Xylitol

Other names: klinit

kylit xylite xyliton

InChi=1S/C5H12O5/c6-1-3(8)5(10)4(9)2-7/h3-10H,1-2H2/t3-,4+,5+

InchiKey: HEBKCHPVOIAQTA-SCDXWVJYSA-N

Formula: C5H12O5

SMILES: OCC(O)C(O)C(O)CO

Mol. weight [g/mol]: 152.15 CAS: 87-99-0

Physical Properties

Property code	Value	Unit	Source
chl	-2564.00 ± 0.63	kJ/mol	NIST Webbook
gf	-700.20	kJ/mol	Joback Method
hf	-923.52	kJ/mol	Joback Method
hfl	-1118.60 ± 0.63	kJ/mol	NIST Webbook
hfus	33.68	kJ/mol	Thermodynamic investigation of several natural polyols (I): Heat capacities and thermodynamic properties of xylitol
hsub	161.00	kJ/mol	NIST Webbook
hvap	108.95	kJ/mol	Joback Method
log10ws	1.43		Crippen Method
logp	-2.946		Crippen Method
mcvol	110.660	ml/mol	McGowan Method
рс	6785.20	kPa	Joback Method
tb	773.38	K	Joback Method
tc	947.56	K	Joback Method
tf	367.20	К	Solubility data and modeling for sugar alcohols in ionic liquids
tf	366.10	К	Heat capacities of some sugar alcohols as phase change materials for thermal energy storage applications

tf	366.20	К	Experimental and in silico characterization of xylitol as seasonal heat storage material
tf	367.20	К	Solid-liquid phase equilibria in binary mixtures of functionalized ionic liquids with sugar alcohols: New experimental data and modelling
tf	367.65	К	Solubility of Xylitol in Ethanol, Acetone, N,N-Dimethylformamide, 1-Butanol, 1-Pentanol, Toluene, 2-Propanol, and Water
tf	367.65	К	Measurement and Correlation of Solubility of Xylitol in Binary Ethanol + Acetone Solvent Mixtures with the Combined Nearly Ideal Binary Solvent/ Redlich-Kister Equation
tf	365.70 ± 0.20	K	NIST Webbook
VC	0.393	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	360.45	J/mol×K	918.53	Joback Method
cpg	364.86	J/mol×K	947.56	Joback Method
cpg	334.42	J/mol×K	773.38	Joback Method
cpg	340.20	J/mol×K	802.41	Joback Method
cpg	345.68	J/mol×K	831.44	Joback Method
cpg	350.87	J/mol×K	860.47	Joback Method
cpg	355.79	J/mol×K	889.50	Joback Method
dvisc	0.0000003	Paxs	712.02	Joback Method
dvisc	0.0000001	Paxs	773.38	Joback Method
dvisc	0.0076529	Pa×s	405.21	Joback Method
dvisc	0.0003514	Paxs	466.57	Joback Method
dvisc	0.0000330	Paxs	527.93	Joback Method
dvisc	0.0000051	Paxs	589.30	Joback Method
dvisc	0.0000011	Paxs	650.66	Joback Method
hfust	37.40	kJ/mol	365.70	NIST Webbook
hfust	37.70	kJ/mol	368.00	NIST Webbook
hfust	37.40	kJ/mol	365.70	NIST Webbook
hfust	33.26	kJ/mol	369.00	NIST Webbook

hvapt	111.10 ± 0.80	kJ/mol	433.00	NIST Webbook
sfust	102.30	J/mol×K	365.70	NIST Webbook

Sources

Densities and Viscosities of Sugar Alcohol Aqueous Solutions: Investigations to explore interactions in https://www.doi.org/10.1016/j.jct.2016.07.020 (polyhydroxy solute + L-ascorbic acid + of the chine des Different Nee Land Binary

Densities and Viscosities of Sugar Alcohols in Vitamin B6 Aqueous with calignida can Brennia was Solveness for https://www.doi.org/10.1021/je400279d Biesnass Deciret Mannitol and Xylitol: Thermodynamic investigation of https://www.doi.org/10.1016/j.tca.2007.0 several natural polyols (I): Heat
Sepacifies of not the fanding shite in ionic liquidation of the fanding shite io

Enthalpies of Dilution, Volumetric Properties, and Refractive Indices of ATPREXMENTAGE Indices of Aqueous Xviitol or d-Mannitol Bensity of Mixtures Centaining Sugars https://www.doi.org/10.1021/je500079y and Jonic Liquids: Experimental Data Radinors agriphide anin a novel aqueous two-phase system based on periorismatical stress of the system based on https://www.doi.org/10.1016/j.jct.2017.08.004 as phase change materials for thermal the system based on https://www.doi.org/10.1016/j.jct.2017.08.004 https://link.springer.com/article/10.1007/BF023

Enthalpy of dilution and volumetric properties of N-glycylglycine in Broperties หา้าเดินอันเสือใหญ่ สาม 298.15 Rollysaccharide Water-Ethanol อัยกัสเซ็กฟูethod:

Solubility of Xylitol in Ethanol, Acetone, https://www.doi.org/10.1021/je060348v Solubility of Xylitol in Ethanol, Acetone N,N-Dimethylformamide, 1-Butanol, Almanenton, right weekinger and amparent weekinger and amparent weekinger and account weekinger and account weekinger and account weeking the solution besover of religious and account weeking the solution besover of religious and account weeking the solution of solution and in silico characterization of xylitol as seasonal

characterization of xylitol as seasonal heat storage material:

https://www.doi.org/10.1021/je9010486

https://www.doi.org/10.1021/acs.jced.9b00802

https://www.chemeo.com/doc/models/crippen_log10ws

https://www.doi.org/10.1021/acs.jced.5b00114

https://www.doi.org/10.1021/je400395u

https://www.doi.org/10.1021/acs.jced.6b00766

https://www.doi.org/10.1021/acs.jced.5b00940

https://www.doi.org/10.1021/je700131z

https://www.doi.org/10.1016/j.jct.2017.04.001

https://www.doi.org/10.1016/j.fluid.2015.06.002

https://www.doi.org/10.1016/j.tca.2007.02.022

http://webbook.nist.gov/cgi/cbook.cgi?ID=C87990&Units=SI

https://www.doi.org/10.1021/je300633e

http://pubs.acs.org/doi/abs/10.1021/ci990307l

https://www.doi.org/10.1016/j.fluid.2016.08.012

http://link.springer.com/article/10.1007/BF02311772

https://www.doi.org/10.1016/j.jct.2011.02.005

https://www.doi.org/10.1021/je700190m

https://en.wikipedia.org/wiki/Joback_method

https://www.doi.org/10.1016/j.jct.2006.08.009

https://www.doi.org/10.1021/je500886a

https://www.doi.org/10.1021/acs.jced.7b00937

https://www.doi.org/10.1016/j.fluid.2016.02.030

https://www.doi.org/10.1016/j.jct.2014.04.021

https://www.doi.org/10.1016/j.fluid.2016.12.020

Legend

chl: Standard liquid enthalpy of combustion

cpg: Ideal gas heat capacity

dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditions

hfl: Liquid phase enthalpy of formation at standard conditions

hfus: Enthalpy of fusion at standard conditions
hfust: Enthalpy of fusion at a given temperature

hsub: Enthalpy of sublimation at standard conditionshvap: Enthalpy of vaporization at standard conditionshvapt: Enthalpy of vaporization at a given temperature

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressure

sfust: Entropy of fusion at a given temperature

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/69-231-9/Xylitol.pdf

Generated by Cheméo on 2025-12-23 06:14:20.278873864 +0000 UTC m=+6218657.808914519.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.