59	kg/m3	298.15	Ternary liquid-liquid equilibria and binary excess and deviation properties at constant temperature for mixtures of dimethyl carbonate, anisole, methanol, phenol and water	
rhol	786.62	kg/m3	298.15	Experimental isobaric vapor-liquid equilibrium at atmospheric and sub-atmospheric pressures, excess molar volumes and deviations in molar refractivity from 293.15 K to 318.15 K of diisopropyl ether with methanol and isopropyl alcohol.	
rhol	772.89	kg/m3	313.15	Thermodynamic properties of cyclohexane methanol liquid mixture from shear viscosity measurements	
rhol	768.09	kg/m3	318.15	Thermodynamic properties of cyclohexane methanol liquid mixture from shear viscosity measurements	

rhol	763.24	kg/m3	323.15	Thermodynamic properties of cyclohexane methanol liquid mixture from shear viscosity measurements	
rhol	786.59	kg/m3	298.15	Excess volumes and excess heat capacities of {1,2- alkanediol + methanol} mixtures and ionic volumes in these systems	
rhol	791.00	kg/m3	298.20	Phase equilibria of (water + propionic acid or butyric acid + 2-methoxy- 2-methylpropane) ternary systems at 298.2 K and 323.2 K	
rhol	786.62	kg/m3	298.15	Isobaric ternary vapour-liquid equilibrium of methanol(1) + diisopropyl ether(2) + isopropyl alcohol(3) along with methanol + isopropyl alcohol binary data at atmospheric and sub-atmospheric pressures	
rhol	786.59	kg/m3	298.15	Determination and prediction of solubilities of active pharmaceutical ingredients in selected organic solvents	
rhol	787.10	kg/m3	298.15	Isobaric vapor-liquid equilibrium for methyl acetate + methanol system containing different ionic liquids at 101.3 kPa	

rhol	791.62	kg/m3	293.15	Experimental vapour - liquid equilibrium data of the quaternary system Methanol (1) + Isopropyl Alcohol (2) + Water (3) + Glycerol (4) along with Isopropyl Alcohol (2) + Glycerol (4) and Isopropyl Alcohol (2) + Water (3) binary data at atmospheric and sub-atmospheric pressures.	
rhol	786.62	kg/m3	298.15	Experimental vapour - liquid equilibrium data of the quaternary system Methanol (1) + Isopropyl Alcohol (2) + Water (3) + Glycerol (4) along with Isopropyl Alcohol (2) + Glycerol (4) and Isopropyl Alcohol (2) + Water (3) binary data at atmospheric and sub-atmospheric pressures.	
rhol	786.56	kg/m3	298.15	Vapor-liquid equilibria of binary and ternary mixtures containing ethyl lactate and effect of ethyl lactate as entrainer	
rhol	786.88	kg/m3	298.15 1-e	Effect of composition and temperature variations on thermophysical properties of binary and ternary mixtures of thyl-3-methylimidazo ethylsulfate with 1-butanol and /or methanol	lium

rhol	782.16	kg/m3	303.15 Effect of composition and temperature variations on thermophysical properties of binary and ternary mixtures of 1-ethyl-3-methylimidazolium ethylsulfate with 1-butanol and /or methanol
rhol	777.41	kg/m3	308.15 Effect of composition and temperature variations on thermophysical properties of binary and ternary mixtures of 1-ethyl-3-methylimidazolium ethylsulfate with 1-butanol and /or methanol
rhol	772.64	kg/m3	313.15 Effect of composition and temperature variations on thermophysical properties of binary and ternary mixtures of 1-ethyl-3-methylimidazolium ethylsulfate with 1-butanol and /or methanol
rhol	767.84	kg/m3	318.15 Effect of composition and temperature variations on thermophysical properties of binary and ternary mixtures of 1-ethyl-3-methylimidazolium ethylsulfate with 1-butanol and /or methanol
rhol	763.03	kg/m3	323.15 Effect of composition and temperature variations on thermophysical properties of binary and ternary mixtures of 1-ethyl-3-methylimidazolium ethylsulfate with 1-butanol and /or methanol

rhol	787.21	kg/m3	298.15	Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15-318.15) K and ambient pressure	
rhol	782.75	kg/m3	303.15	Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15-318.15) K and ambient pressure	
rhol	777.56	kg/m3	308.15	Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15-318.15) K and ambient pressure	
rhol	772.97	kg/m3	313.15	Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15-318.15) K and ambient pressure	

rhol	768.03	kg/m3	318.15	Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15-318.15) K and ambient pressure	
rhol	786.42	kg/m3	298.15	Isothermal vapor-liquid equilibria at 383.15-413.15 K for the binary system methanol + dimethyl carbonate and the pressure dependency of the azeotropic point	
rhol	795.50	kg/m3	288.15	Temperature dependence of the volumetric properties of some alkoxypropanols + n-alkanol mixtures	
rhol	786.40	kg/m3	298.15	Temperature dependence of the volumetric properties of some alkoxypropanols + n-alkanol mixtures	
rhol	777.20	kg/m3	308.15	Temperature dependence of the volumetric properties of some alkoxypropanols + n-alkanol mixtures	
rhol	786.53	kg/m3		Volumetric and compressibility behaviour of ionic liquid, butyl-3-methylimidaze and tetrabutylammonium hexafluorophosphate in organic solvents at T = 298.15 K)

rhol	786.40	kg/m3	298.15 Bubble point temperatures of the binary mixtures of nitrobenzene with C1 C4 aliphatic alcohols at 94.95 kPa
rhol	800.62	kg/m3	283.15 Excess molar volumes of binary mixtures of 1,3-dimethylimidazolidin-2-one with an alkan-1-ol at the temperatures 283.15 K, 298.15 K, and 313.15 K
rhol	786.56	kg/m3	298.15 Excess molar volumes of binary mixtures of 1,3-dimethylimidazolidin-2-one with an alkan-1-ol at the temperatures 283.15 K, 298.15 K, and 313.15 K
rhol	772.32	kg/m3	313.15 Excess molar volumes of binary mixtures of 1,3-dimethylimidazolidin-2-one with an alkan-1-ol at the temperatures 283.15 K, 298.15 K, and 313.15 K
rhol	786.70	kg/m3	298.15 Liquid densities and excess molar volumes for (ionic liquids + methanol + water) ternary system at atmospheric pressure and at various temperatures
rhol	782.00	kg/m3	303.15 Liquid densities and excess molar volumes for (ionic liquids + methanol + water) ternary system at atmospheric pressure and at various temperatures

rhol	772.70	kg/m3	313.15 Liquid densities and excess molar volumes for (ionic liquids + methanol + water) ternary system at atmospheric pressure and at various temperatures
rhol	786.71	kg/m3	298.15 Density and speed of sound of lithium bromide with organic solvents: Measurement and correlation
rhol	786.55	kg/m3	298.15 Volumetric, acoustic, and viscometric studies of molecular interactions in binary mixtures of dipropylene glycol dimethyl ether with 1-alkanols at 298.15 K
rhol	786.00	kg/m3	298.15 Excess molar volumes and isentropic compressibility of binary systems {trioctylmethylammonium bis(trifluoromethysulfonyl)imide + methanol or ethanol or 1-propanol} at different temperatures
rhol	783.40	kg/m3	303.15 Excess molar volumes and isentropic compressibility of binary systems {trioctylmethylammonium bis(trifluoromethysulfonyl)imide + methanol or ethanol or 1-propanol} at different temperatures

rhol	774.60	kg/m3	313.15 { bis(Excess molar volumes and isentropic compressibility of binary systems trioctylmethylammonium trifluoromethysulfonyl)imide + methanol or ethanol or 1-propanol} at different temperatures
rhol	786.62	kg/m3	298.15	Temperature dependence on mutual solubility of binary (methanol + limonene) mixture and (liquid + liquid) equilibria of ternary (methanol + ethanol + limonene) mixture
rhol	787.00	kg/m3	298.15	Phase diagrams of (hexane + methanol + 2,2,2-trifluoroethanol) at three temperatures: Measurement and correlation
rhol	785.30	kg/m3	298.15	Volumetric and surface properties of pure ionic liquid n-octyl-pyridinium nitrate and its binary mixture with alcohol
rhol	786.63	kg/m3	298.15	Partial molar volume of tertiary amines in methanol at T = 298.15 K. Solvation, shape and specific interactions
rhol	786.62	kg/m3	298.15	Isothermal (vapour + liquid) equilibria for binary mixtures of diisopropyl ether with (methanol, or ethanol, or 1-butanol): Experimental data, correlations, and predictions

rhol	791.49	kg/m3	293.15	Volume effects for binary mixtures of propane-1,2-diol with methanol, propan-1-ol, hexan-1-ol, or nonan-1-ol at temperatures (293.15 to 318.15) K	
rhol	786.79	kg/m3	298.15	Volume effects for binary mixtures of propane-1,2-diol with methanol, propan-1-ol, hexan-1-ol, or nonan-1-ol at temperatures (293.15 to 318.15) K	
rhol	782.07	kg/m3	303.15	Volume effects for binary mixtures of propane-1,2-diol with methanol, propan-1-ol, hexan-1-ol, octan-1-ol or nonan-1-ol at temperatures (293.15 to 318.15) K	
rhol	777.33	kg/m3	308.15	Volume effects for binary mixtures of propane-1,2-diol with methanol, propan-1-ol, hexan-1-ol, octan-1-ol or nonan-1-ol at temperatures (293.15 to 318.15) K	
rhol	772.55	kg/m3	313.15	Volume effects for binary mixtures of propane-1,2-diol with methanol, propan-1-ol, hexan-1-ol, octan-1-ol or nonan-1-ol at temperatures (293.15 to 318.15) K	

rhol	767.74	kg/m3	318.15	Volume effects for binary mixtures of propane-1,2-diol with methanol, propan-1-ol, hexan-1-ol, or nonan-1-ol at temperatures (293.15 to 318.15) K	
rhol	791.55	kg/m3	293.15	Thermodynamics of 1-alkanol + linear polyether mixtures	
rhol	787.20	kg/m3	298.15	Thermodynamics of 1-alkanol + linear polyether mixtures	
rhol	782.44	kg/m3	303.15	Thermodynamics of 1-alkanol + linear polyether mixtures	
rhol	786.60	kg/m3	298.15	Probing subsistence of ion-pair and triple-ion of an ionic salt in liquid environments by means of conductometric contrivance	
rhol	786.40	kg/m3	298.15 1-b	Density and surface tension of pure ionic liquid outyl-3-methylimidazo L-lactate and its binary mixture with alcohol and water	lium
rhol	776.90	kg/m3	308.15 1-b	Density and surface tension of pure ionic liquid outyl-3-methylimidazo L-lactate and its binary mixture with alcohol and water	lium
rhol	767.20	kg/m3	318.15 1-b	Density and surface tension of pure ionic liquid outyl-3-methylimidazo L-lactate and its binary mixture with alcohol and water	lium

rhol	786.62	kg/m3	298.15 Effect of tetrabutylammonium bromide on solution behavior of salicylaldehyde anil zinc (II) in methanol at T = (298.15, 308.15 and 318.15) K
rhol	777.18	kg/m3	308.15 Effect of tetrabutylammonium bromide on solution behavior of salicylaldehyde anil zinc (II) in methanol at T = (298.15, 308.15 and 318.15) K
rhol	767.74	kg/m3	318.15 Effect of tetrabutylammonium bromide on solution behavior of salicylaldehyde anil zinc (II) in methanol at T = (298.15, 308.15 and 318.15) K
rhol	786.66	kg/m3	298.15 Physical properties of the pure 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid and its binary mixtures with alcohols
rhol	781.95	kg/m3	303.15 Physical properties of the pure 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid and its binary mixtures with alcohols
rhol	777.20	kg/m3	308.15 Physical properties of the pure 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid and its binary mixtures with alcohols

rhol	786.90	kg/m3	298.15 Cation effect of ammonium imide based ionic liquids in alcohols extraction from alcohol-alkane azeotropic mixtures
rhol	786.61	kg/m3	298.15 Partial molar volumes and viscosity B-coefficients for N,N'-ethylenebis(salicylideneiminato)-diaquochromium(III) chloride in methanolic solutions of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate at T = (298.15, 308.15, and 318.15) K
rhol	777.15	kg/m3	308.15 Partial molar volumes and viscosity B-coefficients for N,N'-ethylenebis(salicylideneiminato)-diaquochromium(III) chloride in methanolic solutions of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate at T = (298.15, 308.15, and 318.15) K
rhol	767.74	kg/m3	318.15 Partial molar volumes and viscosity B-coefficients for N,N'-ethylenebis(salicylideneiminato)-diaquochromium(III) chloride in methanolic solutions of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate at T = (298.15, 308.15, and 318.15) K
rhol	786.58	kg/m3	298.15 lonic molar volumes in methanol mixtures with acetonitrile, N,N-dimethylformamide and propylene carbonate at T = 298.15 K

rhol	786.67	kg/m3	298.15	Non-covalent interactions	
		{N,N'-bis	s[(2-pyridinyl)meth	between nylene]-1,2-benzened with pyridoxine hydrochloride in methanol at T = (298.15, 308.15 and 318.15) K	diamine]-bis(nitrato)}Cu
rhol	786.61	kg/m3	298.15	Exploration of Solvation Consequence of Ionic Liquid [Bu4PCH3SO3] in Various Solvent Systems by Conductance and FTIR Study	
rhol	767.75	kg/m3	318.15	Non-covalent interactions	
		{N,N'-bis	s[(2-pyridinyl)meth	between	diamine]-bis(nitrato)}Cu
rhol	786.20	kg/m3		Measurements and modeling of LLE and HE for (methanol + I,4-trimethyl-1-penter and LLE for (water + methanol + I,4-trimethyl-1-penter	
rhol	786.30	kg/m3	298.15	Solubility and solution thermodynamics of sorbic acid in eight pure organic solvents	
rhol	791.35	kg/m3	293.15 1,1,	Properties of pure 3,3-tetramethylguani imidazole ionic liquid and its binary mixtures with alcohols at T = (293.15 to 313.15) K	dine
rhol	786.67	kg/m3	298.15 1,1,	Properties of pure 3,3-tetramethylguani imidazole ionic liquid and its binary mixtures with alcohols at T = (293.15 to 313.15) K	dine

rhol	781.94	kg/m3	303.15 Properties of pure 1,1,3,3-tetramethylguanidine imidazole ionic liquid and its binary mixtures with alcohols at T = (293.15 to 313.15) K
rhol	777.20	kg/m3	308.15 Properties of pure 1,1,3,3-tetramethylguanidine imidazole ionic liquid and its binary mixtures with alcohols at T = (293.15 to 313.15) K
rhol	772.42	kg/m3	313.15 Properties of pure 1,1,3,3-tetramethylguanidine imidazole ionic liquid and its binary mixtures with alcohols at T = (293.15 to 313.15) K
rhol	786.60	kg/m3	298.15 Measurements and equation-of-state modelling of thermodynamic properties of binary mixtures of 1-butyl-1-methylpyrrolidinium tetracyanoborate ionic liquid with
rhol	805.40	kg/m3	molecular compounds 278.15 Volumetric properties, viscosities and refractive indices of binary liquid mixtures of tetrafluoroborate-based ionic liquids with methanol at several temperatures
rhol	796.00	kg/m3	288.15 Volumetric properties, viscosities and refractive indices of binary liquid mixtures of tetrafluoroborate-based ionic liquids with methanol at several temperatures

rhol	786.60	kg/m3	298.15 Volumetric properties, viscosities and refractive indices of binary liquid mixtures of tetrafluoroborate-based ionic liquids with methanol at several temperatures
rhol	777.10	kg/m3	308.15 Volumetric properties, viscosities and refractive indices of binary liquid mixtures of tetrafluoroborate-based ionic liquids with methanol at several temperatures
rhol	767.60	kg/m3	318.15 Volumetric properties, viscosities and refractive indices of binary liquid mixtures of tetrafluoroborate-based ionic liquids with methanol at several temperatures
rhol	786.20	kg/m3	298.15 Measurements and modeling for the density of 2-methoxy-2,4,4- trimethylpentane, HE for (methanol + 2-methoxy-2,4,4- trimethylpentane), LLE for (water + 2-methoxy-2,4,4-trimethylpentane) and LLE for (water + methanol + 2-methoxy-2,4,4-trimethylpentane)
rhol	786.60	kg/m3	298.15 Solubility and solution thermodynamics of thymol in six pure organic solvents
rhol	797.30	kg/m3	290.15 Density, viscosity and excess properties in the trihexyltetradecylphosphonium chloride ionic liquid/methanol cosolvent system

rhol	793.50	kg/m3	293.15 Density, viscosity and excess properties in the trihexyltetradecylphosphonium chloride ionic liquid/methanol cosolvent system
rhol	790.80	kg/m3	295.15 Density, viscosity and excess properties in the trihexyltetradecylphosphonium chloride ionic liquid/methanol cosolvent system
rhol	786.80	kg/m3	298.15 Density, viscosity and excess properties in the trihexyltetradecylphosphonium chloride ionic liquid/methanol cosolvent system
rhol	781.40	kg/m3	303.15 Density, viscosity and excess properties in the trihexyltetradecylphosphonium chloride ionic liquid/methanol cosolvent system
rhol	777.30	kg/m3	308.15 Density, viscosity and excess properties in the trihexyltetradecylphosphonium chloride ionic liquid/methanol cosolvent system
rhol	772.10	kg/m3	313.15 Density, viscosity and excess properties in the trihexyltetradecylphosphonium chloride ionic liquid/methanol cosolvent system
rhol	767.70	kg/m3	318.15 Density, viscosity and excess properties in the trihexyltetradecylphosphonium chloride ionic liquid/methanol cosolvent system
rhol	762.10	kg/m3	323.15 Density, viscosity and excess properties in the trihexyltetradecylphosphonium chloride ionic liquid/methanol cosolvent system

rhol	791.10	kg/m3	293.15	Measurement and correlation of the vapor-liquid equilibrium for methanol + acetonitrile + imidazolium-based ionic liquids at 101.3 kPa
rhol	791.20	kg/m3	293.15	(Liquid + liquid) equilibria of four alcohol-water systems containing 1,8-cineole at T = 298.15 K
rhol	786.97	kg/m3	298.15	Experimental study on the calorimetric data of 2-butoxyethanol with aliphatic alcohols (C1-C4) and correlation with the Wilson, NRTL and UNIQUAC models at T = 298 K
rhol	791.35	kg/m3	293.15	Thermodynamic and spectroscopic properties of binary mixtures of n-butylammonium butanoate ionic liquid with alcohols at T = (293.15-313.15) K
rhol	786.64	kg/m3	298.15	Thermodynamic and spectroscopic properties of binary mixtures of n-butylammonium butanoate ionic liquid with alcohols at T = (293.15-313.15) K

rhol	781.91	kg/m3	303.15	Thermodynamic and spectroscopic properties of binary mixtures of n-butylammonium butanoate ionic liquid with alcohols at T = (293.15-313.15) K	
rhol	777.16	kg/m3	308.15	Thermodynamic and spectroscopic properties of binary mixtures of n-butylammonium butanoate ionic liquid with alcohols at T = (293.15-313.15) K	
rhol	772.38	kg/m3	313.15	Thermodynamic and spectroscopic properties of binary mixtures of n-butylammonium butanoate ionic liquid with alcohols at T = (293.15-313.15) K	
rhol	786.50	kg/m3	298.15	Fully automatized apparatus for determining speed of sound for liquids in the temperature and pressure interval (283.15-343.15) K and (0.1-95) MPa	
rhol	793.60	kg/m3	293.15	Investigation on molecular interactions of antibiotics in alcohols using volumetric and acoustic studies at different temperatures	
rhol	789.27	kg/m3	298.15	Investigation on molecular interactions of antibiotics in alcohols using volumetric and acoustic studies at different temperatures	

rhol	784.59	kg/m3	303.15 Investigation on molecular interactions of antibiotics in alcohols using volumetric and acoustic studies at different temperatures	
rhol	777.87	kg/m3	308.15 Investigation on molecular interactions of antibiotics in alcohols using volumetric and acoustic studies at different temperatures	
rhol	772.44	kg/m3	313.15 Investigation on molecular interactions of antibiotics in alcohols using volumetric and acoustic studies at different temperatures	
rhol	805.10	kg/m3	278.15 Thermophysical properties of binary mixtures of sinary mixtures of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquid with alcohols at several temperatures	
rhol	795.70	kg/m3	288.15 Thermophysical properties of binary mixtures of of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquid with alcohols at several temperatures	
rhol	786.30	kg/m3	298.15 Thermophysical properties of binary mixtures of of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquid with alcohols at several temperatures	

rhol	776.90	kg/m3	308.15 1-bı trii	Thermophysical properties of binary mixtures of utyl-1-methylpyrrolidinium fluoromethanesulfonate ionic liquid with alcohols at several temperatures
rhol	767.40	kg/m3	318.15 1-bu trii	Thermophysical properties of binary mixtures of utyl-1-methylpyrrolidinium fluoromethanesulfonate ionic liquid with alcohols at several temperatures
rhol	792.60	kg/m3	293.15	Densities and volumetric properties of (choline chloride+urea) deep eutectic solvent and methanol mixtures in the temperature range of 293.15-323.15 K
rhol	783.00	kg/m3	303.15	Densities and volumetric properties of (choline chloride+urea) deep eutectic solvent and methanol mixtures in the temperature range of 293.15-323.15 K
rhol	773.50	kg/m3	313.15	Densities and volumetric properties of (choline chloride+urea) deep eutectic solvent and methanol mixtures in the temperature range of 293.15-323.15 K

rhol	764.00	kg/m3	323.15	Densities and volumetric properties of (choline chloride+urea) deep eutectic solvent and methanol mixtures in the temperature range of 293.15-323.15 K	
rhol	791.41	kg/m3	293.15	Electrostriction of water and lower alcohols around ammonium nitrate - Volumetric approach	
rhol	786.65	kg/m3	298.15	Electrostriction of water and lower alcohols around ammonium nitrate - Volumetric approach	
rhol	781.85	kg/m3	303.15	Electrostriction of water and lower alcohols around ammonium nitrate - Volumetric approach	
rhol	776.95	kg/m3	308.15	Electrostriction of water and lower alcohols around ammonium nitrate - Volumetric approach	
rhol	771.97	kg/m3	313.15	Electrostriction of water and lower alcohols around ammonium nitrate - Volumetric approach	
rhol	796.13	kg/m3	288.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +2-propanol	

rhol	786.75	kg/m3	298.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol	
rhol	777.29	kg/m3	308.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol	
rhol	767.71	kg/m3	318.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol	
rhol	757.97	kg/m3	328.15	Mass density, sound velocity, mixing enthalpy, 1H NMR, Ab initio calculations and intermolecular interactions in binary mixtures of N-methylimidazole + water, +methanol, +ethanol, +1-propanol	

rhol	791.90	kg/m3	293.15 Effect of 1-ethyl-3-methylimidazolium tetrafluoroborate on the phase equilibria for systems containing 5-hydroxymethylfurfural, water, organic solvent in the absence and presence of sodium chloride
rhol	796.04	kg/m3	288.15 The molar surface quasi-Gibbs energy and its application to the binary mixtures of 1-(2-methoxyethyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide [MOEMIM][NTf2] with methanol and ethanol
rhol	791.35	kg/m3	293.15 The molar surface quasi-Gibbs energy and its application to the binary mixtures of 1-(2-methoxyethyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide [MOEMIM][NTf2] with methanol and ethanol
rhol	786.64	kg/m3	298.15 The molar surface quasi-Gibbs energy and its application to the binary mixtures of 1-(2-methoxyethyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide [MOEMIM][NTf2] with methanol and ethanol
rhol	781.91	kg/m3	303.15 The molar surface quasi-Gibbs energy and its application to the binary mixtures of 1-(2-methoxyethyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide [MOEMIM][NTf2] with methanol and ethanol

rhol	777.16	kg/m3	308.15 The molar surface quasi-Gibbs energy and its application to the binary mixtures of 1-(2-methoxyethyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide [MOEMIM][NTf2] with methanol
			and ethanol
rhol	772.38	kg/m3	313.15 The molar surface quasi-Gibbs energy and its application to the binary mixtures of 1-(2-methoxyethyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide
			[MOEMIM][NTf2] with methanol
			and ethanol
rhol	767.57	kg/m3	318.15 The molar surface quasi-Gibbs energy and its application to the binary mixtures of 1-(2-methoxyethyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide [MOEMIM][NTf2] with methanol and ethanol
rhol	781.81	kg/m3	303.15 Vapor-liquid equilibrium and excess properties of the binary mixtures formed by ethyl isobutyrate and n-alkanols
rhol	762.61	kg/m3	323.15 Vapor-liquid equilibrium and excess properties of the binary mixtures formed by ethyl isobutyrate and n-alkanols
rhol	786.50	kg/m3	298.15 Excess molar enthalpies of methyl isobutyl ketone (MIBK) with alkan-1-ols (C1-C6) and their correlations at 298.15 K

rhol	800.67	kg/m3	283.15	Volumetric properties of the monoethanolamine methanol mixture at atmospheric pressure from 283.15 to 353.15K	
rhol	795.99	kg/m3	288.15	Volumetric properties of the monoethanolamine methanol mixture at atmospheric pressure from 283.15 to 353.15K	
rhol	791.29	kg/m3	293.15	Volumetric properties of the monoethanolamine methanol mixture at atmospheric pressure from 283.15 to 353.15K	
rhol	786.58	kg/m3	298.15	Volumetric properties of the monoethanolamine methanol mixture at atmospheric pressure from 283.15 to 353.15K	
rhol	781.86	kg/m3	303.15	Volumetric properties of the monoethanolamine methanol mixture at atmospheric pressure from 283.15 to 353.15K	
rhol	777.10	kg/m3	308.15	Volumetric properties of the monoethanolamine methanol mixture at atmospheric pressure from 283.15 to 353.15K	
rhol	772.32	kg/m3	313.15	Volumetric properties of the monoethanolamine methanol mixture at atmospheric pressure from 283.15 to 353.15K	

rhol	767.52	kg/m3	318.15	Volumetric properties of the monoethanolamine methanol mixture at atmospheric pressure from 283.15 to 353.15K	
rhol	762.67	kg/m3	323.15	Volumetric properties of the monoethanolamine methanol mixture at atmospheric pressure from 283.15 to 353.15K	
rhol	757.77	kg/m3	328.15	Volumetric properties of the monoethanolamine methanol mixture at atmospheric pressure from 283.15 to 353.15K	
rhol	752.83	kg/m3	333.15	Volumetric properties of the monoethanolamine methanol mixture at atmospheric pressure from 283.15 to 353.15K	
rhol	781.81	kg/m3	303.15	Excess molar enthalpies and heat capacities of dimethyl sulfoxide + seven normal alkanols at 303.15K and atmospheric pressure	
rhol	786.30	kg/m3	298.15	Thermodynamic properties of binary mixtures of 2.2.2-Trifluoroethanol with Water or Alkanols at T=298.15 K	
rhol	791.72	kg/m3	293.15	Excess molar volumes of Diisopropylamine + (C1-C5) Alkan-1-ols: application of the ERAS model and cubic EOS	

rhol	787.35	kg/m3	298.15	Excess molar volumes of Diisopropylamine + (C1-C5) Alkan-1-ols: application of the ERAS model and cubic EOS	
rhol	782.24	kg/m3	303.15	Excess molar volumes of Diisopropylamine + (C1-C5) Alkan-1-ols: application of the ERAS model and cubic EOS	
rhol	772.73	kg/m3	313.15	Excess molar volumes of Diisopropylamine + (C1-C5) Alkan-1-ols: application of the ERAS model and cubic EOS	
rhol	801.44	kg/m3	283.15	Densities and Excess Molar Volumes for Binary Mixtures of Diethanolamine with Water, Methanol, Ethanol and Ternary Solutions of Diethanolamine + Water with Methanol, Ethanol at Atmospheric Pressure from 278.15 to 353.15 K	
rhol	792.07	kg/m3	293.15	Densities and Excess Molar Volumes for Binary Mixtures of Diethanolamine with Water, Methanol, Ethanol and Ternary Solutions of Diethanolamine + Water with Methanol, Ethanol at Atmospheric Pressure from 278.15 to 353.15 K	

rhol	782.61	kg/m3	303.15	Densities and Excess Molar Volumes for Binary Mixtures of Diethanolamine with Water, Methanol, Ethanol and Ternary Solutions of Diethanolamine + Water with Methanol, Ethanol at Atmospheric Pressure from 278.15 to 353.15 K	
rhol	773.05	kg/m3	313.15	Densities and Excess Molar Volumes for Binary Mixtures of Diethanolamine with Water, Methanol, Ethanol and Ternary Solutions of Diethanolamine + Water with Methanol, Ethanol at Atmospheric Pressure from 278.15 to 353.15 K	
rhol	763.36	kg/m3	323.15	Densities and Excess Molar Volumes for Binary Mixtures of Diethanolamine with Water, Methanol, Ethanol and Ternary Solutions of Diethanolamine + Water with Methanol, Ethanol at Atmospheric Pressure from 278.15 to 353.15 K	

rhol	753.51	kg/m3	333.15	Densities and Excess Molar Volumes for Binary Mixtures of Diethanolamine with Water, Methanol, Ethanol and Ternary Solutions of Diethanolamine + Water with Methanol, Ethanol at Atmospheric Pressure from 278.15 to 353.15 K
rhol	786.74	kg/m3	298.15	Study of intermolecular interactions in binary mixtures of 2-(dimethylamino)ethanol with methanol and ethanol at various temperatures
rhol	777.45	kg/m3	308.15	Study of intermolecular interactions in binary mixtures of 2-(dimethylamino)ethanol with methanol and ethanol at various temperatures
rhol	768.01	kg/m3	318.15	Study of intermolecular interactions in binary mixtures of 2-(dimethylamino)ethanol with methanol and ethanol at various temperatures
rhol	787.52	kg/m3	298.15	Modified Method for Measuring the Solubility of Pharmaceutical Compounds in Organic Solvents by Visual Camera

rhol	791.33	kg/m3	293.15 Density and Viscosity for Binary Mixtures of the Ionic Liquid 2,2-Diethyl-1,1,3,3-Tetramethylguanidinium Ethyl Sulfate with Water, Methanol, or Ethanol
rhol	786.62	kg/m3	298.15 Density and Viscosity for Binary Mixtures of the Ionic Liquid 2,2-Diethyl-1,1,3,3-Tetramethylguanidinium Ethyl Sulfate with Water, Methanol, or Ethanol
rhol	781.89	kg/m3	303.15 Density and Viscosity for Binary Mixtures of the Ionic Liquid 2,2-Diethyl-1,1,3,3-Tetramethylguanidinium Ethyl Sulfate with Water, Methanol, or Ethanol
rhol	777.14	kg/m3	308.15 Density and Viscosity for Binary Mixtures of the Ionic Liquid 2,2-Diethyl-1,1,3,3-Tetramethylguanidinium Ethyl Sulfate with Water, Methanol, or Ethanol
rhol	772.37	kg/m3	313.15 Density and Viscosity for Binary Mixtures of the Ionic Liquid 2,2-Diethyl-1,1,3,3-Tetramethylguanidinium Ethyl Sulfate with Water, Methanol, or Ethanol
rhol	767.56	kg/m3	318.15 Density and Viscosity for Binary Mixtures of the Ionic Liquid 2,2-Diethyl-1,1,3,3-Tetramethylguanidinium Ethyl Sulfate with Water, Methanol, or Ethanol
rhol	762.72	kg/m3	323.15 Density and Viscosity for Binary Mixtures of the Ionic Liquid 2,2-Diethyl-1,1,3,3-Tetramethylguanidinium Ethyl Sulfate with Water, Methanol, or Ethanol

	rhol	791.34	kg/m3	293.15	Density and Excess Molar Volumes of 1-Butanol + Methanol + Electrolyte Systems in the Temperature Range (293.15 308.15) K	
	rhol	786.68	kg/m3	298.15	Density and Excess Molar Volumes of 1-Butanol + Methanol + Electrolyte Systems in the Temperature Range (293.15 308.15) K	
	rhol	781.96	kg/m3	303.15	Density and Excess Molar Volumes of 1-Butanol + Methanol + Electrolyte Systems in the Temperature Range (293.15 308.15) K	
	rhol	777.21	kg/m3	308.15	Density and Excess Molar Volumes of 1-Butanol + Methanol + Electrolyte Systems in the Temperature Range (293.15 308.15) K	
	rhol	791.00	kg/m3	298.15	Tie-Line Data for Aqueous Mixtures of Butyric Acid with Diisopropyl Ether at Various Temperatures	
	rhol	777.18	kg/m3 {N,N'-bis[308.15 (2-pyridinyl)met	Non-covalent interactions between thylene]-1,2-benzene with pyridoxine hydrochloride in methanol at T = (298.15, 308.15 and 318.15) K	diamine]-bis(nitrato)}Cu(
	rhol	786.60	kg/m3	298.15	Thermodynamics of 1,3-dimethylurea in eight alcohols	
	sfust	12.50	J/mol×K	176.00	NIST Webbook	
	sfust	3.70	J/mol×K	161.10	NIST Webbook	
-						

sfust	18.10	J/mol×K	175.30	NIST Webbook	
sfust	4.00	J/mol×K	157.30	NIST Webbook	
sfust	18.30	J/mol×K	175.60	NIST Webbook	
speedsl	1060.00	m/s	313.15	Densities, Sound Speed, and IR Studies of (Methanol + 1-Acetoxybutane) and (Methanol + 1,1-Dimethylethyl Ester) at (298.15, 303.15, 308.15, and 313.15) K	
speedsl	1086.37	m/s	I	Application of Prigogine Flory Patterson theory to excess molar volume and speed of sound of outyl-3-methylimidazolium hexafluorophosphate or outyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile	
speedsl	1070.11	m/s	I	Application of Prigogine Flory Patterson theory to excess molar volume and speed of sound of outyl-3-methylimidazolium hexafluorophosphate or outyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile	
speedsl	1053.96	m/s	I	Application of Prigogine Flory Patterson theory to excess molar volume and speed of sound of outyl-3-methylimidazolium hexafluorophosphate or outyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile	

speedsl	1037.91	m/s		Application of Prigogine Flory Patterson theory to excess molar volume and speed of sound of outyl-3-methylimidazoli hexafluorophosphate or outyl-3-methylimidazoli tetrafluoroborate in methanol and acetonitrile	
speedsl	1134.45	m/s	288.15	Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}	
speedsl	1126.20	m/s	290.65	Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}	
speedsl	1117.95	m/s	293.15	Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}	
speedsl	1109.77	m/s	295.65	Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}	

speedsl	1101.58	m/s	298.15	Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}	
speedsl	1093.44	m/s	300.65	Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}	
speedsl	1085.45	m/s	303.15	Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}	
speedsl	1077.33	m/s	305.65	Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}	
speedsl	1069.19	m/s	308.15	Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}	
speedsl	1037.91	m/s		Volumetric and Speed of Sound of Ionic Liquid, utyl-3-methylimidazo Hexafluorophosphate with Acetonitrile and Methanol at T) (298.15 to 318.15) K	

speedsl	1061.07	m/s	310.65	Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}	
speedsl	1052.93	m/s	313.15	Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}	
speedsl	1044.90	m/s	315.65	Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}	
speedsl	1036.74	m/s	318.15	Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}	
speedsl	1028.60	m/s	320.65	Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}	

speedsl	1020.46	m/s	323.15 Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}
speedsl	1101.24	m/s	298.15 Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. VI. Apparent Molar Volumes, Expansibilities, and Compressibilities of Divalent Transition Metal Ions in Methanol and Dimethylsulfoxide
speedsl	1118.91	m/s	293.15 Densities, excess molar volumes, speeds of sound and isothermal compressibilities for {2-(2-hexyloxyethoxy)ethanol + n-alkanol} systems at temperatures between (288.15 and 308.15) K
speedsl	1102.62	m/s	298.15 Densities, excess molar volumes, speeds of sound and isothermal compressibilities for {2-(2-hexyloxyethoxy)ethanol + n-alkanol} systems at temperatures between (288.15 and 308.15) K
speedsl	1086.03	m/s	303.15 Densities, excess molar volumes, speeds of sound and isothermal compressibilities for {2-(2-hexyloxyethoxy)ethanol + n-alkanol} systems at temperatures between (288.15 and 308.15) K

speedsl	1069.80	m/s	308.15 {2-(2	Densities, excess molar volumes, speeds of sound and isothermal compressibilities for 2-hexyloxyethoxy)ethanol + n-alkanol} systems at	
				temperatures between (288.15 and 308.15) K	
speedsl	1102.41	m/s	298.15	Apparent molar volumes, expansibilities, and isentropic compressibilities of selected electrolytes in methanol	
speedsl	1104.60	m/s	298.15	Ultrasonic speeds and isentropic compressibilities of {difurylmethane + (C1 C6) n-alkanol} binary mixtures at T =	
				298.15 K	
speedsl	1136.34	m/s	288.15	Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}	
speedsl	1127.69	m/s	290.65	Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}	
speedsl	1119.49	m/s	293.15	Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}	

speedsl	1111.28	m/s	295.65	Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}	
speedsl	1102.98	m/s	298.15	Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}	
speedsl	1094.69	m/s	300.65	Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}	
speedsl	1086.46	m/s	303.15	Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}	
speedsl	1078.30	m/s	305.65	Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}	
speedsl	1070.15	m/s	308.15	Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}	
speedsl	1062.07	m/s	310.65	Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}	

speedsl	1053.97	m/s	313.15	Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}	
speedsl	1045.91	m/s	315.65	Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}	
speedsl	1037.93	m/s	318.15	Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}	
speedsl	1029.90	m/s	320.65	Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}	
speedsl	1021.99	m/s	323.15	Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}	
speedsl	1102.68	m/s	298.15 1-Bu F	Volumetric and Speed of Sound of Ionic Liquid, utyl-3-methylimidazo Hexafluorophosphate with Acetonitrile and Methanol at T) (298.15 to 318.15) K	lium e
speedsl	1086.37	m/s		Volumetric and Speed of Sound of Ionic Liquid, utyl-3-methylimidazo Hexafluorophosphate with Acetonitrile and Methanol at T) (298.15 to 318.15) K	

speedsl	1070.11	m/s	308.15 Volumetric and Speed of Sound of Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate with Acetonitrile and Methanol at T) (298.15 to 318.15) K
speedsl	1053.96	m/s	313.15 Volumetric and Speed of Sound of Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate with Acetonitrile and Methanol at T) (298.15 to 318.15) K
speedsl	1103.80	m/s	298.15 Compressibility Studies of Binary Solutions Involving Water as a Solute in Nonaqueous Solvents at T) 298.15 K
speedsl	1169.50	m/s	278.15 Volumetric and Ultrasonic Studies of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with Methanol, Ethanol, 1-Propanol, and Water at Several Temperatures
speedsl	1135.49	m/s	288.15 Volumetric and Ultrasonic Studies of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with Methanol, Ethanol, 1-Propanol, and Water at Several Temperatures
speedsl	1102.29	m/s	298.15 Volumetric and Ultrasonic Studies of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with Methanol, Ethanol, 1-Propanol, and Water at Several Temperatures

speedsl	1069.78	m/s	308.15 1-E Tri	Volumetric and Ultrasonic Studies of thyl-3-methylimidazolium fluoromethanesulfonate lonic Liquid with Methanol, Ethanol, 1-Propanol, and Water at Several Temperatures	
speedsl	1037.71	m/s	318.15 1-E Tri	Volumetric and Ultrasonic Studies of thyl-3-methylimidazolium fluoromethanesulfonate lonic Liquid with Methanol, Ethanol, 1-Propanol, and Water at Several Temperatures	
speedsl	1109.00	m/s	298.15	Densities, Sound Speed, and IR Studies of (Methanol + 1-Acetoxybutane) and (Methanol + 1,1-Dimethylethyl Ester) at (298.15, 303.15, 308.15, and 313.15) K	
speedsl	1092.00	m/s	303.15	Densities, Sound Speed, and IR Studies of (Methanol + 1-Acetoxybutane) and (Methanol + 1,1-Dimethylethyl Ester) at (298.15, 303.15, 308.15, and 313.15) K	
speedsl	1074.00	m/s	308.15	Densities, Sound Speed, and IR Studies of (Methanol + 1-Acetoxybutane) and (Methanol + 1,1-Dimethylethyl Ester) at (298.15, 303.15, 308.15, and 313.15) K	
speedsl	1135.85	m/s	288.15 {2-(2	Densities, excess molar volumes, speeds of sound and isothermal compressibilities for 2-hexyloxyethoxy)ethanol + n-alkanol} systems at temperatures between (288.15 and 308.15) K	

srf	0.02	N/m	333.81 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol
srf	0.02	N/m	293.15 Thermodynamic study of the surface of liquid mixtures containing pyridinium-based ionic liquids and alkanols
srf	0.02	N/m	293.20 KDB
srf	0.02	N/m	288.15 Surface thermodynamics of binary mixtures of aliphatic alcohols in heavy water
srf	0.02	N/m	298.15 Surface thermodynamics of binary mixtures of aliphatic alcohols in heavy water
srf	0.02	N/m	308.15 Surface thermodynamics of binary mixtures of aliphatic alcohols in heavy water
srf	0.02	N/m	318.15 Surface thermodynamics of binary mixtures of aliphatic alcohols in heavy water
srf	0.02	N/m	298.15 Physicochemical properties of two 1-alkyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide ionic liquids and of binary mixtures of 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide with methanol or acetonitrile
srf	0.02	N/m	288.15 Physicochemical properties of two 1-alkyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide ionic liquids and of binary mixtures of 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide with methanol or acetonitrile

	srf	0.02	N/m	308.15 Physicochemical properties of two 1-alkyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imic ionic liquids and of binary mixtures of 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imic with methanol or acetonitrile	de
_	srf	0.02	N/m	303.15 Thermodynamic study of the surface of liquid mixtures containing pyridinium-based ionic liquids and alkanols	
	srf	0.02	N/m	313.15 Thermodynamic study of the surface of liquid mixtures containing pyridinium-based ionic liquids and alkanols	
	srf	0.02	N/m	323.15 Thermodynamic study of the surface of liquid mixtures containing pyridinium-based ionic liquids and alkanols	
	srf	0.02	N/m	298.15 Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols	
_	srf	0.02	N/m	308.15 Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols	

srf	0.02	N/m		Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols	
srf	0.02	N/m		Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols	
srf	0.02	N/m	303.20	Investigation of surface tension and viscosity for aqueous solutions of MEA-MeOH and DEA-MeOH	
srf	0.02	N/m	313.20	Investigation of surface tension and viscosity for aqueous solutions of MEA-MeOH and DEA-MeOH	
srf	0.02	N/m	323.20	Investigation of surface tension and viscosity for aqueous solutions of MEA-MeOH and DEA-MeOH	
srf	0.02	N/m		Thermophysical Characterization of the Mixtures of the Ionic Liquid yl-3-Methylimidazoli Acetate with 1-Propanol or 2-Propanol	um
srf	0.02	N/m		Thermophysical Characterization of the Mixtures of the Ionic Liquid yl-3-Methylimidazoli Acetate with 1-Propanol or 2-Propanol	um

srf	0.02	N/m	298.20 1	Thermophysical Characterization of the Mixtures of the Ionic Liquid -Ethyl-3-Methylimidazolium Acetate with 1-Propanol or 2-Propanol	
srf	0.02	N/m	308.20 1	Thermophysical Characterization of the Mixtures of the Ionic Liquid -Ethyl-3-Methylimidazolium Acetate with 1-Propanol or 2-Propanol	
srf	0.02	N/m	318.20 1	Thermophysical Characterization of the Mixtures of the Ionic Liquid -Ethyl-3-Methylimidazolium Acetate with 1-Propanol or 2-Propanol	
srf	0.02	N/m	293.15	Density and Surface Tension of Binary Mixtures of Acetonitrile + 1-Alkanol at 293.15 K	
srf	0.02	N/m	303.15	Measuring Surface Tension of Liquids at High Temperature and Elevated Pressure	
srf	0.02	N/m	313.15	Measuring Surface Tension of Liquids at High Temperature and Elevated Pressure	
srf	0.02	N/m	323.15	Measuring Surface Tension of Liquids at High Temperature and Elevated Pressure	
srf	0.02	N/m	333.15	Measuring Surface Tension of Liquids at High Temperature and Elevated Pressure	
srf	0.02	N/m	330.01	Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol	

Str					
and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 288.30 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 293.37 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 296.97 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 301.54 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 301.54 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 307.31 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 311.76 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 311.76 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 317.66 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 322.90 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol	srf	0.02	N/m	279.11	and Correlation of the Surface Tension-Temperature Relation for
and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 293.37 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 296.97 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 301.54 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 307.31 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 307.31 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 311.76 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 311.76 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 317.66 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 322.90 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol	srf	0.02	N/m	282.59	and Correlation of the Surface Tension-Temperature Relation for
and Correlation of the Surface Tension-Temperature Relation for Methanol Srf 0.02 N/m 296.97 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol Srf 0.02 N/m 301.54 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol Srf 0.02 N/m 307.31 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol Srf 0.02 N/m 311.76 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol Srf 0.02 N/m 311.76 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol Srf 0.02 N/m 317.66 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol Srf 0.02 N/m 322.90 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol Srf 0.02 N/m 322.90 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol	srf	0.02	N/m	288.30	and Correlation of the Surface Tension-Temperature Relation for
and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 301.54 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 307.31 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 311.76 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 311.76 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 317.66 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 322.90 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 322.90 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol	srf	0.02	N/m	293.37	and Correlation of the Surface Tension-Temperature Relation for
and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 307.31 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 311.76 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 317.66 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 317.66 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 322.90 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol	srf	0.02	N/m	296.97	and Correlation of the Surface Tension-Temperature Relation for
and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 311.76 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 317.66 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 317.66 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 322.90 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol	srf	0.02	N/m	301.54	and Correlation of the Surface Tension-Temperature Relation for
and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 317.66 Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 322.90 Measurement and Correlation of the Surface Tension-Temperature Relation of the Surface Tension-Temperature Relation for Methanol	srf	0.02	N/m	307.31	and Correlation of the Surface Tension-Temperature Relation for
and Correlation of the Surface Tension-Temperature Relation for Methanol srf 0.02 N/m 322.90 Measurement and Correlation of the Surface Tension-Temperature Relation for	srf	0.02	N/m	311.76	and Correlation of the Surface Tension-Temperature Relation for
and Correlation of the Surface Tension-Temperature Relation for	srf	0.02	N/m	317.66	and Correlation of the Surface Tension-Temperature Relation for
	srf	0.02	N/m	322.90	and Correlation of the Surface Tension-Temperature Relation for

srf	0.02	N/m	326.56	Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol
srf	0.02	N/m	343.15	Measuring Surface Tension of Liquids at High Temperature and Elevated Pressure
tcondl	0.19	W/m×K	298.15	Measurement of thermal conductivities of [mmim]DMP/CH3OH and [mmim]DMP/H2O by freestanding sensor-based 3w technique

Pressure Dependent Properties

Property code	Value	Unit	Pressure [kPa]	Source
tbp	337.65	K	96.60	Low cost apparatus for rapid boiling point determination of small air sensitive samples under inert atmosphere
tbp	315.70	К	40.00	Vapor-Liquid Equilibrium Study of the Gamma- Valerolactone-Wate Binary System
tbp	319.00	K	46.66	Vapor-Liquid Equilibrium Study of the Gamma- Valerolactone-Wate Binary System
tbp	324.30	К	58.80	Vapor-Liquid Equilibrium Study of the Gamma- Valerolactone-Wate Binary System
tbp	327.50	К	67.59	Vapor-Liquid Equilibrium Study of the Gamma- Valerolactone-Wate Binary System

Vapor-Liquid Equilibrium Study of the Gamma-Valerolactone-Water Binary System

Value

257.16

472.60

Correlations

Information

Temperature range (K), min.

Temperature range (K), max.

tbp

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.65992e+01
Coeff. B	-3.63914e+03
Coeff. C	-3.40540e+01

Information	Value
Property code	pvap
Equation	$In(Pvp) = A + B/T + C*In(T) + D*T^2$
Coeff. A	7.90941e+01
Coeff. B	-7.02920e+03
Coeff. C	-9.37282e+00
Coeff. D	7.99273e-06
Temperature range (K), min.	175.47
Temperature range (K), max.	512.58

Datasets

Molar heat capacity at constant pressure, J/K/mol

Temperature, K - Liquid	Pressure, kPa - Liquid	Molar heat capacity at constant pressure, J/K/mol - Liquid
248.15	500.00	74.02
248.15	1000.00	74.02
248.15	2500.00	73.95
248.15	5000.00	73.89

248.15	7500.00	73.79
248.15	10000.00	73.79
248.15	12500.00	73.76
273.15	500.00	77.03
273.15	1000.00	77.00
273.15	2500.00	76.93
273.15	5000.00	76.84
273.15	7500.00	76.80
273.15	10000.00	76.77
273.15	12500.00	76.74
298.15	500.00	81.39
298.15	1000.00	81.35
298.15	2500.00	81.19
298.15	5000.00	81.07
298.15	7500.00	81.03
298.15	10000.00	80.91
298.15	12500.00	80.91
323.15	500.00	86.87
323.15	1000.00	86.80
323.15	2500.00	86.64
323.15	5000.00	86.45
323.15	7500.00	86.29
323.15	10000.00	86.13
323.15	12500.00	86.00
348.15	500.00	93.66
348.15	1000.00	93.59
348.15	2500.00	93.43
348.15	5000.00	93.18
348.15	7500.00	92.92
348.15	10000.00	92.73
348.15	12500.00	92.41
373.15	500.00	101.83
373.15	1000.00	101.76
373.15	2500.00	101.41
373.15	5000.00	101.00
373.15	7500.00	100.64
373.15	10000.00	100.23
373.15	12500.00	99.97
398.15	1000.00	111.86
398.15	2500.00	111.28
398.15	5000.00	110.38
398.15	7500.00	109.58
398.15	10000.00	108.97
398.15	12500.00	108.33

423.15	2500.00	122.98
423.15	5000.00	121.41
423.15	7500.00	120.03
423.15	10000.00	118.84
423.15	12500.00	117.85
473.15	5000.00	162.32
473.15	7500.00	152.94
473.15	10000.00	146.91
473.15	12500.00	142.75

https://www.doi.org/10.1016/j.jct.2005.03.012

Temperature, K	Pressure, kPa	Molar heat capacity at constant pressure, J/K/mol
280.00	100.00	77.22
280.00	1000.00	74.02
280.00	5000.00	73.70
320.00	100.00	87.15
320.00	1000.00	85.87
320.00	5000.00	84.27
360.00	1000.00	97.41
360.00	5000.00	94.20
360.00	10000.00	94.52
360.00	15000.00	97.09

Reference

https://www.doi.org/10.1016/j.jct.2006.11.001

Viscosity, Pa*s

Temperature, K - Liquid	Pressure, kPa - Liquid	Viscosity, Pa*s - Liquid
293.15	100.00	0.0005830
293.15	20000.00	0.0006460
293.15	40000.00	0.0007060
293.15	60000.00	0.0007670
293.15	80000.00	0.0008300
293.15	100000.00	0.0008940
313.15	100.00	0.0004450
313.15	20000.00	0.0004970
313.15	40000.00	0.0005460
313.15	60000.00	0.0005930
313.15	80000.00	0.0006400

313.15	100000.00	0.0006830
333.15	100.00	0.0003430
333.15	20000.00	0.0003860
333.15	40000.00	0.0004240
333.15	60000.00	0.0004620
333.15	80000.00	0.0005010
333.15	100000.00	0.0005430
353.15	20000.00	0.0003030
353.15	40000.00	0.0003370
353.15	60000.00	0.0003680
353.15	80000.00	0.0004000
353.15	100000.00	0.0004330

https://www.doi.org/10.1007/s10765-005-8089-2

Temperature, K	Pressure, kPa	Viscosity, Pa*s
298.15	81.50	0.0005730
Reference		https://www.doi.org/10.1016/j.jct.2016.12.036

Temperature, K	Amount density, mol/m3	Viscosity, Pa*s
297.64	3.79	0.000096
312.54	3.79	0.0000101
324.75	3.79	0.0000105
338.69	3.79	0.0000110
352.91	3.79	0.0000115
352.93	3.79	0.0000114
366.84	3.79	0.0000119
381.27	3.79	0.0000124
395.39	3.79	0.0000129
411.30	3.79	0.0000134
423.50	3.79	0.0000138
440.61	3.79	0.0000144
468.85	3.79	0.0000154
496.65	3.79	0.0000163
525.41	3.79	0.0000173
547.13	3.79	0.0000180
569.26	3.79	0.0000188
597.60	3.79	0.0000198
298.16	6.32	0.000096
312.25	6.32	0.0000101
325.91	6.32	0.0000105

339.77	6.32	0.0000110
353.30	6.32	0.0000115
355.50	6.32	0.0000115
367.84	6.32	0.0000119
382.15	6.32	0.0000124
396.23	6.32	0.0000129
411.31	6.32	0.0000134
424.73	6.32	0.0000139
440.07	6.32	0.0000144
297.43	8.17	0.000096
311.23	8.17	0.0000100
325.15	8.17	0.0000105
338.47	8.17	0.0000110
352.62	8.17	0.0000114
353.05	8.17	0.0000115
366.82	8.17	0.0000119
381.38	8.17	0.0000124
394.76	8.17	0.0000129
412.33	8.17	0.0000135
423.31	8.17	0.0000138
437.81	8.17	0.0000143
496.40	8.17	0.0000163
525.42	8.17	0.0000173
546.79	8.17	0.0000180
602.56	8.17	0.0000199
297.41	10.1	0.000095
313.89	10.1	0.0000101
325.22	10.1	0.0000105
338.62	10.1	0.0000109
352.86	10.1	0.0000114
353.44	10.1	0.0000115
366.59	10.1	0.0000119
380.86	10.1	0.0000124
394.63	10.1	0.0000129
409.51	10.1	0.0000134
423.96	10.1	0.0000139
437.60	10.1	0.0000143
467.33	10.1	0.0000153
496.56	10.1	0.0000163
298.54	13.2	0.000096
314.18	13.2	0.0000101
325.76	13.2	0.0000105
339.34	13.2	0.0000110
353.22	13.2	0.0000114

353.26	13.2	0.0000114
367.10	13.2	0.0000119
380.97	13.2	0.0000124
395.40	13.2	0.0000129
409.39	13.2	0.0000133
423.77	13.2	0.0000138
438.41	13.2	0.0000143
467.74	13.2	0.0000153
496.43	13.2	0.0000163
526.39	13.2	0.0000173
546.84	13.2	0.0000180
567.40	13.2	0.0000187
596.93	13.2	0.0000197
301.53	17.93	0.000097
311.12	17.93	0.0000100
325.59	17.93	0.0000105
339.25	17.93	0.0000109
353.58	17.93	0.0000114
355.67	17.93	0.0000115
366.93	17.93	0.0000119
381.53	17.93	0.0000124
395.23	17.93	0.0000128
412.01	17.93	0.0000134
424.38	17.93	0.0000138
439.47	17.93	0.0000143
468.08	17.93	0.0000153
496.41	17.93	0.0000163
527.99	17.93	0.0000173
548.52	17.93	0.0000181
571.83	17.93	0.0000189
597.15	17.93	0.0000197
299.92	24.58	0.000096
310.88	24.58	0.000099
325.98	24.58	0.0000104
340.14	24.58	0.0000109
353.71	24.58	0.0000114
355.05	24.58	0.0000114
368.03	24.58	0.0000119
383.55	24.58	0.0000124
395.18	24.58	0.0000128
409.75	24.58	0.0000133
424.41	24.58	0.0000138
439.20	24.58	0.0000143
466.95	24.58	0.0000153

496.44	24.58	0.0000163
526.84	24.58	0.0000173
299.79	32.22	0.000096
311.60	32.22	0.0000100
324.78	32.22	0.0000104
338.66	32.22	0.0000108
353.78	32.22	0.0000114
355.04	32.22	0.0000114
366.99	32.22	0.0000118
381.92	32.22	0.0000124
395.16	32.22	0.0000128
410.18	32.22	0.0000133
423.88	32.22	0.0000138
439.16	32.22	0.0000143
467.62	32.22	0.0000153
496.97	32.22	0.0000163
526.17	32.22	0.0000173
547.30	32.22	0.0000180
567.53	32.22	0.0000187
597.12	32.22	0.0000197
297.92	38.68	0.000096
311.60	38.68	0.0000100
326.88	38.68	0.0000104
338.72	38.68	0.0000108
353.06	38.68	0.0000113
353.18	38.68	0.0000113
367.87	38.68	0.0000118
381.90	38.68	0.0000123
395.37	38.68	0.0000128
410.35	38.68	0.0000133
425.10	38.68	0.0000138
441.61	38.68	0.0000144
467.34	38.68	0.0000153
496.21	38.68	0.0000163
527.02	38.68	0.0000173
547.49	38.68	0.0000180
568.11	38.68	0.0000187
598.60	38.68	0.0000198
298.71	49.53	0.000096
314.20	49.53	0.0000100
324.77	49.53	0.0000104
338.81	49.53	0.0000108
352.35	49.53	0.0000113
353.20	49.53	0.0000113

367.81	49.53	0.0000118
381.27	49.53	0.0000123
394.88	49.53	0.0000128
411.32	49.53	0.0000134
423.52	49.53	0.000138
439.56	49.53	0.0000143
467.49	49.53	0.0000153
496.48	49.53	0.0000163
525.14	49.53	0.0000172
548.04	49.53	0.0000180
569.93	49.53	0.0000187
597.28	49.53	0.0000197

Reference https://www.doi.org/10.1021/je050429b

Pressure, kPa	Temperature, K	Viscosity, Pa*s
101.00	297.80	0.0005463
Reference		https://www.doi.org/10.1021/je1011828

Pressure, kPa	Temperature, K	Viscosity, Pa*s
101.00	303.15	0.0005230
Reference		https://www.doi.org/10.1021/je900656c

Refractive index (Na D-line)

Pressure, kPa - Liquid	Temperature, K - Liquid	Refractive index (Na D-line) - Liquid
100.00	298.15	1.3267
Reference		https://www.doi.org/10.1016/j.jct.2016.01.012

Temperature, K	Pressure, kPa	Refractive index (Na D-line)
298.15	100.00	1.32655

Reference https://www.doi.org/10.1016/j.jct.2018.02.005

Mass density, kg/m3

Temperature, K - Liquid	Pressure, kPa - Liquid	Mass density, kg/m3 - Liquid
298.26	235.00	785.98
298.26	5000.00	790.69
298.26	9999.00	795.4
298.26	15013.00	799.88
298.26	19987.00	804.1
298.26	25008.00	808.17
298.26	29997.00	812.04
298.26	34991.00	815.76
298.26	39981.00	819.34
323.22	270.00	762.14
323.22	4990.00	767.53
323.22	9984.00	772.87
323.22	14982.00	777.91
323.22	19989.00	782.69
323.22	24986.00	787.21
323.22	29995.00	791.53
323.22	34987.00	795.64
323.22	39993.00	799.6
348.25	366.00	737.29
348.25	4987.00	743.46
348.25	9986.00	749.65
348.25	14991.00	755.42
348.25	20004.00	760.84
348.25	25020.00	765.94
348.25	30013.00	770.76
348.25	34989.00	775.32
348.25	40000.00	779.7
373.26	534.00	710.55
373.26	4983.00	717.67
373.26	9990.00	724.99
373.26	14998.00	731.69
373.26	19985.00	737.88
373.26	24994.00	743.68
373.26	29997.00	749.13
373.26	35001.00	754.27
373.26	39996.00	759.14
398.28	934.00	680.93
398.28	4984.00	689.0
398.28	9998.00	697.91

398.28	14986.00	705.88
398.28	19987.00	713.16
398.28	24992.00	719.87
398.28	29991.00	726.11
398.28	35005.00	731.99
398.28	40004.00	737.47

https://www.doi.org/10.1016/j.jct.2005.02.004

Temperature, K	Pressure, kPa	Mass density, kg/m3
298.15	100.00	792.6
298.15	5000.00	796.2
298.15	9900.00	801.0
298.15	19700.00	808.4
298.15	29500.00	816.0
298.15	39300.00	823.8
298.15	49100.00	830.0
298.15	58900.00	836.3
323.15	100.00	770.3
323.15	5000.00	774.2
323.15	9900.00	778.2
323.15	19700.00	787.0
323.15	29500.00	795.0
323.15	39300.00	803.4
323.15	49100.00	811.0
323.15	58900.00	818.2
348.15	5000.00	748.9
348.15	9900.00	753.9
348.15	19700.00	764.1
348.15	29500.00	773.1
348.15	39300.00	782.6
348.15	49100.00	790.9
348.15	58900.00	798.9
373.15	5000.00	721.1
373.15	9900.00	727.7
373.15	19700.00	739.3
373.15	29500.00	750.4
373.15	39300.00	760.2
373.15	49100.00	769.6
373.15	58900.00	778.2
398.15	5000.00	690.0
398.15	9900.00	697.6
398.15	19700.00	712.8

398.15	29500.00	725.4
398.15	39300.00	736.0
398.15	49100.00	747.2
398.15	58900.00	757.0
423.15	5000.00	652.8
423.15	9900.00	665.2
423.15	19700.00	683.6
423.15	29500.00	698.8
423.15	39300.00	710.8
423.15	49100.00	723.9
423.15	58900.00	735.0
448.15	5000.00	610.4
448.15	9900.00	628.9
448.15	19700.00	652.4
448.15	29500.00	670.8
448.15	39300.00	685.6
448.15	49100.00	700.0
448.15	58900.00	713.0
473.15	5000.00	553.4
473.15	9900.00	585.0
473.15	19700.00	620.2
473.15	29500.00	642.0
473.15	39300.00	660.6
473.15	49100.00	677.2
473.15	58900.00	691.2
498.15	9900.00	525.0
498.15	19700.00	584.8
498.15	29500.00	613.4
498.15	39300.00	636.0
498.15	49100.00	655.0
498.15	58900.00	670.0

https://www.doi.org/10.1016/j.jct.2005.03.006

Temperature, K	Pressure, kPa	Mass density, kg/m3
298.26	235.00	785.98
298.26	5000.00	790.69
298.26	9999.00	795.4
298.26	15013.00	799.88
298.26	19987.00	804.1
298.26	25008.00	808.17
298.26	29997.00	812.04
298.26	34991.00	815.76

298.26	39981.00	819.34
323.22	270.00	762.14
323.22	4990.00	767.53
323.22	9984.00	772.87
323.22	14982.00	777.91
323.22	19989.00	782.69
323.22	24986.00	787.21
323.22	29995.00	791.53
323.22	34987.00	795.64
323.22	39993.00	799.6
348.25	366.00	737.29
348.25	4987.00	743.46
348.25	9986.00	749.65
348.25	14991.00	755.42
348.25	20004.00	760.84
348.25	25020.00	765.94
348.25	30013.00	770.76
348.25	34989.00	775.32
348.25	40000.00	779.7
373.26	534.00	710.55
373.26	4983.00	717.67
373.26	9990.00	724.99
373.26	14998.00	731.69
373.26	19985.00	737.88
373.26	24994.00	743.68
373.26	29997.00	749.13
373.26	35001.00	754.27
373.26	39996.00	759.14
398.28	934.00	680.93
398.28	4984.00	689.0
398.28	9998.00	697.91
398.28	14986.00	705.88
398.28	19987.00	713.16
398.28	24992.00	719.87
398.28	29991.00	726.11
398.28	35005.00	731.99
398.28	40004.00	737.47
		"

https://www.doi.org/10.1016/j.jct.2005.05.003

Pressure, kPa	Temperature, K	Mass density, kg/m3
1000.00	303.20	783.0
2000.00	303.20	784.0

3000.00	303.20	785.0
4000.00	303.20	786.0
5000.00	303.20	787.0
6000.00	303.20	788.0
7000.00	303.20	788.9
8000.00	303.20	789.9
9000.00	303.20	790.9
10000.00	303.20	791.8
1000.00	323.20	762.8
2000.00	323.20	763.9
3000.00	323.20	765.0
4000.00	323.20	766.2
5000.00	323.20	767.3
6000.00	323.20	768.3
7000.00	323.20	769.4
8000.00	323.20	770.5
9000.00	323.20	771.5
10000.00	323.20	772.6

https://www.doi.org/10.1016/j.jct.2012.10.002

Temperature, K	Pressure, kPa	Mass density, kg/m3
298.15	100.00	786.57
Reference		https://www.doi.org/10.1016/j.jct.2017.07.026

Temperature, K	Pressure, kPa	Mass density, kg/m3
298.15	100.00	786.53
Reference		https://www.doi.org/10.1016/j.jct.2018.07.013

Temperature, K	Pressure, kPa	Mass density, kg/m3
288.15	100.00	796.19
288.15	5000.00	800.57
288.15	10000.00	804.93
288.15	15000.00	808.85
288.15	20000.00	812.92
288.15	25000.00	816.56
288.15	30000.00	820.09
288.15	35000.00	823.62
288.15	40000.00	827.04

293.15	100.00	791.18
293.15	5000.00	795.97
293.15	10000.00	800.47
293.15	15000.00	804.52
293.15	20000.00	808.43
293.15	25000.00	812.34
293.15	30000.00	815.93
293.15	35000.00	819.32
293.15	40000.00	822.48
298.15	100.00	786.76
298.15	5000.00	791.52
298.15	10000.00	795.8
298.15	15000.00	800.13
298.15	20000.00	804.18
298.15	25000.00	808.04
298.15	30000.00	811.69
298.15	35000.00	815.2
298.15	40000.00	818.33
303.15	100.00	782.07
303.15	5000.00	786.79
303.15	10000.00	791.31
303.15	15000.00	795.85
303.15	20000.00	800.16
303.15	25000.00	804.08
303.15	30000.00	807.78
303.15	35000.00	811.31
303.15	40000.00	814.7
308.15	100.00	777.09
308.15	5000.00	781.85
308.15	10000.00	786.63
308.15	15000.00	791.23
308.15	20000.00	795.58
308.15	25000.00	799.85
308.15	30000.00	803.73
308.15	35000.00	807.42
308.15	40000.00	811.08
Defenses	h.11:	201/hunny doi 0x0/10 1016/i iot 2010 02 011

https://www.doi.org/10.1016/j.jct.2019.02.011

Temperature, K	Pressure, kPa	Mass density, kg/m3
298.15	81.50	786.55

Temperature, K	Pressure, kPa	Mass density, kg/m3
293.15	100.00	791.15
293.15	5000.00	795.92
293.15	10000.00	800.41
293.15	15000.00	804.64
293.15	20000.00	808.67
293.15	25000.00	812.52
293.15	30000.00	816.25
293.15	35000.00	819.89
303.15	100.00	781.84
303.15	5000.00	786.9
303.15	10000.00	791.61
303.15	15000.00	796.01
303.15	20000.00	800.14
303.15	25000.00	804.05
303.15	30000.00	807.78
303.15	35000.00	811.37
313.15	100.00	772.35
313.15	5000.00	777.48
313.15	10000.00	782.37
313.15	15000.00	786.99
313.15	20000.00	791.38
313.15	25000.00	795.59
313.15	30000.00	799.69
313.15	35000.00	803.73

https://www.doi.org/10.1021/acs.jced.8b00975

Pressure, kPa	Temperature, K	Mass density, kg/m3
100.00	283.15	800.54
100.00	293.15	791.23
100.00	298.15	786.51
100.00	303.15	781.96
100.00	313.15	772.43
100.00	318.15	767.47
100.00	323.15	762.78
100.00	328.15	757.83
100.00	333.15	752.96
2500.00	283.15	802.75
2500.00	293.15	793.52
2500.00	298.15	788.81

2500.00	303.15	784.36
2500.00	313.15	774.99
2500.00	318.15	770.09
2500.00	323.15	765.48
2500.00	328.15	760.61
2500.00	333.15	755.84
5000.00	283.15	804.88
5000.00	293.15	795.8
5000.00	298.15	791.18
5000.00	303.15	786.78
5000.00	313.15	777.53
5000.00	318.15	772.74
5000.00	323.15	768.2
5000.00	328.15	763.41
5000.00	333.15	758.73
10000.00	283.15	809.06
10000.00	293.15	800.17
10000.00	298.15	795.7
10000.00	303.15	791.48
10000.00	313.15	782.45
10000.00	318.15	777.79
10000.00	323.15	773.39
10000.00	328.15	768.75
10000.00	333.15	764.21
15000.00	283.15	813.06
15000.00	293.15	804.36
15000.00	298.15	800.02
15000.00	303.15	795.84
15000.00	313.15	787.08
15000.00	318.15	782.57
15000.00	323.15	778.3
15000.00	328.15	773.73
15000.00	333.15	769.39
20000.00	283.15	816.88
20000.00	293.15	808.39
20000.00	298.15	804.15
20000.00	303.15	799.97
20000.00	313.15	791.5
20000.00	318.15	787.09
20000.00	323.15	782.93
20000.00	328.15	778.49
20000.00	333.15	774.25
25000.00	283.15	820.6
25000.00	293.15	812.25

	25000.00	298.15	808.1
	25000.00	303.15	803.95
	25000.00	313.15	795.74
	25000.00	318.15	791.43
	25000.00	323.15	787.34
	25000.00	328.15	783.03
	25000.00	333.15	778.87
	30000.00	283.15	824.14
	30000.00	293.15	815.94
	30000.00	298.15	811.88
	30000.00	303.15	807.83
	30000.00	313.15	799.72
	30000.00	323.15	791.56
	30000.00	333.15	783.33
	35000.00	283.15	827.58
	35000.00	293.15	819.55
	35000.00	298.15	815.52
	35000.00	303.15	811.51
	35000.00	313.15	803.62
	35000.00	323.15	795.6
	35000.00	333.15	787.53
Reference			https://www.doi.org/10.1021/je700188w

Speed of sound, m/s

Temperature, K - Liquid	Pressure, kPa - Liquid	Speed of sound, m/s - Liquid
253.15	101.00	1259.391
253.15	5031.00	1283.569
253.15	10064.00	1307.272
253.15	15070.00	1329.88
253.15	20048.00	1351.494
253.15	25130.00	1372.789
253.15	30260.00	1393.514
273.15	101.00	1187.324
273.15	5017.00	1213.77
273.15	10158.00	1240.041
273.15	15070.00	1264.004
273.15	20132.00	1287.633
273.15	25155.00	1310.139
273.15	30074.00	1331.42

293.15	101.00	1119.106
293.15	5028.00	1147.798
293.15	10032.00	1175.493
293.15	15145.00	1202.422
293.15	20159.00	1227.564
293.15	25062.00	1251.109
293.15	30276.00	1275.096
313.15	101.00	1053.178
313.15	5046.00	1084.848
313.15	10127.00	1115.409
313.15	15085.00	1143.55
313.15	19989.00	1169.962
313.15	25090.00	1196.105
313.15	30009.00	1220.145
333.15	101.00	988.923
333.15	5029.00	1023.676
333.15	10110.00	1056.926
333.15	15215.00	1088.157
333.15	20093.00	1116.297
333.15	25061.00	1143.501
333.15	30122.00	1169.869
353.15	197.00	925.583
353.15	5097.00	963.758
353.15	10106.00	999.623
353.15	15143.00	1033.012
353.15	20216.00	1064.48
353.15	25221.00	1093.69
353.15	30092.00	1120.591

https://www.doi.org/10.1016/j.jct.2015.10.006

Temperature, K	Pressure, kPa	Speed of sound, m/s
299.95	99.00	1096.3
220.38	100.00	1387.9
244.25	125.00	1294.5
349.98	201.00	935.8
244.27	761.00	1297.5
399.94	798.00	770.2
299.94	963.00	1101.7
349.98	970.00	941.9
399.94	1015.00	772.5
220.41	1023.00	1391.8
244.28	1200.00	1299.5

220.39	1839.00	1395.3
244.30	1980.00	1303.2
349.98	1998.00	949.9
399.94	2112.00	784.4
299.94	2240.00	1109.5
450.22	2562.00	568.3
349.98	4864.00	971.5
450.19	4910.00	608.8
244.31	5110.00	1317.8
399.93	5110.00	815.0
299.95	5128.00	1126.7
399.92	9339.00	854.2
500.06	9535.00	412.8
244.32	9712.00	1338.5
349.97	9858.00	1006.8
299.95	9896.00	1153.8
220.96	10454.00	1428.5
450.22	14312.00	730.4
499.98	19828.00	611.1
349.99	19881.00	1070.5
220.46	20095.00	1467.9
450.20	20347.00	794.1
299.96	21093.00	1212.5
399.92	21337.00	948.3
499.94	28092.00	708.5
500.06	30612.00	733.2
450.18	39568.00	943.1
499.94	40326.00	818.5
220.39	40357.00	1540.1
299.96	40780.00	1302.9
350.00	41608.00	1186.3
399.89	42375.00	1078.3
299.95	58877.00	1375.6
450.17	59905.00	1062.6
499.94	60313.00	955.4
349.95	60336.00	1270.3
220.26	60890.00	1606.5
399.90	61164.00	1172.4
220.38	69376.00	1631.5
220.37	69581.00	1632.2
450.20	72355.00	1124.9
299.94	80229.00	1452.1
399.91	81158.00	1258.6
349.96	82312.00	1356.2

399.93	84741.00	1273.4
399.73	98358.00	1325.1
299.95	98460.00	1511.3
349.96	99275.00	1415.9
220.37	111490.00	1746.8
399.91	122977.00	1409.6
299.96	123414.00	1585.5
349.97	124114.00	1495.1

https://www.doi.org/10.1021/acs.jced.8b00938

Thermal diffusivity, m2/s

Pressure, kPa - Liquid	Temperature, K - Liquid	Thermal diffusivity, m2/s - Liquid
0.00	299.15	9.7000e-08
370000.00	300.15	1.3500e-07
40000.00	299.85	1.3200e-07
860000.00	300.95	1.5700e-07
88000.00	299.15	1.5900e-07
1290000.00	301.05	1.7000e-07
1290000.00	301.05	1.6600e-07
1750000.00	300.75	1.8000e-07
2430000.00	299.15	1.8600e-07
3100000.00	299.15	1.9200e-07
3120000.00	299.15	1.9900e-07
4220000.00	298.15	2.1700e-07
500000.00	299.75	2.3700e-07
5300000.00	297.95	2.1900e-07

Reference

https://www.doi.org/10.1021/acs.jced.7b00222

Molar volume, m3/mol

Temperature, K - Liquid	Pressure, kPa - Liquid	Molar volume, m3/mol - Liquid
298.15	100.00	0.0000
298.15	10000.00	0.0000
313.15	100.00	0.0000
313.15	10000.00	0.0000

328.15	100.00	0.0000
328.15	10000.00	0.0000

https://www.doi.org/10.1021/je800334m

Sources

Solvents between (278 and 333) K:

https://www.doi.org/10.1021/acs.jced.8b00080 **Determination of Activity Coefficients** Determination of Activity Coefficients at Infinite Dilution of Organic Solutes in Themparature Rependence on Mutual Solutive Rependence on Mutual Solutive Rependence on Mutual Solutive Rependence on Mutual Solutive Rependence of Mutual Solution of Participation of the Rependence of the Repndence of the Rependence of the Repndence of the Repndence of th https://www.doi.org/10.1021/je800407h http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1016/j.fluid.2014.10.011 https://www.doi.org/10.1021/je700404u 2-(6-Oxido-6H-dibenz[c,e][1,2]oxaphosphorin-6-yl)-1,4-dihydroxy
Phsel/vensyratte & detect & Solvents:
Modeling Analysis of Chloroxine in Selkibiting Solvent Precipitation of Activity Selficial Solvent Precipitation Precipitation Precipitation Precipitation Precipitation Precipitation P Actisity ceafficients) per la cherary mixtures soi or p-cresol with C liquid phicipient alcelor water systems containing so parie of each rule propylene glycol solubility of dipost pylene glycol solubility of dipost pylene glycol solubility of solid different and later pure the propylene glycol solubility of solid different and later pure the propylene glycol solubility of solid different solubilities of Daidzein and Genistein in Different solubilities of Daidzein and Genistein in Different solubilities with the service of Daidzein and Genistein in Different solubilities of Daidzein and Genistein in Daidzein https://www.doi.org/10.1016/j.fluid.2006.03.018 https://www.doi.org/10.1016/j.jct.2016.06.010 https://www.doi.org/10.1016/j.fluid.2014.01.022 https://www.doi.org/10.1016/j.fluid.2012.12.031 https://www.doi.org/10.1016/j.jct.2016.12.002 of Daidzein and Genistein in Different Selubility of puerarin in the binary system of methanol and acetic acid Experimental isografic vapor-liquid https://www.doi.org/10.1016/j.fluid.2012.11.035 Experimental isograric vapor-liquid equilibrium at atmospheric and Edisotral appropriate specific and Edisotral appropriate specific speci https://www.doi.org/10.1016/j.fluid.2014.09.014 https://www.doi.org/10.1016/j.jct.2016.11.011 https://www.doi.org/10.1016/j.jct.2016.09.015 https://www.doi.org/10.1016/j.fluid.2014.06.021 https://www.doi.org/10.1021/acs.jced.5b00823 https://www.doi.org/10.1016/j.fluid.2005.05.002 พละอาการแบบ อาการแบบ อาการแบบ รายการแบบ อาการแบบ อาการแบ https://www.doi.org/10.1016/j.jct.2015.10.006 https://www.doi.org/10.1021/acs.jced.8b00663 Solubility and Thermodynamic
Pensetyias d Ovinace density in the Pensety is an Acetta little Wardhamplaty
Solution Coefficients of Organic
Companies in New Insides 1997 https://www.doi.org/10.1021/je050519g https://www.doi.org/10.1021/je9003178 Compounds in New Imidazolium and https://www.doi.org/10.1021/acs.jced.6b00929 https://www.doi.org/10.1021/je800246v https://www.doi.org/10.1021/je800616p https://www.doi.org/10.1021/je301237t https://www.doi.org/10.1016/j.jct.2013.03.022 (methanol or ethanol or 1-propanol): Solubility of Sulpiride in Pure Organic

http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl file/ci034243xsi20040112 053635.txt https://www.doi.org/10.1021/je1002016

Volumetric properties of the boldine + https://www.doi.org/10.1016/j.fluid.2007.04.030 alcohol mixtures at atmospheric Selubility (Neasure no and Oskralation https://www.doi.org/10.1021/acs.jced.9b00308 pressure การการของการเขา ช่อง เจนานาคพา สู่เอริการเขา เป็น เป็น เป็น เป็น เป็น เป็น ช่อกอกเรียง เป็น เป็น เป็น เป็น เป็น เป็น Carbon Dioxide + Hydrogen + Methanol จือใหล่เป็นรู Medaling and Mixing Properties for Benzoin in Different Measurants and เรื่องผิดพิฒิเขาes at https://www.doi.org/10.1021/je0301491 https://www.doi.org/10.1021/acs.jced.7b00743 https://www.doi.org/10.1021/je0495785 មិលបានអំពុលអំពលម្ចាស់ស្វាល់ អាចម្រាស់ អាចម្រ https://www.doi.org/10.1016/j.jct.2013.05.024 https://www.doi.org/10.1016/j.jct.2011.11.025 https://www.doi.org/10.1016/j.jct.2015.02.019 https://www.doi.org/10.1016/j.jct.2012.05.001 https://www.doi.org/10.1021/acs.jced.6b00384 https://www.doi.org/10.1016/j.jct.2019.06.018 https://www.doi.org/10.1021/acs.jced.5b00758 https://www.doi.org/10.1021/je400507u https://www.doi.org/10.1021/acs.jced.9b00220 https://www.doi.org/10.1021/je401120a https://www.doi.org/10.1021/acs.jced.9b00009 **ではやまればけでかりとれた。心でい Mathanot:**Solubility of Calcium Formate (Form Mathanot) ではいていていていていている。
Mathanot (Form Mathanot) ではいる。
Mathanot (Form Mathanot) ではいる。
Mathanot (Form Mathanot) ではいる。
Mathanot (Form Mathanot) ではいる。
Mathanot (Form Mathanot) では、
Mathanot (Form Mathanot) では、 https://www.doi.org/10.1016/j.jct.2018.12.019 https://www.doi.org/10.1021/je9008427 https://www.doi.org/10.1021/acs.jced.9b00172 https://www.doi.org/10.1016/j.fluid.2013.02.001 https://www.doi.org/10.1021/je4010917 N.N'-[1,3-Phenylenebis(methylene)]bis(phosphoramidic Solyphilipgs of Tensphenin Esier in 10 https://www.doi. P.เกีย(รู้ ปาวิเทียรสุรไทยขึ้น)bis-,P,P,P',P'-tetraphenyl Esterin รองยังเลารสุงเกียร์เซเนียง dilution https://www.doi.o https://www.doi.org/10.1021/je400412z Estevili Seretician solvening te dilution measurements for organic solutes solidriliquid requirements for organic solutes solidriliquid requirements for organic solutes solidriliquid requirements for organic solutes solvents and solid in a field which solven and solvents and solvents and solvents and solvents and solvents are solvents and solvents and solvents are in a field which solvents and solvents are in a field which solvents are in a field which solvents are form in five meas and solvents are form in five meas are solvents form and solvents between and solvents between https://www.doi.org/10.1016/j.jct.2012.12.009 https://www.doi.org/10.1016/j.fluid.2014.05.003 https://www.doi.org/10.1016/j.jct.2016.10.006 https://www.doi.org/10.1021/je600518s https://www.doi.org/10.1021/je1013262 https://www.doi.org/10.1021/je400218d https://www.doi.org/10.1016/j.jct.2012.06.005 https://www.doi.org/10.1021/je900851k អ្វីគ្រាស់មួត្តស្នេចខេត្តស្នេទីolvents between ទូលខ្លាំង មើនទីបាន ment and https://www.doi.org/10.1021/acs.jced.8b00931 Thermodynamic Model Correlation and Exhaustone 20 ignis 60 interest for interest for the in https://www.doi.org/10.1016/j.fluid.2006.09.007 https://www.doi.org/10.1016/j.fluid.2008.03.012 acetoacetate + (methanol, +ethanol acetoacetate + (methanol, +ethanol, Spluting Hormody, 1996) at T = preserging and spluting Hormody, 1996 and the production of Expensive Solvential Conference of Expensive Solvential Conferen # Methanol or Ethanol or 1-Propanol +
Whethanol or 1-Propanol +
Whethanol or Ethanol or 1-Propanol +
Whethanol or 1-Propanol https://www.doi.org/10.1007/s10765-008-0444-7 https://www.doi.org/10.1016/j.fluid.2014.01.008 solvents from T = (283.15 to 318.15) Kand apparent thermodynamic

properties of solutions:

Solubility and thermodynamic functions of cefazolin acid in pure and Measurement and (20 seld to bure and Measurement and (20 seld to be 6) K: liquid-liquid equilibrium for the ternary petermination and correlation of adjustituted by the seld of the seld THE STATE OF THE PROPERTY OF THE STATE OF T 1,3-dimethylimidazofium methyl sulfate policheditylaf sulveine llydracheoring-in phinidalysine llydracheoring-in phinidalysine llydracheoring-in phinidalyside, Methanol, Ethanol, Water dryk Sulfoxide, Methanol, Ethanol, Water dryk Sulfoxide, Methanol, Ethanol, Water dryk Sulfoxide, Su prediction of isothermal vapor liquid
Equinty is in with leverity stein that a for the
Wattaniah verification of the many is in with leverity stein to the
Wattaniah verification of the many is in which the many is in the many in the many in the many is in the many in the many in the many in the many is in the many https://www.doi.org/10.1016/j.itca.2013.02.020
https://www.doi.org/10.1016/j.itca.2013.02.020
https://www.doi.org/10.1016/j.itca.2013.02.020
https://www.doi.org/10.1016/j.itca.2013.02.020
https://www.doi.org/10.1016/j.jct.2017.04.014
https://www.doi.org/10.1016/j.jct.2017.04.014
https://www.doi.org/10.1016/j.jct.2017.04.014
https://www.doi.org/10.1016/j.jct.2012.03.028
https://www.doi.org/10.1016/j.jct.2012.03.028
https://www.doi.org/10.1016/j.jct.2012.03.028
https://www.doi.org/10.1016/j.jct.2012.03.028 Meanweigereins dicamplation of solubility of carbendazim in lower bigoin lequid equilibria of water + Solutes (acetic acid/ solvaniacom/nilemanol/phenol/ Monoethanolamine + Methanol
Marimes was minos priesters as Mixtures
Containing to high individual pulidition in the limited pulidition at Elevated
February of the minos of the limited pulidition of the limited pulidition at Elevated
February of the minos of the limited pulidition of the limited position at Elevated
February of the minos of the limited position at Elevated
February of the minos of the limited position of the limited position at Elevated
February of the minos of the limited position of the Pt High-Temperaturegnat-Slevated হিন্তুইট্রেন্ড্'বিpor-Liquid Equilibrium of Acetone + Methanol System in the Presence who stends et ion their and triple-ion of an ionic salt in liquid Deงเรียงเลยสเรเวอะเกอุธเกอ เทา brownicktoments by Medical Solvents:

Medical Control បាន Solvent Brownicktone

Medical Control បាន Solvent Brownicktone

Solvent Mixtures of Water + Methanol
Solvent Mixtures of Water + Methanol

Solvent Mixtures of Water

Solvent Mixtures of Water

Solvent Mixtures of Water

Methanol

Solvent Mixtures of Water

Methanol

Solvent Mixtures of Water

Methanol

Solvent Mixtures

Methanol

Solvent Methanol

Solvent Mixtures

Methanol

Solvent Methano Saluwilityrof etassonimom disserbes 30) solvents: Solubility determination and thermodynamic modeling of sinety from the problem of the pro M (22925-05) (30055-135) (3.083) (139-139-139) K: Mixtures:

https://www.doi.org/10.1016/j.fluid.2014.12.020 https://www.doi.org/10.1016/j.fluid.2015.10.039 https://www.doi.org/10.1016/j.fluid.2017.04.008 https://www.doi.org/10.1021/je050374d https://www.doi.org/10.1021/je7006633 https://www.doi.org/10.1021/je100916h https://www.doi.org/10.1021/je0600799 https://www.doi.org/10.1016/j.fluid.2010.01.002 https://www.doi.org/10.1021/je900022k https://www.doi.org/10.1016/j.fluid.2014.01.039 https://www.doi.org/10.1021/je100870x https://www.doi.org/10.1016/j.fluid.2008.10.008 https://www.doi.org/10.1021/acs.jced.9b00428 https://www.doi.org/10.1016/j.fluid.2013.07.010 https://www.doi.org/10.1016/j.fluid.2015.03.009 https://www.doi.org/10.1016/j.fluid.2016.08.037 https://www.doi.org/10.1016/j.tca.2017.12.007 https://www.doi.org/10.1016/j.fluid.2018.04.016 https://www.doi.org/10.1016/j.fluid.2014.09.016 https://www.doi.org/10.1021/je049688b https://www.doi.org/10.1016/j.jct.2013.03.018 https://www.doi.org/10.1016/j.jct.2007.04.006 https://www.doi.org/10.1016/j.fluid.2017.02.016 https://www.doi.org/10.1021/je201149u https://www.doi.org/10.1016/j.jct.2011.11.009 https://www.doi.org/10.1016/j.jct.2016.07.023

```
Solubility of
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.5b00736
    Solubility of (S)-3-(Aminomethyl)-5-Methylhexanoic Abarmophinemial Binations livent Boliving of 1-Hydroxybenzotriazole in Sixteen Goliving Hydroxybenzotriazole in Sixteen Goliving Hydroxybenzotriazole in Sixteen Goliving Hydroxybenzotriazole in Figure Hydroxybenzotriazole in Figure Hydroxybenzotriazole in Figure Hydroxybenzotria at Eaminorial Action Media: Isomaltulose in Five Pure Solvents and Research And Dissonlyton application of
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.7b00316
                                                                                                                                                                                                                                                                                https://www.doi.org/10.1021/je050376y
                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/je500867u
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je5009558
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.8b00823
      Researchage Solis collection คือสุดเก๋ เป็น of
Several Antofloxacin Salts:
Solid-Liquid Phase Equilibria of Binary
                                                                                                                                                                                                                                                                                https://www.doi.org/10.1021/acs.jced.8b00288
   solid-Liquid Phase Equilibria of Binary and Ternary Mixtures for Separation of Binary in Separation of Binary and Ternary Mixtures for Separation of Binary in Separation of B
                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/je049607b
   Apply of the thing is a pressure of the part of the pa
                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/acs.jced.9b00190
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.6b00349
                                                                                                                                                                                                                                                                         .3.3]
https://www.doi.org/10.1016/j.fluid.2014.01.029
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.9b00350
     Equilibrium Modeling of 2 harmoshenariasuefin-alkanet + linear
                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.jct.2012.12.007
     selvether mixtures:
Densities, viscosities, and ultrasonic
Belyether mixtures:
Densities, viscosities, and ultrasonic velocity studies of binary mixtures of Endhibities of bitter and belief the property of the property of
                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.jct.2006.03.010
                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/acs.jced.6b00949
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.7b00599
                                                                                                                                                                                                                                                                               https://www.doi.org/10.1021/acs.jced.6b00280
      Water The Programme and Tall and Tollic
Belliant Mixippesta vilmidazolium
สิทิญที่มีเพิ่มหลายและพระบางเรื่อง
ชายณ์เราเกา for Ethanol + Methanol and
โหลมหลายพม่องอยู่รับเทีย conflution
                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1021/je060163o
                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.jct.2008.12.018
    Bring in the state of alignatic and state of alignation of alignatic and state of alignatic and alignatic and state of alignatic and state of alignatic and alig
                                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je049783k
                                                                                                                                                                                                                                                                                 https://www.doi.org/10.1016/j.fluid.2018.09.005
 https://www.doi.org/10.1007/s10765-014-1740-z
```

Thermodynamic models for determination of the solubility of Determination iand area istiprisf edibiditiese Nastiga dingnoga tidale, literaturale, literaturale dingnoga tidale sa sur literaturale dingnoga tidale dingnoga tidale sa sur literaturale sa sur literaturale dingnoga tidale sa sur literaturale sa sur literatura sur ### Intercological Properties at infinite dilution measurements for organic solutes and water userners and light properties of control of the solubility of The sections of volatile organic sections organic sections organic sections organic sections organic sections organic sections or volatile organic sections or volatile organic sections organic sections or volatile organic sections or volatile organic sections or volatile organic sections org Compounds, Experimental Benjaming https://www.doi.org/10.1016/j.fluid.2017.12.029 https://www.doi.org/10.1021/acs.jced.5b00366 specific ammonem-used vower find a Revision which the state of the sta Hand the transmission of the staylor 308.15K and 12.40MPa: Infinite Dilution Activity Coefficients in Ethylene Glycol and Ethylene Callybility and solution thermodynamics of Solution recognized by the solution 24 Meen Wo-Hiroan Inne in Fren in Grante is son with the little with an inchisolythes of the working the second in the the second in the secon Determination and Study of the Solubility of Methane in Mixtures of Metivity of officients at invinite dibtional https://www.doi.org/10.1021/je050517w https://www.doi.org/10.1016/j.jct.2012.08.016 metivity of officients at invinite dibtional https://www.doi.org/10.1016/j.jct.2012.08.016 metivity of officients at invinite dibtional https://www.doi.org/10.1021/je0006037 https://www.doi.org/10.1016/j.jct.2016.10.037 https://www.doi.org/10.1016/j.jct.2016.10.037 https://www.doi.org/10.1016/j.fluid.2013.06.033 https://www.doi.org/10.1016/j.fluid.2013.06.033 https://www.doi.org/10.1016/j.fluid.2013.06.033 https://www.doi.org/10.1016/j.fluid.2010.08.016 https://www.doi.org/10.1016/j.fluid.2010.08.016 https://www.doi.org/10.1016/j.fluid.2015.07.048 https://www.doi.org/10.1016 101.3 kPa:

https://www.doi.org/10.1016/j.jct.2015.02.002 https://www.doi.org/10.1016/j.fluid.2015.07.032 https://www.doi.org/10.1021/acs.jced.8b01080 https://www.doi.org/10.1016/j.jct.2011.02.012 https://www.doi.org/10.1021/acs.jced.7b00669 https://www.doi.org/10.1016/j.jct.2009.05.016 https://www.doi.org/10.1021/acs.jced.7b00768 https://www.doi.org/10.1016/j.fluid.2013.12.001 https://www.doi.org/10.1016/j.fluid.2011.01.003 https://www.doi.org/10.1021/acs.jced.5b00395 https://www.doi.org/10.1021/je7001804 https://www.doi.org/10.1021/acs.jced.8b00424 https://www.doi.org/10.1016/j.fluid.2005.12.029 http://pubs.acs.org/doi/abs/10.1021/ci990307l https://www.doi.org/10.1021/je0102107 https://www.doi.org/10.1016/j.jct.2016.05.027 https://www.doi.org/10.1016/j.jct.2016.11.023 https://www.doi.org/10.1016/j.jct.2005.03.004 https://www.doi.org/10.1021/je300488y https://www.doi.org/10.1021/je050517w https://www.doi.org/10.1021/acs.jced.5b00870 https://www.doi.org/10.1021/acs.jced.7b00542 https://www.doi.org/10.1016/j.fluid.2013.06.037 https://www.doi.org/10.1016/j.fluid.2010.08.016 https://www.doi.org/10.1016/j.fluid.2015.07.045

Properties of p-Toluenesulfonamide Experitor at all the programment in the control of Solubility of Febuxostat in Four Megawic Bowe and & granic to of the Surfaceatension-Temperature Relation dilution activity coefficients of Sel-philite ne luidae Appetalen, Different Ethanol, and Ethyl Acetate from (298.2 THE THICK SHOT ARE SINGERS WITH WALKEN HER AND THE ANTONIO IN THE SHOT AND THE SHOT briary manufisients at infinite difficient by the control of control of the contr preferential osotvetton dinalysis:

Solubility and Mixing Thermodynamics https://www.doi.org/10.1021/acs.jced.7b00714 Properties of p-Toluenesulfonamide Exacting and Massing and Massing and the density and Massing and Massin https://www.doi.org/10.1021/je9005689 https://www.doi.org/10.1021/je8003468 https://www.doi.org/10.1016/j.jct.2005.08.004 https://www.doi.org/10.1021/je7004038 Solubility of Baicalin in Methanol, and Ethyl Acetate from (298.2)

https://www.doi.org/10.1021/je/004038

https://www.doi.org/10.1021/je/004038 kicksiel-tickeid equilibrium in binary and ternary mixtures containing something in binary and ternary mixtures containing something in binary mixtures beginning to the solution of t https://www.doi.org/10.1016/j.fluid.2016.05.017 https://www.doi.org/10.1021/acs.jced.6b00279 https://www.doi.org/10.1016/j.fluid.2014.07.013 https://www.doi.org/10.1016/j.jct.2019.03.028 https://www.doi.org/10.1021/acs.jced.9b00471 https://www.doi.org/10.1021/je5007604 https://www.doi.org/10.1016/j.jct.2013.10.038

Solubilities of 2,5-Furandicarboxylic Acid in Binary Acetic Acid + Water, Melwailist of Waterland Ethanol + Water Schiphospetroeboline Sodium in Water and Different Balayonsking of Johany The standard of the standard o https://www.doi.org/10.1016/j.fluid.2014.04.006 flame retardant bisphenol S-bis

3.75 sinaethamical properties at the properties and a density and viscosity for short chain (or ivity Agafficial or interest and interest of the control of the contr (water + methanol + 1/2 in the line of Mixtures https://www.doi.org/10.1021/je050125p Containing Ionic Liquids. 5. Activity Below Santaining Ionic Liquids. 6. Activity https://www.doi.org/10.1016/j.fluid.2011 The property of the letter of the person of https://www.doi.org/10.1021/je8008254

https://www.doi.org/10.1021/je8008254

https://www.doi.org/10.1021/je8008254

https://www.doi.org/10.1021/je8008254

https://www.doi.org/10.1021/je8008455

https://www.doi.org/10.1021/je8008254

https://www.doi.org/10.1016/j.fluid.2016.04.021

https://www.doi.org/10.1016/j.fluid.2016.04.021

https://www.doi.org/10.1016/j.fluid.2009.04.009

https://www.doi.org/10.1016/j.fluid.2009.04.009

https://www.doi.org/10.1016/j.fluid.2013.05.021

https://www.doi.org/10.1016/j.fluid.2013.05.021

https://www.doi.org/10.1016/j.fluid.2013.05.021

https://www.doi.org/10.1016/j.fluid.2013.05.021

https://www.doi.org/10.1016/j.fluid.2013.05.021

https://www.doi.org/10.1016/j.fluid.2013.05.021

https://www.doi.org/10.1016/j.fluid.2013.05.021

https://www.doi.org/10.1016/j.fluid.2013.05.021

https://www.doi.org/10.1016/j.fluid.2013.05.021

https://www.doi.org/10.1016/j.fluid.2013.05.021 **Stationary Phases:**

https://www.doi.org/10.1021/acs.jced.7b01112 https://www.doi.org/10.1021/je900465r https://www.doi.org/10.1016/j.jct.2016.01.012 https://www.doi.org/10.1016/j.fluid.2015.07.012 https://www.doi.org/10.1016/j.jct.2015.02.023 for complete higher from 350.7 K to https://www.doi.org/10.1016/j.fluid.2019.03.023 https://www.doi.org/10.1016/j.fluid.2019.03.023 https://www.doi.org/10.1016/j.fluid.2019.03.023 https://www.doi.org/10.1021/je3013205 https://www.doi.org/10.1016/j.jct.2015.01.013 https://www.doi.org/10.1016/j.jct.2015.01.013 https://www.doi.org/10.1021/je049803i https://www.doi.org/10.1021/je049803i https://www.doi.org/10.1016/j.fluid.2011.08.007 https://www.doi.org/10.1016/j.fluid.2012.02.011

ss-Sitosterol Solubility in Selected https://www.doi.org/10.1021/je9009909 Organic Solvents: Solubility determination and Solubility determination and thermodynamic modelling of allisartan softs in intermedynamic modelling of allisartan softs in intermediate the i https://www.doi.org/10.1016/j.jct.2016.08.035 https://www.doi.org/10.1021/acs.jced.6b00163 https://www.doi.org/10.1007/s10765-011-1100-1 Salicylamide: Solid-liquid equilibria and the physical https://www.doi.org/10.1016/j.fluid.2014.05.033 Solid-liquid equilibria and the physical properties of binary systems of privile of the physical properties of binary systems of privile of the physical properties of the physical phy https://www.doi.org/10.1021/je2000606 https://www.doi.org/10.1016/j.fluid.2016.03.021 https://www.doi.org/10.1016/j.fluid.2005.03.016 https://www.doi.org/10.1016/j.tca.2013.12.016 Effectspantsimperature or and d Thermodynamic Models for Seturnination and Models for Seturnination and Models for Seturnination and Models for Seturnination and Models for the prediction of Seturnina for Models for the Seturnina for Models for Models for the Seturnina for Models https://www.doi.org/10.1016/j.fluid.2012.03.022 Using Gas-Liquid Chromatography at T

) (303.15, 308.15, 313.15, and 318.15) K:

https://www.doi.org/10.1016/j.jct.2016.10.043 modelling for 2-methyl-6-nitroaniline Bandalinyola byodumeent dha Ghandres 6t in mixtueen of ynaternand methanol, by dayshah delikid astrogian an matianol from alkanes using https://www.doi.org/10.1016/j.fluid.2017.10.034 https://www.doi.org/10.1016/j.jct.2015.04.002 Retirins Coefficients at Infinite Dilution of Organic Compounds in spike in the compounds in the compounds in spike in the compounds in the compound in the compounds in the compound in the compounds in the compound in the c https://www.doi.org/10.1016/j.fluid.2018.12.008 modelling of thermodynamic properties Determination and Gorrelation of Solubilities of Management Solubilities of Solubilities of Solubilities of Solubilities of Solubility of Solu https://www.doi.org/10.1021/je400188h https://www.doi.org/10.1021/je0502748 https://www.doi.org/10.1021/je8003244 1-(2-Dimethylaminoethyl)-5-mercapto-1 H-tetrazole ก็งเพียง เราะบอดีที่ระท่องเลสปฏิที่เกิด เป็นเกิด https://www.ingrayolide.com.solution behavior of salicylaidehyde ก็สะเกิด เป็นเกิด https://www.doi.org/10.1021/je050544m https://www.doi.org/10.1016/j.jct.2013.07.010 https://www.doi.org/10.1021/je034138j https://www.doi.org/10.1021/je9008443 https://www.doi.org/10.1021/acs.jced.6b00617 Toluene, o-Xylene, Ethylbenzene, methanonytenamony pixfuras policy pandinany pixfuras policy pandinany pixfuras policy pandinany pixfuras policy pandinany pixfuras of 1-alkanols and analytic properties of Mixtures https://www.doi.org/10.1016/j.fluid.2007 prigrips of 1-alkanols and analytic properties of Mixtures https://www.doi.org/10.1021/je050440b https://www.doi.org/10.1016/j.tca.2008.02.015 https://www.doi.org/10.1016/j.fluid.2007.09.021 Containing Ionic Liquids. 9. Activity Chermodyteminative plandability for https://www.doi.org/10.1016/j.jct.2016.10.020 CONTRIBUTED THE INTERIOR OF STREET O https://www.doi.org/10.1021/je900750c https://www.doi.org/10.1021/je301347v https://www.doi.org/10.1021/je0603473 https://www.doi.org/10.1021/acs.jced.6b00852 https://www.doi.org/10.1021/je800930v Mixtuyes of Shylprepagneorboxylic
Bell Will Wish the Byen of at Different
тетренциев from 283.15 K to 323.15

Determination and thermodynamic

Liquid densities and excess molar volumes for (ionic liquids + methanol + The particular in the particul printing dilution for AGETICAENTS AT INTINITE CHILITION FOR BAGETICAENTS AT INTINITE CHILITION FOR PRICE BY AND INTINITE CHILITION FOR PRICE BY AND INTINITE CHILITION FOR PRICE BY AND INTINITE CHILITION FOR OF GRANT CHILIBRATION OF THE PROPERTY WASSE DE NAVIOR OF THE PROPERTY OF THE PROPERTY WASSE DE NAVIOR OF THE PROPERTY 1-hexyl-3-methylimidazolium Bertafility of dylanoxidar wolf and + Ethanol 1 Stepanol, 2-Propanol, of Butafility of her waller mon yezharsol yyara, jethanol, and Ethanol + Water (2023 2) Binary Mixtures from (293.2 to 333.2) K:

https://www.doi.org/10.1016/j.jct.2007.01.012 Tolumes for (ionic liquids + methanol + Waterneshman is superior (ionic liquids + methanol + Waterneshman is superior (ionic liquids + methanol + Waterneshman is superior (ionic liquids + methanol) + Waterneshman is superior (ionic liquids) + Methanol (ionic The straining of the Arman of Carlotton is the straining of the straining https://www.doi.org/10.1016/j.jct.2014.04.024 https://www.doi.org/10.1016/j.jct.2019.06.024 https://www.doi.org/10.1016/j.fluid.2018.11.011 https://www.doi.org/10.1016/j.jct.2012.02.017 https://www.doi.org/10.1016/j.fluid.2010.02.005 https://www.doi.org/10.1021/je1012839 https://www.doi.org/10.1021/je100239d

Determination and correlation of https://www.doi.org/10.1016/j.jct.2016.10.046 solubility of
Example yellotilation of oxy-4-pregnene-3)20st/onew.doi.org/10.1016/j.fluid.2018.01.038
Inetitilation of oxy-4-pregnene-3)20st/onew.doi.org/10.1016/j.fluid.2018.01.038
Inetitilation of oxy-4-pregnene-3)20st/onew.doi.org/10.1016/j.fluid.2018.01.038
Interitilation of oxy-4-pregnene-3)20st/onew.doi.org/10.1016/j.jct.2011.04.018
Interitilation oxy-4-pregnene-3)20st/onew.doi.org/10.1016/j.jct.2011.04.018
Interitilation oxy-4-pregnene-3)20st/onew.doi.org/10.1021/je200093f
Interitilation oxy-4solubility of Carbonate and (Methanol, Ethanol, क्वास्कृतिमञ्जू क्रिनियम्बिष्णवत्वीस्वराणीडः https://www.doi.org/10.1016/j.fluid.2010.02.007 https://www.doi.org/10.1021/je100095p https://www.doi.org/10.1016/j.fluid.2005.12.001 https://www.doi.org/10.1016/j.fluid.2015.10.047 https://www.doi.org/10.1021/acs.jced.9b00661 https://www.doi.org/10.1016/j.jct.2006.09.017 mixtures of solubilities of filterullahes blision Asiah https://www.doi.org/10.1021/je050377q https://www.doi.org/10.1021/je0009877 https://www.doi.org/10.1021/je000928 https://www.doi.org/10.1021/je1000928 https://www.doi.org/10.1021/je200637v https://www.doi.org/10.1021/je200637v https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=817 **Partition Coefficients of Organic** https://www.doi.org/10.1021/je200637v Partition Coefficients of Organic Compounds in Four New Sellucility and position of Sessivity and Sessivity an https://www.doi.org/10.1016/j.jct.2017.01.005 https://www.doi.org/10.1016/j.fluid.2012.11.003 Sanate เลือย and North Educates ing Action is me mixtures in Alcohol + Action is me mixtures in Alcohol + Equilibrium for Methanol + Methyl Notalie b เองสมาตาม in idazolium https://www.doi.org/10.1021/je2000588 http://webbook.nist.gov/cgi/cbook.cgi?ID=C67561&Units=SI Hexafluorophosphate at 101.3 kPa: Measurement and Correlation of Measurement and Correlation of Solubility of Loratadine in Different Experience and bearing the solubility of Loratadine in Different Experience and bearing to infinite dilution activity coefficients of Experience of Mixtures Containing Ionic Interview Int https://www.doi.org/10.1021/acs.jced.6b00721 https://www.doi.org/10.1021/acs.jced.8b00988 The properties of binary and by the properties of binary and believe of Brown of Brown of Activity Coefficients

Measurements of Activity Coefficients

Application of Coefficients

Appl Measurements of Activity Coefficients at Infinite Dilution for Organic Solutes Bersitias: Infinite Dilution for Organic Solutes Infinite Dilution Infinite Dilution organic Solutes Infinite Dilution Infinite Dilution organic Solutes Infinite Dilution Infinite Di https://www.doi.org/10.1016/j.jct.2016.07.011 https://www.doi.org/10.1016/j.fluid.2005.05.012 https://www.doi.org/10.1016/j.jct.2016.07.042 https://www.doi.org/10.1016/j.jct.2008.03.007 compressibility of binary systems {trioctylmethylammonium bis(trifluoromethysulfonyl)imide +

methanol or ethanol or 1-propanol} at

different temperatures:

Activity coefficients at infinite dilution https://www.doi.org/10.1016/j.jct.2005.01.015 measurements for organic solutes in Induence Induente Ind https://www.doi.org/10.1021/acs.jced.8b00416 Properties and Continue strong for the soliday of t https://www.doi.org/10.1021/acs.jced.9b00562 Thermodynamic Evaluation of Inermodynamic Evaluation of Artivity profit in the profit of the profit https://www.doi.org/10.1016/j.fluid.2012.03.002 https://www.doi.org/10.1016/j.jct.2014.07.011
solubility of spironolactone form II in Saparstipe as singly in the spiron and t https://www.doi.org/10.1016/j.fluid.2010.10.008 https://www.doi.org/10.1021/acs.jced.7b00245 https://www.doi.org/10.1021/acs.jced.5b00122 solution https://www.doi.org/10.1016/j.jct.2016.08.021 Thermodynamic functions of The methyl-4-(methylsulfonyl)benzene

Seleptininyation are gentel storents from solubility of Ammonia in Methanol:

Isothermal (vapour + liquid) equilibria

Isothermal (vapour + liquid) equilibria

Isothermal (vapour + liquid) equilibria Interval (Vapour + Inquid) equilibria for binary mixtures of diisopropyl ether was tifferential on correlation of the seven property for binary mixtures of diisopropyl ether https://www.doi.org/10.1016/j.fluid.2006.08.020 https://www.doi.org/10.1016/j.fluid.2014.01.043 solubilities of the sational state of the sational state of the sational sational state of the sational state of the sational sational state of the satio terial (5) Constant of water invents:

a of the constant of th https://www.doi.org/10.1016/j.fluid.2012.05.003 Redubities I I Ind supercritical regions: 4-(Hydroxymethyl)-1-oxido-2,6,7-trioxa-Quantitative of What spectroscopy of https://www.doi.org/10.1021/je4009816 -phosphabicyclo[2.2.2]octane https://www.doi.org/10.1016/j.jct.2014.01.027 Muarganty solven agectroscopy of binary liquid mixtures (aldehyde + Yesperoff; 李森東明: Mpasurangers of Bipasy Aphthonaction of CaCl2 with Methansbenzation pakery: Trackfish 65 69 283ah 5) 6 Using pakery: Method: https://www.doi.org/10.1021/je0502086

Measurement and modeling of infinite **Ebernarknamberena malaski m**rodel Experimental Determination! model try estimation indestroact pricey and the second of Sontaining on 427 to 1817 2322445 K: Vapor-Liquid Equilibrium and Mixing Properties of Methanol + Diethyl Wanswigerentervingeredien-oblemyl BATION Ste. Anisonate, Dipmenyin pure BATION Ste. Anisonate, Methanol, Phenol, artificial Bation Stellar of Phiperatures: pseudoternary systems: Isooctane bearand marnion Speed of Found Data for Liquid and Supercritical Alcohols: Volumetric behavior of water methanol mixtures in the vicinity of the critical Acetamiprid in Thirteen Pure Solvents รัสร์บลรูโดย โดยชาตุรเช่น อานิเกิลกรูโร่ง Data for the Sodium Sulfate + Sulfuric Acid + Methanol System:

https://www.doi.org/10.1016/j.fluid.2019.01.028 dilution activity coefficients of organic Wolfpanets apacitication ligament of quid https://www.doi.org/10.1016/j.jct.2014.07.023 autonedial pmathemalia symmetric provide the perature: Amidinothiourea in Monosolvents: https://www.doi.org/10.1021/acs.jced.9b00458 https://www.doi.org/10.1021/acs.jced.9b00458 https://www.doi.org/10.1016/j.jct.2017.05.041 https://www.doi.org/10.1021/je800196k https://www.doi.org/10.1021/acs.jced.8b00196 They modynamic Properties of Beil/zig Manacifie in 15 rate in the ionic state in the ionic lay incompanies in the ionic lay in the ionic https://www.doi.org/10.1016/j.jct.2013.01.007 Exprimental Marauzonnis and https://www.doi.org/10.1021/je500038u https://www.doi.org/10.1021/je500038u https://www.doi.org/10.1021/je500038u https://www.doi.org/10.1021/acs.jced.9b00068 https://www.doi.org/10.1021/acs.jced.9b00068 https://www.doi.org/10.1021/acs.jced.6b00296 https://www.doi.org/10.1021/acs.jced.6b00296 https://www.doi.org/10.1021/acs.jced.6b00296 https://www.doi.org/10.1016/j.jct.2013.10.017 infinite dilution of organic solutes in https://www.doi.org/10.1021/acs.jced.9b00068 https://www.doi.org/10.1021/acs.jced.6b00296 https://www.doi.org/10.1021/je1003934 https://www.doi.org/10.1021/je300557g https://www.doi.org/10.1021/je700713q https://www.doi.org/10.1021/je100998r https://www.doi.org/10.1021/je100261w Methanol, Ethanol, Propan-2-ol, Schubility Datarmination Methanol, Ethanol, Propan-2-ol, Schubility Datarmination Methanol, Propan-2-ol, Schubility Datarmination Methanol, Propanial Meth https://www.doi.org/10.1021/je049544x https://www.doi.org/10.1016/j.fluid.2014.08.036 The process of Methylphenyl Carbonate, Mixtures of Methylphenyl Carbonate, Solvenite of Methylphenyl Carbonate, Solvenite, Solvenite https://www.doi.org/10.1016/j.fluid.2008.11.005 https://www.doi.org/10.1016/j.fluid.2004.12.003 https://www.doi.org/10.1021/acs.jced.8b00938 https://www.doi.org/10.1016/j.fluid.2006.05.007 https://www.doi.org/10.1021/acs.jced.9b00294 https://www.doi.org/10.1021/je049712I

(p, rho, T) properties and apparent molar volumes V/ of LiNO3 in Schraitings of Phosphorus-Containing https://www.doi.org/10.1016/j.jct.2006.01.008 Relabilities of Phosphorus-Containing Compounds in Selected Solvents: Effect of temperature on density, sound velocity, and their derived properties for the properties of the Compounds in Selected Solvents: Effect of temperature on density, sound https://www.doi.org/10.1016/j.jct.2017.01.011 開発機関係の配置の関連ではいるのである。13 m. properties in the Privile in Six Organic Solvents Selweiting of Privile in the Pri equilibria by medium field nuclear saluhelity of 50 analdehyde and Trioxane in Aqueous Solutions:
Thermodynamic properties of mixtures containing in liquids Vapor

Solubility of the liquids Vapor

Solubility of the liquids Vapor containing ionic liquids Vapor pelseviles and activity coefficients of anitonal phanylene diaminatine in a property with the coefficients of anitonal phanylene diaminatine in a property with the coefficients of anitonal phanylene diaminatine in a property of the coefficients of the coe

Acetate):

https://www.doi.org/10.1021/je100341q https://www.doi.org/10.1016/j.fluid.2005.08.023 https://www.doi.org/10.1016/j.fluid.2009.10.007 https://www.doi.org/10.1021/acs.jced.9b00310 https://www.doi.org/10.1021/acs.jced.5b00033 https://www.doi.org/10.1021/je101208p https://www.doi.org/10.1021/acs.jced.5b00865 https://www.doi.org/10.1021/je050072b https://www.doi.org/10.1021/acs.jced.6b00761 https://www.doi.org/10.1021/je020135f https://www.doi.org/10.1016/j.jct.2012.03.021 https://www.doi.org/10.1021/je301243f https://www.doi.org/10.1021/je4001334 https://www.doi.org/10.1016/j.fluid.2017.01.027

Solubility determination and correlation https://www.doi.org/10.1016/j.jct.2015.10.015 for 1,8-dinitronaphthalene in (acetone + Tremanyan) (tolusteen anyethaniel) indid Equilibrianie Waternander hanself in the particular of the markethanie waternander of the markethanie https://www.doi.org/10.1021/je050258a https://www.doi.org/10.1021/acs.jced.6b00741 https://www.doi.org/10.1021/je9008359 https://www.doi.org/10.1021/je7007236 Different Pure Solvents from (293.15 to spanned Vapor Liquid Equilibrium for https://www.doi.org/10.1021/je050404c Different Pure Solvents from (293.15 to sach single Vapor Liquid Equilibrium for 2-Methylpropene + Methanol, + Solvents James Vallendo, Hathard Light Policy of Topics Bilary 100. Hathard Light Policy Indianance Indiananc https://www.doi.org/10.1016/j.fluid.2016.02.020 https://www.doi.org/10.1016/j.fluid.2014.04.008 https://www.doi.org/10.1016/j.fluid.2015.12.029 https://www.doi.org/10.1021/acs.jced.5b00365 Tetramethylammanium Aigar Acease on Repury Read Equite Aum whe dilution https://www.doi.org/10.1016/j.fluid.2009.01.011 THE PROPERTY OF THE PROPERTY O https://www.doi.org/10.1021/je800824h https://www.doi.org/10.1021/je034101z https://www.doi.org/10.1021/je9005882 Dibromomethane with Benzene, Metrixity or poficient is at the line end of the polyment of the polyment in the polyment of the polyment in the Dibromomethane with Benzene https://www.doi.org/10.1016/j.jct.2011.11.021 https://www.doi.org/10.1016/j.fluid.2018.10.024 https://www.doi.org/10.1016/j.tca.2017.12.006 https://www.doi.org/10.1016/j.fluid.2005.12.041 Temperetriced เอาเปลาลูกลา mutual https://www.doi.org/10.1016/j.jct.2008.10.013 https://www.doi.org/10.1021/je900594h https://www.doi.org/10.1016/j.tca.2017.05.005 https://www.doi.org/10.1021/je400324w https://www.doi.org/10.1016/j.fluid.2017.04.021 https://www.doi.org/10.1021/je0603170 The control of the co eightisteabolest: Activity coefficients at infinite dilution https://www.doi.org/10.1016/j.jct.2013.05.008 and physicochemical properties for organic solutes and water in the ionic liquid 1-(2-hydroxyethyl)-

3-methylimidazolium

trifluorotris(perfluoroethyl)phosphate:

reactor systems: Measurement and correlation of the https://www.doi.org/10.1016/j.jct.2016.05.011 vapor-liquid equilibrium for methanol + Beeাভানালন বিশ্বস্থা নিমন্ত্র হুত। Melৰত এওি আক্রমত https://www.doi.org/10.1021/je1002237 ក្រោតម្នាស់ Pinage of Ionic Liquid ទុំជាម៉ារ៉ាប៉ុស្តែ ក្រុមប្រកាសម្រួច of Ionic Liquid ទុំជាម៉ារ៉ាប៉ុស្តែ ក្រុមប្រកាសម្រួច ប្រកាសម្រួច of Ionic Liquid ទី៧ទាន់ ប្រកាសម្រួច ប្រកាសម្រាប់ ប្រកាសម្រួច ប្រកាសម្រិច ប្រកាសម្រួច ប្រកាសម្រិច ប្រកាសម្រួច ប្រកាសមាសម្រួច ប្រកាសម្រួច ប្រកាសម្រួច ប្រកាសមាសម្រួច ប្រកាសម្រួច ប្រកាសម្រួច ប្រកាសម្រួច ប្រកាសម្រួច ប្រកាសម្រួច ប្រកាសមាសម្រួច ប្រកាសមាសម្រួច ប្រកាសមាសម្រួច ប្រកាសម្រួច ប្រកាសមាសម្រួច ប្រកាសមាសមាសម្ច ប្រកាសមាសម្រួច ប្រកាសមាសម្រួច ប្រកាសមាសមាសម្រួច ប្រកាសមាសមាសម្ច ប្រកាសមាសមាសម្រួច ប្រកាសមាសមាសមាសមាសម្រាស់ ប្រកាសមាសមាសមាសមាសម្រាស ប្រកាសមាសមាស្រាស ប្រកាសមាសមាសមាសមាសមាសមាសមាសមាសមាសមាសមាសមាសិក បាស ប្រកាសមាសមាស្រាស ប្រកាសមាសមាសមាសមាសមាសមាសមាសមាសមាសមាសមាស្រាស បាស ប្រកាសមាសមាស្រាស ប្រកាសមាស្រាស ប្រកាសមាសមាសមាស បាស ប្រកាសមាសមាសមាស ប្រកាសមាសមាសាសមាសាស្រាស បាស ប្រកាសមាសមាសមាសាសមាសាស្រាស ប្រកាសមាសាស្រាស ប្រកាស ប្រកាស ប្រកាសមាសាស្រាស បាស ប្រកាស ប្រកាស https://www.doi.org/10.1021/je7007457 https://www.doi.org/10.1021/je800021r Yappro Light Education in the Systems 2-Methylpropane + Methanol, Yappro เล่นเป็น เ https://www.doi.org/10.1021/je034227w https://www.doi.org/10.1007/s10765-011-0989-8 Mixtures of Methanol with Dimethyl Mixtures of Methanol with Dimethyl Methyner Ration Advance in Mixtures of Phixing Advance in Mixtures of Phixing Advance in Mixtures of Various Indian Method Indian Correlation and Correl https://www.doi.org/10.1021/acs.jced.5b00527 ### Individual Control of the Properties of the https://www.doi.org/10.1016/j.fluid.2011.05.016 https://www.doi.org/10.1016/j.fluid.2018.01.015 https://www.doi.org/10.1016/j.fluid.2013.09.030 https://www.doi.org/10.1016/j.jct.2016.10.040 https://www.doi.org/10.1021/je9008624 https://www.doi.org/10.1016/j.fluid.2018.01.019 TOTAL THE CHAIR CONTROL OF THE CONTROL OF THE CHAIR CONTROL OF THE CHAIR CHAIR CONTROL OF THE CHAIR CH https://www.doi.org/10.1021/je101303e https://www.doi.org/10.1021/acs.jced.5b01048 https://www.doi.org/10.1016/j.fluid.2007.01.034 ippid equilibria for methanol + methyl Activity acefficiantor intelly idlution https://www.doi.org/10.1016/j.jct.2009.07.010 in Different Organic Solvents: Solubility and Density of https://www.doi.org/10.1021/je049967z 2,6-Dimethylnaphthalene in C1-C7 દેવાપુરાં નિયુદ્ધ carbon monoxide in bio-oil https://www.doi.org/10.1016/j.jct.2016.10.030 compounds: Vapor Liquid Equilibrium at p/kPa = https://www.doi.org/10.1021/je300835h 101.3 of the Binary Mixtures of Ethenyl Aelichie พม่ฬ พิเลลลเรียนใช้เยายแลกๆ ol: Thermodynamic Analysis of https://www.doi.org/10.1021/acs.jced.9b00854 N,N'-Diethylthiourea in Different

Phase equilibria of triolein to biodiesel https://www.doi.org/10.1016/j.fluid.2015.09.049

Solvent Systems:

Solubilities of six lithium salts in five https://www.doi.org/10.1016/j.fluid.2017.12.034 non-aqueous solvents and in a few of https://www.doi.org/10.1016/j.jct.2012.03.015 Activiting perfinients at infinite dilution and physicochemical properties for Butter someter and water in the onic https://www.doi.org/10.1016/j.jct.2005.08.011 pinary mixtures of nitrobenzene with the property of the prope solvent systems: Liquid-liquid equilibria for ternary Liquid-liquid equilibria for ternary mixtures of methyl tert-amyl ether + Selulainispe of ethainispin. Dihraksphalogusetnibule Rolliesta and sold Burstonibule aphilogusetnibule Rolliesta and sold Burstonibule aphilogusetnibule Rolliesta and sold Burstonibule aphilogusetnibule aphilogusetnibule approach an are sold Burstonibule approach and sold Burstonibule and sold Burstonibule approach and sold Burstonibule approach and sold Burstonibule and sol https://www.doi.org/10.1016/j.fluid.2011.09.011 https://www.doi.org/10.1021/acs.jced.6b00543 https://www.doi.org/10.1021/je7002989 https://www.doi.org/10.1016/j.jct.2015.10.024 https://www.doi.org/10.1016/j.jct.2014.02.021 https://www.doi.org/10.1016/j.jct.2010.01.013 https://www.doi.org/10.1021/je800569v https://www.doi.org/10.1021/je500368p Tris(hydroxymethyl)aminomethane in Tris(hydroxymethyl)aminomethane in Wassurementane in Wassurementane in International Antivities of Visionia at International Antivities of Visionia at International Inter https://www.doi.org/10.1021/acs.jced.6b00361 https://www.doi.org/10.1021/acs.jced.8b00543 https://www.doi.org/10.1016/j.fluid.2014.07.005 on isobaric vapor-liquidequilibrium of Retration materinande somem: https://www.doi.org/10.1016/j.jct.2014.12.023 thermodynamic parameters in a solution of the control of the contr https://www.doi.org/10.1021/je700633w Etherioli Water, and Ethyl Acetate: Solubilities of Phenylphosphinic Acid, Solubilities of Phenylphosphinic Acid,
Methylphenylphosphinic Acid,
Haracimeroal measures enabled and
Haraci https://www.doi.org/10.1021/je1009812 Pislarar i hard Diard stien of the fraction o http://www.ddbst.com/en/EED/VLE/VLE%20Acetonitrile%3BAcetone%3BBenzene%3BMetha Equilibrium Data: Liquid liquid equilibrium in ternary https://www.doi.org/10.1016/j.fluid.2005.09.025 Liquid liquid equilibrium in ternary systems N,N-dimethylformamide + Eiffest of people of indifferent of the liquid of the liqui https://www.doi.org/10.1016/j.fluid.2011.01.009 https://www.doi.org/10.1016/j.jct.2005.05.007 https://www.doi.org/10.1021/acs.jced.9b00778 https://www.doi.org/10.1021/je0498762 https://www.doi.org/10.1016/j.jct.2013.04.015 1-butyl-3-methylimidazolium L-lactate and its binary mixture with alcohol and

water:

Solubility of itaconic acid in different https://www.doi.org/10.1016/j.fluid.2011.09.027 organic solvents: Experimental The solubility and the syntainic acid https://www.doi.org/10.1016/j.fluid.2013.11.001 in ordered (methanol, ethanol, acetone) Magnetis in a proposition of the Solubility of Aminocaproic Acid in Magnetis in the state of th https://www.doi.org/10.1021/acs.jced.9b00543 https://www.doi.org/10.1016/j.jct.2012.03.005 https://www.doi.org/10.1016/j.jct.2016.03.037 Determination and modeling of the Selection of the select https://www.doi.org/10.1016/j.jct.2011.01.014 https://www.doi.org/10.1021/je800801x https://www.doi.org/10.1021/acs.jced.5b00546 Ethyl acetate + Methanol + Ionic Visconstrements on Methamal: Vapor and Their Evaluation: https://www.doi.org/10.1021/je050429b Vapor-Liquid Equilibrium for Binary
Vapor-Liquid Equilibrium for Binary
Systems of Diacetyl with Methanol and
Actability of Hexamethylenetetramine
in a Pure Water, Methanol, Acetic Acid,
Incipation of Hexamethylenetetramine
in a Pure Water, Methanol, Acetic Acid,
Incipation of Hexamethylenetetramine
in a Pure Water, Methanol, Acetic Acid,
Incipation of Hexamethylenethylene at
Southility 1834 of timethylenethylene at
Southility 1834 of timethylene Vapor-Liquid Equilibrium for Binary https://www.doi.org/10.1021/je060174h https://www.doi.org/10.1021/je800662m https://www.doi.org/10.1016/j.fluid.2011.07.014 https://www.doi.org/10.1021/acs.jced.8b00560 https://www.doi.org/10.1016/j.jct.2016.01.022 https://www.doi.org/10.1016/j.jct.2005.07.018 https://www.doi.org/10.1016/j.fluid.2013.11.008 https://www.doi.org/10.1016/j.jct.2017.03.004 https://www.doi.org/10.1021/je300529j https://www.doi.org/10.1021/je7007582 https://www.doi.org/10.1021/acs.jced.8b01226 Solvent Effect of

The minor proceded coxid in 12

deter sonations of the solubility of

Effect of the Rebaudioside A in Pure and Binary Maxiial sookenyo burres (288) ។ ទេខេទ2្ធ, 15) https://www.doi.org/10.1016/j.jct.2013.09.018 B-coefficients for ingre-ary yielder in first of the coefficients for ingre-ary yielder ingressive in the coefficients for ingre-ary yielder ingressive in the coefficient in the coeffi https://www.doi.org/10.1007/s10765-011-1149-x Mixtures of 2,4,6-Trimethylpyridine with Petermination and particles where https://www.doi.org/10.1016/j.jct.2015.11.007 The properties of the control of the tetrafluoroborate using gas liquid chromatography at T = (313.15, 333.15,

353.15, and 373.15) K:

Two Binary Systems (Propylene Glycol Molwy) items as a substitution of the control of the contro Ethanol, Dimethyl Sulfoxide, and Riffersmatt Genombinion. Temperature, and Solvent Composition on the Partial Merauvoment source source in the Partial Merauvoment source source in the Riffer source of Marie Composition and the Riffer in the Riffer source in the Riffer in the Riffer source in the Riffer in the https://www.doi.org/10.1021/je2003622 https://www.doi.org/10.1016/j.fluid.2015.06.026 https://www.doi.org/10.1016/j.jct.2018.08.028 https://www.doi.org/10.1021/je800568m https://www.doi.org/10.1016/j.jct.2015.06.003 solubility of Biquirk(3quirebEquilibria-91)Rinorarand https://www.doi.org/10.1021/acs.jced.6b00022 Tentani Systema Weshand Water + National Prostanti San Dodecane, https://www.doi.org/10.1016/j.jct.2005.04.013 and + n-Hexadecane in the special spec https://www.doi.org/10.1021/je0600505 https://www.doi.org/10.1021/je101199g Mixtures Containing Diphenyl Galubilityeef Phenanthrene in Binary https://www.doi.org/10.1021/je900599q Mixtures of C1-C4 Alcohols at 298.2 K: Isobaric Vapor Liquid Equilibrium for https://www.doi.org/10.1021/je2005402 Methanol + Dimethyl Carbonate + https://www.doi.org/10.1021/je200195q ซะผริสตาด Goragounds in Four New โหลงสุระดีเฉลาระยะเรียกคระบางคระบางประ https://www.doi.org/10.1016/j.jct.2012.08.022 coefficients of some organic solutes in Experimental Hypersulation and the control of the contro Expanyingentelmy para literature with any brogen modeling of solubility of LiBr and Employ of LiBr and Library of LiB https://www.doi.org/10.1016/j.fluid.2011.03.017 https://www.doi.org/10.1021/acs.jced.7b00982 https://www.doi.org/10.1016/j.fluid.2015.03.022 CO2 + Methanol: Thermodynamics and selectivity of separation based on activity Measurement of the post-like indicated in the property of separation based on activity Measurement of the post-like indicated indicated in the property of the Thermodynamics and selectivity of https://www.doi.org/10.1016/j.jct.2016.06.028 https://www.doi.org/10.1016/j.jct.2012.05.002 https://www.doi.org/10.1021/je700184q https://www.doi.org/10.1021/je400226q https://www.doi.org/10.1021/acs.jced.8b00182 https://www.doi.org/10.1016/j.jct.2009.06.007 https://www.doi.org/10.1016/j.fluid.2008.06.022 entario de la company de la comissión de la company de la company de la comissión de la comiss https://www.doi.org/10.1021/acs.jced.6b00464 https://www.doi.org/10.1016/j.jct.2016.07.017
https://www.doi.org/10.1016/j.jct.2016.07.017
https://www.doi.org/10.1016/j.jct.2013.08.023
https://www.doi.org/10.1016/j.jct.2013.08.023
https://www.doi.org/10.1016/j.jct.2013.08.023
https://www.doi.org/10.1016/j.jct.2013.08.023
https://www.doi.org/10.1016/j.jct.2016.01.003
https://www.doi.org/10.1016/j.jct.2016.01.003 https://www.doi.org/10.1016/j.jct.2016.07.017 https://www.doi.org/10.1016/j.fluid.2005.10.010 https://www.doi.org/10.1021/acs.jced.8b00120 https://www.doi.org/10.1016/j.fluid.2013.09.023 មិនប្រជាពល់ ទី១៩ ស្រុក សព្ទ ស្រុក ស https://www.doi.org/10.1016/j.fluid.2011.08.021

https://www.doi.org/10.1021/acs.jced.6b01071

Isobaric Vapor Liquid Equilibria for

cosolvents:

(Liquid + liquid) equilibria for ternary mixtures of (methanol or ethanol + ionio ยู่อเมลาอาการะบบ โลการะบบ โลการะบบ Solubility of 3-Nitrobenzonitrile in 12 water in the former figure and certain a phase diagrams of methanol/sodium sise firm where the sum of methanol/sodium sise firm where the sum of methanol/sodium sise firm which was a proposition of the sum of Solubility of 11r-Hydroxy-16r,17r-Epoxyprogesterone ลดูเมลาที่เหตุ boscalid with methanol + methyl acetate with ionic hetivisy on miniminate Dilution of home in the politic po activity coefficients with [P8,8,8,8][[NTf2] ionic liquid:

https://www.doi.org/10.1016/j.jct.2005.04.004 Ratemainatiการ ศูลิโลการาชโรสเตานี้ https://www.doi.org/10.1021/acs.jced.8b00918 Equilibrium of Dimethyl https://www.doi.org/10.1016/j.fluid.2015.02.002 https://www.doi.org/10.1021/acs.jced.7b00615 Solubility of 3-Nitrobenzonitrile in 12
Digannesswerdsresides and derives to spongeric properties (excess, spearens and derives to spongeric properties (excess, spearens and analysis of methanol/solution properties (excess, spearens and sp https://www.doi.org/10.1021/je700338t https://www.doi.org/10.1021/je060329I https://www.doi.org/10.1016/j.fluid.2012.06.010 https://www.doi.org/10.1021/je0495435 https://www.doi.org/10.1016/j.jct.2017.04.017 https://www.doi.org/10.1016/j.jct.2018.02.002
https://www.doi.org/10.1016/j.jct.2018.02.002
https://www.doi.org/10.1016/j.jct.2018.02.002
https://www.doi.org/10.1016/j.jct.2010.10.026
https://www.doi.org/10.1016/j.jct.2010.10.026
https://www.doi.org/10.1016/j.jct.2010.10.026
https://www.doi.org/10.1016/j.jct.2010.10.026
https://www.doi.org/10.1016/j.jct.2010.11.014
https://www.doi.org/10.1016/j.jct.2010.11.014
https://www.doi.org/10.1016/j.jct.2010.11.014
https://www.doi.org/10.1016/j.jct.2010.11.014
https://www.doi.org/10.1016/j.jct.2010.11.014
https://www.doi.org/10.1021/je700313j
https://www.doi.org/10.1021/je700313j
https://www.doi.org/10.1021/je700313j
https://www.doi.org/10.1021/je800446c
https://www.doi.org/10.1021/je800164w
https://www.doi.org/10.1021/je800164w
https://www.doi.org/10.1021/je800730k
https://www.doi.org/10.1021/je800730k
https://www.doi.org/10.1021/je800730k
https://www.doi.org/10.1021/je800730k
https://www.doi.org/10.1021/je800730k
https://www.doi.org/10.1021/je800730k
https://www.doi.org/10.1021/je800730k https://www.doi.org/10.1016/j.jct.2018.02.002 https://www.doi.org/10.1021/je900629v https://www.doi.org/10.1021/acs.jced.7b00078 https://www.doi.org/10.1021/acs.jced.5b00714 https://www.doi.org/10.1016/j.fluid.2018.05.031 https://www.doi.org/10.1021/acs.jced.7b00431 https://www.doi.org/10.1021/acs.jced.9b00097 https://www.doi.org/10.1016/j.fluid.2006.06.005 https://www.doi.org/10.1016/j.fluid.2005.07.002 https://www.doi.org/10.1021/acs.jced.8b01144 https://www.doi.org/10.1016/j.fluid.2017.06.001

Isobaric vapor-liquid equilibrium for https://www.doi.org/10.1016/j.fluid.2016.06.048 methanol + methyl ethyl ketone + Gismotia and activity in the street https://www.doi.org/10.1016/j.jct.2011.06.018 https://www.doi.org/10.1016/j.jct.2011.06.018
binaryis olds on a of 3 kPa:

output which is the world on and at the street of th https://www.doi.org/10.1021/je200305n https://www.doi.org/10.1016/j.fluid.2010.10.010 https://www.doi.org/10.1021/je060294p https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=817 Using binary mixtures of dicationic https://www.doi.org/10.1016/j.fluid.2013.05.038 ionic liquids for determination
Measurement in the interior interior in the interior in https://www.doi.org/10.1016/j.fluid.2013.09.060 https://www.doi.org/10.1021/acs.jced.7b00065 Menayueonarison ใช้เกียราสาวัยงัก อาห. ... Solubility of Theobromine, YABODH YAHING EANH ใช้เกียร เกา โพลter ล่าง 2 คิงเลคาย ร. (Nethena) เขาลา โกร panol, หลาย และ ลองชาวราส by ระบบ เขาลา ลองชาวราส by ระบบ เขาลา ลองชาวราส by ระบบ เขาลา ลองชาวราส by ระบบ เขาลา ลองชาวราส by เขาลา ลองชาวราส by เขาลา ลองชาวราส by เขาลาง ลองชาวราส by เขาลา ลองชาวราสาราส and and excess properties of the binary mixtures bookshill was as use mentand and https://www.doi.org/10.1021/je800088e https://www.doi.org/10.1016/j.fluid.2005.04.003 https://www.doi.org/10.1021/je800475d https://www.doi.org/10.1016/j.jct.2019.105884 properties of the binary mixtures to hability of the properties of the binary mixtures to hability of the properties of https://www.doi.org/10.1016/j.jct.2016.01.023 https://www.doi.org/10.1021/acs.jced.8b01014 https://www.doi.org/10.1021/je101168w Measurement and Correlation of the Solubility of Dienogest in Twelve Pure Solubility of Dienoges https://www.doi.org/10.1021/acs.jced.9b00696 https://www.doi.org/10.1016/j.fluid.2018.05.005 https://www.doi.org/10.1016/j.jct.2016.09.022 https://www.doi.org/10.1016/j.jct.2016.11.032 https://www.doi.org/10.1007/s10765-008-0395-z https://www.doi.org/10.1021/acs.jced.6b00517 https://www.doi.org/10.1021/acs.jced.8b00719 Thempd with the second of the Solubility of 3-Hydroxy-2-naphtholc Reliability in the many states of the state of https://www.doi.org/10.1016/j.fluid.2017.12.024 EXPERIMENTAL SAIN WELL AND LIFE THE THE PROPERTY OF THE PROPER https://www.doi.org/10.1016/j.fluid.2007.02.028 https://www.doi.org/10.1016/j.fluid.2015.07.023 https://www.doi.org/10.1016/j.jct.2016.07.014 https://www.doi.org/10.1016/j.fluid.2005.10.022

solubility and solution thermodynamics thermodynamics of the produndation of the produndation of the solution solubility and solution thermodynamics Testers viguisty is equilibrium of an azeotropic mixture (hexane + methanol) waspoic mixture (hexane + methanol) waspoic mixture (hexane + methanol) waspoic figure in the properties of the pro วิธรกรรษปigwightiquid equilibrium of an https://www.doi.org/10.1016/j.fluid.2018.01.008 ชัยนิเทิกเห็น Or Notecokin in the Fresence of Methanol, Ethanol, and Sodium Estupils เกิด เล่น อาการ เล่น อาก https://www.doi.org/10.1021/acs.jced.9b00004 https://www.doi.org/10.1021/je800506q https://www.doi.org/10.1021/acs.jced.8b00632 Binary Solvent Systems: Activity coefficients at infinite dilution Activity coefficients at infinite dilution of organic solutes in the ionic liquid tradity program solutes in the ionic liquid tradity program solutions as the ionic liquid tradity program is a solution of a solution of a solution of a solutes in the ionic liquid and in https://www.doi.org/10.1016/j.jct.2013.05.030 https://www.doi.org/10.1016/j.jct.2018.09.008 https://www.doi.org/10.1021/je049808f https://www.doi.org/10.1021/acs.jced.8b00551 https://www.doi.org/10.1021/je050146j https://www.doi.org/10.1021/acs.jced.9b00490 https://www.doi.org/10.1021/je300332b https://www.doi.org/10.1021/je100410k Determination of Activity Coefficients at Infinite Dilution of 35 Solutes in the THE THE THE PROPERTY OF ACTIVITY https://www.doi.org/10.1016/j.jct.2016.03.026 https://www.doi.org/10.1021/acs.jced.9b00658 https://www.doi.org/10.1016/j.fluid.2013.09.058 **֍,շետի։ (izyoaxod դրչ eti dreen lyrm, or, քեն io** xyph ostphaloy etio ble k y լուջ 4 նթան թի/j. fluid. 2013. 03. 028 https://www.doi.org/10.1016/j.fluid.2011.09.002 https://www.doi.org/10.1021/je0496560 https://www.doi.org/10.1021/je4010257 Marasurament and Cosselation of the Solubility of L-Carnitine in Different https://www.doi.org/10.1021/je500078n Penerstatura slangreteratiso lubilitatief https://www.doi.org/10.1016/j.fluid.2015.01.012 The process of the pure state of the pure ionic light in the process of the pure ionic light in the pu Rempressor and discovered the side

https://www.doi.org/10.1016/j.fluid.2016.08.019

Determination and correlation of

based ionic liquids:

A novel static analytical apparatus for https://www.doi.org/10.1016/j.fluid.2012.11.008 phase equilibrium measurements: Solubility and Solvent Effect of https://www.doi.org/10.1021/acs.jced.9b00560 1-(2-Bromo-phenyl)-pyrrole-2,5-dione in เรื่องสุด อังสังษ์คนอร์เผ็น 278เทรเนตเนื่อง25.15 lauric acid) system: Vapor pressure measurement for https://www.doi.org/10.1016/j.jct.2011.02.017 https://www.doi.org/10.1016/j.fluid.2006.07.007 https://www.doi.org/10.1016/j.jct.2010.04.013 https://www.doi.org/10.1021/acs.jced.8b01245 https://www.doi.org/10.1021/je500519y https://www.doi.org/10.1021/je800817b https://www.doi.org/10.1021/je800520w https://www.doi.org/10.1021/je034286+ https://www.doi.org/10.1021/je900711h https://www.doi.org/10.1016/j.jct.2014.09.003 Measure portion diffusion coefficients in The Union was the Coefficient of the Coefficien https://www.doi.org/10.1021/je0497303 https://www.doi.org/10.1021/je301014d https://www.doi.org/10.1021/acs.jced.8b00581 Diffe ରେ ମଦ୍ୟୁ ମଧ୍ୟ Solvents: Measurement and correlation of Measurement and correlation of isobaric vapor-liquid equilibria of hetharial (kapariyalishich equilibria for the liquid entire) and isobaric vapor-liquid equilibria of hetharial (kapariyalishich) equilibria for the liquid entire) and hitps://www.doi.org/10.1016/j.jct.2015.02.006 https://www.doi.org/10.1016/j.fluid.2017.09.006 https://www.doi.org/10.1016/j.fluid.2017.09.006 https://www.doi.org/10.1016/j.fluid.2017.09.006 https://www.doi.org/10.1016/j.fluid.2017.09.006 https://www.doi.org/10.1016/j.fluid.2017.09.006 https://www.doi.org/10.1016/j.jct.2008.01.004 https://www.doi.org/10.1016/j.jct.2008.01.004 https://www.doi.org/10.1016/j.jct.2017.08.024 https://www.doi.org/10.1016/j.jct.2017.08.024 https://www.doi.org/10.1016/j.jct.2017.08.024 https://www.doi.org/10.1016/j.jct.2017.08.024 https://www.doi.org/10.1021/je500455u https://www.doi.org/10.1021/je500455u https://www.doi.org/10.1016/j.fluid.2016.04.012 https://www.doi.org/10.1016/j.fluid.2017.09.005 https://www.doi.org/10.1021/acs.jced.5b00565 https://www.doi.org/10.1016/j.fluid.2017.12.004 Systems of Hexafluoroisopropanol + Pennidiaual saw illustration at https://www.doi.org/10.1016/j.tca.2016.09.005 sound velocity measurements of (water Weineringments of hand) Meanurements effectivity coefficients
attrivite didition for a seignal lates
and was a seignal lates https://www.doi.org/10.1016/j.jct.2013.07.004 https://www.doi.org/10.1016/j.jct.2016.07.001 https://www.doi.org/10.1021/je900656c https://www.doi.org/10.1016/j.fluid.2009.10.019 https://www.doi.org/10.1016/j.tca.2007.04.012 https://www.doi.org/10.1021/je500996n https://www.doi.org/10.1021/acs.jced.6b01044 https://www.doi.org/10.1021/acs.jced.8b01256 Equinition # የቆዩ ፲፱ ፡፡ ተቋመ https://www.doi.org/10.1016/j.fluid.2006.01.008 https://www.doi.org/10.1021/acs.jced.5b01053 https://www.doi.org/10.1016/j.fluid.2011.03.008 https://www.doi.org/10.1021/je400065j https://www.doi.org/10.1021/je5010565 Entichlosystehasessayithrium of Starphasessayithrium o https://www.doi.org/10.1016/j.fluid.2009.10.002

acetone + methanol:

Thermodynamic modelling for solubility of 4-nitrobenzaldehyde in เหมาะเอรเลง พระเอรเลง เอาสาร สา quaternary systems of representative เอเหม่อนเกมเอ Egystomia of Methanol at Estarb k and Propantal olavith Water ลา คามหายเมื่อสุดคาด Viscosity Study for the Binary Mixtures of the Binary Mixtures of Amprimental State Way the checimetric cate of two lengths also with also whose at T by a length by the conference of the conference o of street of the for Organic Compounds Dissolved in for Organic Compounds Dissolved in Detrymination and Control of Belthinium and Control of Belthinium Measurements 298 Oscaros Sobutes and taken linking formed donoxide and the linking formed donoxide and linking formed donoxide organic solvents at the properties of the proper A PROPERO DE CONTRETE PEROPENDO L'ANTS: (293.15-308.15) K:

https://www.doi.org/10.1016/j.jct.2016.09.012 https://www.doi.org/10.1016/j.jct.2015.07.010
pto168/giroitranephthelappe and imexing
pto168/giroitranephthelappe and imexing https://www.doi.org/10.1021/je200646r https://www.doi.org/10.1021/acs.jced.8b00965 https://www.doi.org/10.1016/j.jct.2012.02.037 https://www.doi.org/10.1021/je0498614 https://www.doi.org/10.1016/j.jct.2017.10.003 https://www.doi.org/10.1021/acs.jced.9b00802 https://www.doi.org/10.1021/acs.jced.8b00309 https://www.doi.org/10.1021/acs.jced.7b00222 https://www.doi.org/10.1021/je300692s https://www.doi.org/10.1021/acs.jced.9b00381 https://www.doi.org/10.1021/je0502391 https://www.doi.org/10.1021/acs.jced.8b00763 https://www.doi.org/10.1021/je300517q https://www.doi.org/10.1021/je1000582 https://www.doi.org/10.1021/acs.jced.9b00676 https://www.doi.org/10.1016/j.fluid.2018.07.028 https://www.doi.org/10.1016/j.fluid.2018.07.028 https://www.doi.org/10.1021/acs.jced.7b00825 introduction of investigation of Dipyridamole p-Toluene Sulfonate Bolubility Messevermees nor Solvents Intermedy representation of processing of Dipyridamole p-Toluene Sulfonate Bolubility Messevermees nor Solvents Intermedy representation of pure Person partners of the long of the pure process of the long of the person of the long of the person of the long of the person of the long of the long of the person of the long of th https://www.doi.org/10.1016/j.fluid.2018.07.028 https://www.doi.org/10.1016/j.tca.2014.03.027 https://www.doi.org/10.1021/acs.jced.5b00526

Isobaric Vapor Liquid Equilibrium for https://www.doi.org/10.1021/je301290c Isobaric Vapor Liquid Equilibrium for Methanol + Dimethyl Carbonate + Saubility-mondylling and lium https://www.doi.org/10.1021/je301290c https://www.doi.org/10.1016/j.jct.2018.12.038 the mondylling as pect of Distribution of the mondylling as per limited of the mondyll Methanol, Ethanol and Different Binary Massivesment erember and subject the second state of the second sta Methanol, Ethanol and Different Binary கு புக்கு பிருக்கு விருக்கு வ รักในช่วยลงยนโรงกษาเกตกใจการ Molecular อัตร์อีเมลอ์เลกี Viscosities for Binary Mixtures of the lonic Liquid N-Ethyl https://www.doi.org/10.1021/je201116t Mixtures of the lonic Liquid N-Ethyl Phoseurament and Constitution of Schrifting at Several Temperatures: 9,500 birds and 150 bi https://www.doi.org/10.1021/acs.jced.9b00275 https://www.doi.org/10.1016/j.jct.2008.01.015 https://www.doi.org/10.1016/j.jct.2006.11.001 https://www.doi.org/10.1021/je500545s https://www.doi.org/10.1016/j.jct.2017.05.037 https://www.doi.org/10.1016/j.jct.2009.07.009 https://www.doi.org/10.1016/j.fluid.2009.12.030 https://www.doi.org/10.1016/j.fluid.2018.09.024 https://www.doi.org/10.1016/j.jct.2015.01.015 https://www.doi.org/10.1016/j.jct.2018.07.013 Internative and the properties of 1:1 and th https://www.doi.org/10.1021/acs.jced.8b00192 https://www.doi.org/10.1016/j.tca.2005.03.009 Methanol + Dimethyl Carbonate + พิสตรราชาลุยุเกสาร์เลยเสียสมารถสราชา https://www.doi.org/10.1021/acs.jced.9b00341 https://www.doi.org/10.1016/j.fluid.2008.02.021 https://www.doi.org/10.1021/acs.jced.7b00244 https://www.doi.org/10.1016/j.jct.2009.12.004 https://www.doi.org/10.1016/j.jct.2016.02.020

and at P) 0.1 MPa:

https://www.doi.org/10.1021/je0601309 Vapor-Liquid Equilibria for Methanol + https://www.doi.org/10.1021/acs.jced.7b00766 Emparione Dahlengred and Arguilibria and Thermodynamic Modeling of the Merrano Puranol Arguilibria and Thermodynamic Modeling of the Merrano Puranol Arguilla Butanol Arguilla Butanol Arguilla Butanol Arguilla Butanol Arguilla Butanol Arguilla Butanol But Expanion endan Verpard a consideration in https://www.doi.org/10.1016/j.jct.2016.07.043 https://www.doi.org/10.1016/j.fluid.2014.04.028 https://www.doi.org/10.1016/j.jct.2005.04.010 https://www.doi.org/10.1016/j.fluid.2008.04.010 https://www.doi.org/10.1021/je900772h https://www.doi.org/10.1016/j.jct.2012.07.012 Massummentand Carrention of Solubility of Gatifloxacin in 12 Pure https://www.doi.org/10.1021/acs.jced.8b00902 Belesmis ation of organic solutes in Belushitange tradecanedioic acid in pure https://www.doi.org/10.1016/j.jct.2015.05.026 infinite dilution of organic solutes in Reliability of indecanedioic acid in pure solventies of the pare in an experimental and complete solutions of the pure in https://www.doi.org/10.1021/acs.jced.8b00717 https://www.doi.org/10.1016/j.fluid.2015.02.008 ### In the containing that the containing is spectroscopic study of binary mixtures containing that the containing that the containing that the containing is specifically and the containing that the containing that the containing is specifically and the containing that the containing is specifically and the containing that the containing is specifically that the containing is specifically the containing is specifically that the containing is the containing that the containing is specifically the containing that the c https://www.doi.org/10.1016/j.fluid.2007.04.018 https://www.doi.org/10.1016/j.fluid.2018.06.013 https://www.doi.org/10.1021/acs.jced.8b01099 https://www.doi.org/10.1016/j.fluid.2015.05.016 Excess volumes and excess heat capacities of {1,2- alkanediol + heavisities of {1,2- alkanediol + heavisitie https://www.doi.org/10.1021/je900890u https://www.doi.org/10.1016/j.jct.2010.06.009 https://www.doi.org/10.1016/j.jct.2005.07.008 https://www.doi.org/10.1021/acs.jced.5b00746 https://www.doi.org/10.1021/je9003806 https://www.doi.org/10.1016/j.jct.2009.08.012 https://www.doi.org/10.1016/j.jct.2009.03

programming the property of the pro https://www.doi.org/10.1016/j.fluid.2012.01.019 https://www.doi.org/10.1021/je201047m https://www.doi.org/10.1021/acs.jced.8b00954 N-tert-Butylbenzothiazole-2-sulfenamide ที่เรียงคริสโซนโล้ยสหัช ชิดใสต์ที่เชื่อไขยาธระ Determination and Model Correlation of โฉหนีมีเขายกรอยใหญ่ใหญ่ เกิดเลือดใหญ่ใหญ่ รองจะลิโรเอส solvents and binary มิดูแอดงรัฐเลือดรัฐเกิดเลือดรัฐเล https://www.doi.org/10.1021/acs.jced.8b01181 https://www.doi.org/10.1016/j.jct.2019.01.013 https://www.doi.org/10.1016/j.jct.2014.02.022 B138/435) 94:

Ebulliometric Determination of

Solubility in Different Solvents, Crystal https://www.doi.org/10.1021/acs.jced.7b00538 Polymorph and Morphology, and Polymorph and Morphology, and washing the part of the https://www.doi.org/10.1021/acs.jced.5b00007 N-(phenylmethyl)-, Diphenyl Ester in Selid ដែលស្វាស្ត្រកុណ្ឌីម៉្នាប់um of sulbactam in https://www.doi.org/10.1016/j.fluid.2014.09.008 pure solvents and binary solvent HARRIE Method: https://en.wikipedia.org/wiki/Joback_method Measurement and Correlation of Liquid Liquid Equilibrium for Quaternary Syste his widnesses, Flowid in John Correlation of Control of Systems with the Correlation of Control of Measurement and Correlation of Liquid https://www.doi.org/10.1021/acs.jced.6b01031 Liquid Equilibrium for Quaternary Tetrahydropyran and Alcohol Systems: Solid Liquid Equilibrium of https://www.doi.org/10.1021/je400864f Theophylline in Solvent Mixtures: Solubility of Anthracene in Binary and https://www.doi.org/10.1021/je900852t and Ally Chronic Paragraphic Transport of the Conference of the Co https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure Pressure: Ternary Liquid-Liquid Equilibria for Ternary Liquid-Liquid Equilibria for
Mixtures of

Agid inchinary a convention of the properties of the https://www.doi.org/10.1021/je025629r https://www.doi.org/10.1016/j.jct.2016.10.019 https://www.doi.org/10.1016/j.tca.2005.06.016 https://www.doi.org/10.1016/j.jct.2018.07.024 https://www.doi.org/10.1016/j.jct.2013.02.004

Drigance soluties Entractive apistillatione: of the Acetone + Methanol System:

Phase equilibria of (water + propionic acid or butyric acid + 2-methoxy solvents and (ethyl alcohol + water)
Activity Operfisients at Infinite Dilution
of Various Solutes in Petrymiosylethonahnabielation ahthe Boluphity of fash Ryenstediesisliksionsis Reliitylisesed anben 2016 122 dhuan 101 + Water) Mixtures from (293.15 to 333.15) Cobaric vapor-liquid equilibrium data for the binary system methyl acetate + methanol mixed solvents at T = (278.2, Essessing post of the solvents at T = (278.2, Essessing post of the solvents at T = (278.2, Essessing post of the solvents at T = (278.2, Essessing post of the solvents of the solvent Sobalia Manor Live di Frencherium Verseuremente vand Saparation Process Solute du pragrimente pragrimente process Solute du pragrimente pragrimente process Solute du pragrimente process 2-(Methoxymethoxy)-butane + (+-)-Di-sec-butoxymethane System:

https://www.doi.org/10.1016/j.fluid.2015.06.003 Solubility of daidzin in different organic https://www.doi.org/10.1016/j.jct.2015.04.025 https://www.doi.org/10.1021/acs.jced.8b00600 The property of the property o https://www.doi.org/10.1021/acs.jced.6b00230 https://www.doi.org/10.1016/j.jct.2013.12.031 https://www.doi.org/10.1021/je900435t https://www.doi.org/10.1016/j.fluid.2013.01.024 https://www.doi.org/10.1016/j.fluid.2012.05.006 The state in the quaternary of second frequency of second frequenc Activity Coefficients at Infinite Dilution of Polar Solutes in Effect of -23 markition and acomposature variations on the method of polar solutes in Effect of -23 markition and acomposature variations on the method of the meth https://www.doi.org/10.1016/j.tca.2004.09.012 https://www.doi.org/10.1021/acs.jced.5b00829 https://www.doi.org/10.1021/acs.jced.6b00421 https://www.doi.org/10.1016/j.jct.2011.11.007

Acetonitrile) + Methanol and activally increase in a properties of properties of binary mixtures of a properties of binary mixtures of https://www.doi.org/10.1016/j.jct.2011.11.007 https://www.doi.org/10.1021/acs.jced.8b01001 https://www.doi.org/10.1021/acs.jced.9b00005 https://www.doi.org/10.1016/j.fluid.2019.06.004 https://www.doi.org/10.1021/acs.jced.8b01247 https://www.doi.org/10.1016/j.fluid.2005.08.004

Experimental Isobaric Vapor-Liquid https://www.doi.org/10.1021/je100494z Equilibrium for Binary Systems of Ethyl https://www.doi.org/10.1016/j.jct.2008.10.001 Meiling comparature measurement for https://www.doi.org/10.1016/j.jct.2008.10.001
water on ellipsigned and their sellipsigned a https://www.doi.org/10.1016/j.fluid.2015.07.017 https://www.doi.org/10.1016/j.fluid.2015.09.052
https://www.doi.org/10.1016/j.fluid.2015.09.052
https://www.doi.org/10.1021/je7006988
https://www.doi.org/10.1021/je7006988
https://www.doi.org/10.1021/je7006999
https://www.doi.org/10.1021/je7006999
https://www.doi.org/10.1021/je7006999
https://www.doi.org/10.1021/je7006999
https://www.doi.org/10.1021/je7006999
https://www.doi.org/10.1016/j.fluid.2015.08.014
https://www.doi.org/10.1016/j.fluid.2015.08.014
https://www.doi.org/10.1016/j.fluid.2015.08.014
https://www.doi.org/10.1016/j.fluid.2015.08.014
https://www.doi.org/10.1021/je0501651
https://www.doi.org/10.1021/je0501651
https://www.doi.org/10.1021/je0501651 https://www.doi.org/10.1016/j.fluid.2015.09.052 Involving Water, Themanor emand and 190 proving Water, Themanor emperatures: 190 proving the constitution of the constitution https://www.doi.org/10.1016/j.fluid.2014.07.004 https://www.doi.org/10.1016/j.jct.2010.03.016 https://www.doi.org/10.1021/je800291t https://www.doi.org/10.1021/acs.jced.6b00965 Solubility of para-tert-Butylbenzoic Activity regetion with a time and a little of the control o https://www.doi.org/10.1016/j.jct.2012.01.019 https://www.doi.org/10.1021/je500991b The control of the Solubility of the limination of the Solubility of the Solubility of the limination of the Solubility Methanonin ระเราปอยสายกามคระดา dainary บางห่อยกราชากกระสบายระบางห่อยกราชากกระสบายระบางห่อยกราชากกระสบายระบางห่อยกราชากกระสบายระบางห่อยการคระบางหลายการคระบางหลาย https://www.doi.org/10.1021/je0500633 https://www.doi.org/10.1021/acs.jced.9b00331 https://www.doi.org/10.1016/j.fluid.2010.12.012 https://www.doi.org/10.1021/acs.jced.6b00180 https://www.doi.org/10.1021/je0500375 https://www.doi.org/10.1021/je900732r Harmodynamic Properties of Ingresory Rate in Negacition us ctyles the properties of https://www.doi.org/10.1021/je060033f https://www.doi.org/10.1016/j.fluid.2018.08.020 https://www.doi.org/10.1016/j.jct.2010.07.014 https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=817 https://www.doi.org/10.1016/j.tca.2017.12.010 collection of vapor-liquid equilibrium RALED WAYA OF TIME TO THE WAYA OF TIME TO THE WAYA OF TIME TO THE WAYA OF T https://www.doi.org/10.1016/j.jct.2016.11.029 https://www.doi.org/10.1016/j.jct.2010.12.019 Schronophenomialine in the organic soncernation of the second sec https://www.doi.org/10.1016/j.jct.2018.09.023 https://www.doi.org/10.1021/je8002157 https://www.doi.org/10.1021/acs.jced.5b00994 The remaining two solubility for Camptothecine in birestend yndair compatities of binary mixtures combining two solubility pobased randout liquids and two alkahals from (298.2 to 333.2) K and The remaining with another in the remaining properties of Phenformin in 14 Pure Solvents at Tamperatures Pancing https://www.doi.org/10.1016/j.jct.2012.02.023 https://www.doi.org/10.1021/je1001945 https://www.doi.org/10.1021/acs.jced.9b00844 Solvents at Temperatures Ranging

from 278.15 to 323.15 K:

Solubility determination and thermodynamic modeling of 5-nitro-8-hydraxiyatlinasa Faurilieri ang Ariethyl Solubility of Balcalin in Several Mixed By State in alcohols using of antibiotics in alcohols using the state of the several Mixed by Solubility of Balcalin in Several Mixed By Solubility of Balcal Liquideliquidraqน่มีเปรียก รัณเสโตร ternary https://www.doi.org/10.1021/je2009208 aysteens of mates through anol + bynamig ligitosities, Densities, and Speed of Sound and Derived Properties Speed of Sound and Derived Properties Equilibrium Solubilities of Genomeration https://www.doi.org/10.1021/acs.jced.8b01051

Wifferent Alpan and Elinany, Solvent Settate Enthance of Infinite Division of Infinite Divisio binary mixtures of
24th bith yamino) ethanol with
an ethanol and yellushors in a region of the control of the c binary mixtures of Mixtures Formed by Water Methanol, Mixtures Formed by Water Methanol, Wexarationandi Water The transfer of the physical content of the physical c volumetric properties of some Preptartmol (2) at 96.5 kPa:

https://www.doi.org/10.1016/j.jct.2016.04.018 https://www.doi.org/10.1021/je0201018 https://www.doi.org/10.1021/acs.jced.8b01186 https://www.doi.org/10.1021/je0342825 https://www.doi.org/10.1016/j.fluid.2012.02.018 https://www.doi.org/10.1016/j.tca.2014.03.038 https://www.doi.org/10.1016/j.jct.2010.05.016 https://www.doi.org/10.1016/j.jct.2008.08.003 https://www.doi.org/10.1016/j.jct.2016.12.028 https://www.doi.org/10.1021/acs.jced.5b00770 https://www.doi.org/10.1016/j.fluid.2013.10.035 https://www.doi.org/10.1021/acs.jced.8b01205 https://www.doi.org/10.1021/acs.jced.7b00920 https://www.doi.org/10.1021/acs.jced.9b00406 https://www.doi.org/10.1021/acs.jced.7b00709 https://www.doi.org/10.1016/j.jct.2003.11.009

Dynamic Viscosities of Diethyl Carbonate with Linear and Secondary Adultity at Se Cerlar Tearning and https://www.doi.org/10.1021/je3001188 in Different Solvents: Solubility of in Different Solvents:
Solubility of
4-Chloro-2,5-dimethoxynitrobenzene,
Petaroniozi praimetroxydatime and
gruphiterioxi praimetroxydatime and
gruphiterioxi praimetroxydatime and
measurement in binary mixtures of
dienteriometrace cheer relationes (C1solubility of pronamide in five organic
Senentian gristins 323/1894C:
acetate-based ionic liquids for
Benzent-anethare systeme into any
graphiterior in binary in xurves of
dienteriometrace and xurves of
dienteriometrace cheer relationes (C1solubility of pronamide in five organic
Senentian gristins 323/1894C:
acetate-based ionic liquids for
Benzent-anethare systeme into any
graphiterior of the company
graphiterior of Solid-Liquid Equilibrium Solubility, Thermodynamic Properties, and Monetina 31th Visquenities of Binary Mixing pobles of Binar Activity Coefficients at Infinite Dilution of Organic Solutes in panelyes. Menophities and hiquid Discontines. Menophities and hiquid Discontines of the particle of the parti Acetate + Methanol at (0.1, 0.5, and 0.7) 2-(2,4,6-Trichlorophenoxy)ethyl
2-(2,4,6-Trichlorophenoxy)ethyl
Bครศสตะกาคพปะกลกมีเรากลกดำ
Propagation (และเกิด และเกิด และเก ACHARIOTY CHEEN THE WAR PIN THE IONIC LECTURE PHOTOLOGY THE PROJECT OF THE PROJE x)H2O+xCH3OH at T = (298.15 to

523.15) K and pressures up to 60 MPa:

https://www.doi.org/10.1021/je0341413 https://www.doi.org/10.1021/acs.jced.9b00011 https://www.doi.org/10.1021/je800031p https://www.doi.org/10.1016/j.jct.2018.04.010 https://www.doi.org/10.1021/je700690q https://www.doi.org/10.1016/j.jct.2017.05.013 https://www.doi.org/10.1016/j.jct.2017.03.038 https://www.doi.org/10.1016/j.jct.2014.08.026 https://www.doi.org/10.1021/je100614r https://www.doi.org/10.1016/j.fluid.2017.11.035 https://www.doi.org/10.1016/j.fluid.2008.05.002 https://www.doi.org/10.1021/je200074c https://www.doi.org/10.1016/j.jct.2019.02.002 https://www.doi.org/10.1021/je500286x https://www.doi.org/10.1016/j.jct.2013.08.030 https://www.doi.org/10.1021/acs.jced.8b01214 https://www.doi.org/10.1021/acs.jced.8b01193 https://www.doi.org/10.1021/acs.jced.8b00785 https://www.doi.org/10.1016/j.jct.2004.03.011

PHYSICAL AND EXCESS PROPERTIES OF BINARY AND TERNARY MIXTURES **OPER IN CONVIEW HAVE BEARD ON A MARKET WHEN** Interpretable of the first of t hydrochloride in different binary soberic vapor-Liquid Equilibrium for the Binary System of Dimethyl Adipate and พุทธาพระพาคริปประสาทยาชาลดงปี 99 apature methanol triethylamine at low ត្រមួយនៃក្នុក្សង្គ្រីទៀត និងប្រាក់ទាំ ម៉ោះ ទីការ៉ាស៊ី នៃរួច២០៩ឆ្នាំពេទ្ធប្រជាពិធីក្នុង និងប្រកាត្ត ស្ត្រី នៃស្ត្រី និងប្រកាត្ត ទី០៤៤ឆ្នាំ ទី០៤៤ឆ្នាំ និងប្រកាត្ត ទី០៤៤ឆ្នាំ ទី០៤៤ឆ្នាំ និងប្រការ Tetramantane, and Their Derivatives in **Organic Solvents:**

https://www.doi.org/10.1016/j.tca.2005.04.030 https://www.doi.org/10.1016/j.jct.2018.02.014 https://www.doi.org/10.1016/j.tca.2004.11.015 https://www.doi.org/10.1016/j.fluid.2005.01.002 Somewhile of the interest in t https://www.doi.org/10.1021/acs.jced.9b00306 https://www.doi.org/10.1016/j.fluid.2011.01.013 https://www.doi.org/10.1016/j.fluid.2012.12.006 https://www.doi.org/10.1021/acs.jced.8b01126 https://www.doi.org/10.1021/je800277a

Legend

af: Acentric Factor affp: Proton affinity

Autoignition Temperature aigt:

Gas basicity basg:

Standard gas enthalpy of combustion chg: Standard liquid enthalpy of combustion chl:

Ideal gas heat capacity cpg: cpl: Liquid phase heat capacity Solid phase heat capacity cps:

dm: **Dipole Moment** dvisc: Dynamic viscosity

fII: Lower Flammability Limit flu: Upper Flammability Limit

fpc: Flash Point (Closed Cup Method) Flash Point (Open Cup Method) fpo:

gf: Standard Gibbs free energy of formation

Radius of Gyration gyrad:

hf: Enthalpy of formation at standard conditions hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/l logp: Octanol/Water partition coefficient mcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating
nfpah: NFPA Health Rating
pc: Critical Pressure
pvap: Vapor pressure
rfi: Refractive Index
rhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

sfust: Entropy of fusion at a given temperature

sl: Liquid phase molar entropy at standard conditions

speedsl: Speed of sound in fluid

srf: Surface Tension

ss: Solid phase molar entropy at standard conditions

tb: Normal Boiling Point Temperaturetbp: Boiling point at given pressure

tc: Critical Temperature

tcondl: Liquid thermal conductivity

tdiff: Thermal diffusivity

tf: Normal melting (fusion) pointtt: Triple Point Temperature

vc: Critical Volume volm: Molar Volume

zc: Critical Compressibility
zra: Rackett Parameter

Latest version available from:

https://www.chemeo.com/cid/69-136-5/Methyl-Alcohol.pdf

Generated by Cheméo on 2025-12-22 15:49:52.641024283 +0000 UTC m=+6166790.171064936.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.