1-Octyne

Other names:	HEXYLACETYLENE
	Octyne-1
	oct-1-yne
Inchi:	InChI=1S/C8H14/c1-3-5-7-8-6-4-2/h1H,4-8H2,2H3
InchiKey:	UMIPWJGWASORKV-UHFFFAOYSA-N
Formula:	C8H14
SMILES:	C#CCCCCCC
Mol. weight [g/mol]:	110.20
CAS:	629-05-0

Physical Properties

Property code	Value	Unit	Source
gf	239.55	kJ/mol	Joback Method
hf	80.70 ± 3.60	kJ/mol	NIST Webbook
hfus	19.45	kJ/mol	Joback Method
hvap	42.30 ± 0.10	kJ/mol	NIST Webbook
hvap	42.34	kJ/mol	NIST Webbook
ie	9.95 ± 0.02	eV	NIST Webbook
log10ws	-3.66		Aqueous Solubility Prediction Method
log10ws	-3.66		Estimated Solubility Method
logp	2.590		Crippen Method
mcvol	114.980	ml/mol	McGowan Method
рс	2960.12	kPa	Joback Method
rinpol	784.50		NIST Webbook
rinpol	784.00		NIST Webbook
rinpol	784.00		NIST Webbook
rinpol	785.80		NIST Webbook
rinpol	784.00		NIST Webbook
rinpol	783.52		NIST Webbook
rinpol	786.00		NIST Webbook
rinpol	812.00		NIST Webbook
rinpol	797.00		NIST Webbook
rinpol	811.00		NIST Webbook
rinpol	789.00		NIST Webbook
rinpol	783.52		NIST Webbook
rinpol	783.60		NIST Webbook

rinpol	787.50		NIST Webbook
rinpol	788.10		NIST Webbook
rinpol	784.00		NIST Webbook
rinpol	783.00		NIST Webbook
rinpol	812.00		NIST Webbook
rinpol	811.00		NIST Webbook
rinpol	784.00		NIST Webbook
ripol	1031.00		NIST Webbook
ripol	1047.10		NIST Webbook
ripol	1034.00		NIST Webbook
ripol	1036.00		NIST Webbook
tb	372.56	К	Joback Method
tc	547.48	К	Joback Method
tf	194.15 ± 1.50	К	NIST Webbook
tf	193.65 ± 0.30	К	NIST Webbook
tf	200.38	К	Aqueous Solubility Prediction Method
tf	193.67 ± 0.10	К	NIST Webbook
VC	0.446	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
срд	207.74	J/mol×K	372.56	Joback Method
cpg	219.42	J/mol×K	401.71	Joback Method
cpg	230.61	J/mol×K	430.87	Joback Method
cpg	241.34	J/mol×K	460.02	Joback Method
cpg	251.62	J/mol×K	489.17	Joback Method
cpg	261.46	J/mol×K	518.33	Joback Method
cpg	270.87	J/mol×K	547.48	Joback Method
hvapt	35.83	kJ/mol	399.40	NIST Webbook
hvapt	38.50	kJ/mol	378.50	NIST Webbook

Correlations

Information	Value
Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)

Coeff. A	1.39482e+01
Coeff. B	-3.12653e+03
Coeff. C	-6.42400e+01
Temperature range (K), min.	293.11
Temperature range (K), max.	426.24
Information	Value
Droporty code	21/22
Filipeny code	pvap
Equation	$\frac{pvap}{ln(Pvp) = A + B/T + C^*ln(T) + D^*T^2}$
Equation Coeff. A	pvap In(Pvp) = A + B/T + C*In(T) + D*T^2 -2.39993e+00
Equation Coeff. A Coeff. B	$pvap$ $ln(Pvp) = A + B/T + C*ln(T) + D*T^{2}$ $-2.39993e+00$ $-4.34412e+03$
Equation Coeff. A Coeff. B Coeff. C	$pvap$ $ln(Pvp) = A + B/T + C*ln(T) + D*T^{2}$ $-2.39993e+00$ $-4.34412e+03$ $3.22566e+00$
Equation Coeff. A Coeff. B Coeff. C Coeff. D	$pvap$ $ln(Pvp) = A + B/T + C*ln(T) + D*T^2$ $-2.39993e+00$ $-4.34412e+03$ $3.22566e+00$ $-8.94889e-06$
Equation Coeff. A Coeff. B Coeff. C Coeff. D Temperature range (K), min.	$pvap$ $ln(Pvp) = A + B/T + C*ln(T) + D*T^{2}$ $-2.39993e+00$ $-4.34412e+03$ $3.22566e+00$ $-8.94889e-06$ 357.15

Sources

Activity coefficients at infinite dilution measurements for organic solutes and watering the fricients at infinite dilution

ionic liquid choline Gastriffiuo chromyisufantyimide: measurements of activity coefficients measurements of activity coefficients infinitate ution activity coefficients infinitate ution activity coefficients spanic antenano university of the second purpose of the second of the second activity coefficients at infinite dilution infinite Dilution of Organic Solutes in the work coefficients at infinite dilution infinite Dilution of Organic Solutes in the work coefficients at infinite dilution infinite Dilution of Organic Solutes in the work coefficients at infinite dilution infinite Dilution of Organic Solutes in the work coefficients at infinite dilution infinite dilution of Organic Solutes in the work coefficients at infinite dilution infinite dilution of Organic Solutes in the second of the second of the second anter the second of the second of the second anter the second of the second of the second anter the second of the second of the second attended of the second of the second of the tetration of the second of the second of the second liquid in the second of the second

https://www.doi.org/10.1016/j.fluid.2009.08.017 measurements for organic solutes and Materin enefficients at infinite dilution measurements for organic solutes infinite dilution and activity energy of the discretion of https://www.doi.org/10.1016/j.jct.2005.03.014 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1016/j.jct.2010.01.004 https://www.doi.org/10.1016/j.fluid.2006.07.015 https://www.doi.org/10.1016/j.fluid.2018.09.024 https://www.doi.org/10.1021/acs.jced.8b00080 https://www.doi.org/10.1016/j.jct.2008.04.002 https://www.doi.org/10.1016/j.jct.2012.08.016 4-trimethylpentyl)-https://www.doi.org/10.1016/j.jct.2011.11.025

> https://www.doi.org/10.1016/j.jct.2016.01.017

Activity coefficients at infinite dilution

Thermodynamics and activity

water in the ionic liquid AGINUK CHELICION A BLINFINITE dilution and physicochemical properties for organic sentites and water interceiverno han her sate and the second and the second s And the second s liquid

Activity coefficients at infinite dilution of organic solutes in N-alky pyridinium leases in N-alky pyridinium lea https://www.doi.org/10.1016/j.jct.2010.06.009 https://www.doi.org/10.1016/j.fluid.2010.08.016 https://www.doi.org/10.1016/j.fluid.2018.06.013 https://www.doi.org/10.1016/j.fluid.2018.06.003 https://www.doi.org/10.1016/j.fluid.2005.04.021 https://www.doi.org/10.1016/j.fluid.2009.01.011 http://webbook.nist.gov/cgi/cbook.cgi?ID=C629050&Units=SI https://www.doi.org/10.1016/j.jct.2011.06.007 coefficients at infinite dilution ከተደዝያ መስከት አንዚያ በመስከት አንዚያ በመስከት አንዚያ በመስከት አንዚያ በመስከት አንድር መስከት አንድር በመስከት አንድር በመስከ https://www.doi.org/10.1016/j.jct.2011.04.018 https://www.doi.org/10.1016/j.jct.2011.02.012 big BHIL Settification and initer dilution manager agroups for provide structures and provide a provide structure for provide structures and provide a provide structure for provide structure for provide structures and the provide structure for provide structure fo https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure

4-(3-hydroxypropyl)-4-methylmorpholinium bis(trifluoromethylsulfonyl)-amide:

Abraham model correlations for describing the thermodynamic Measurements of revealed confiction of a training a billubian to operation of the another and the status of the another and another and the status of the another and an text with the address of the another and an text with the address of the another and an text with the address of the another and an text with the address of the another and an text with the address of the another and an text with the address of organic solutes in the ionic liquid the address of the address of the address of the address of organic solutes in the ionic liquid the address of the address of the address of the address of organic solutes in the ionic liquid the address of organic solutes in the ionic liquid the address of the addr

Contraction of biological set of the set of

iquid 4-(2-methoxyethyl)-4-methylmorpholinium fifegeiger¹luoroethyl)phosphate:

https://www.doi.org/10.1016/j.jct.2018.05.003
https://www.doi.org/10.1021/je101008y
https://www.doi.org/10.1016/j.jct.2018.02.014
https://www.doi.org/10.1016/j.jct.2012.01.004
https://www.doi.org/10.1021/je0256481
https://www.doi.org/10.1016/j.jct.2018.07.024
https://www.doi.org/10.1016/j.jct.2013.05.030
https://www.doi.org/10.1016/j.jct.2010.04.011
https://www.doi.org/10.1021/je800105r
https://www.doi.org/10.1016/j.jct.2010.12.019
https://www.cheric.org/files/research/kdb/mol/mol428.mol
https://www.doi.org/10.1016/j.fluid.2018.01.019
https://www.doi.org/10.1016/j.jct.2010.12.005
https://www.doi.org/10.1016/j.jct.2008.12.005
https://www.doi.org/10.1016/j.jct.2009.06.011
https://www.doi.org/10.1016/j.jct.2008.12.018
https://www.doi.org/10.1016/j.jct.2010.10.026
https://www.doi.org/10.1016/j.jct.2015.05.014
https://www.doi.org/10.1016/j.jct.2017.11.017
https://www.doi.org/10.1016/j.fluid.2016.02.004
https://www.doi.org/10.1016/j.jct.2013.02.004
https://www.doi.org/10.1016/j.jct.2012.03.005
https://www.doi.org/10.1016/j.fluid.2017.06.001
https://www.doi.org/10.1016/j.jct.2012.09.033
https://www.doi.org/10.1016/j.jct.2017.10.003
https://www.doi.org/10.1021/je100410k
https://www.doi.org/10.1021/je0498107
https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=428
https://www.doi.org/10.1021/je900890u
https://www.doi.org/10.1016/j.jct.2012.05.017

Ideal gas heat capacity cpg: gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature Ionization energy ie: Log10 of Water solubility in mol/l log10ws:

logp:	Octanol/Water partition coefficient
mcvol:	McGowan's characteristic volume
pc:	Critical Pressure
pvap:	Vapor pressure
rinpol:	Non-polar retention indices
ripol:	Polar retention indices
tb:	Normal Boiling Point Temperature
tc:	Critical Temperature
tf:	Normal melting (fusion) point
vc:	Critical Volume

Latest version available from:

https://www.chemeo.com/cid/69-348-0/1-Octyne.pdf

Generated by Cheméo on 2024-04-29 09:56:12.105664591 +0000 UTC m=+16673821.026241906.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.