1-Octyne

Other names: HEXYLACETYLENE

Octyne-1

oct-1-yne

Inchi: InChl=1S/C8H14/c1-3-5-7-8-6-4-2/h1H,4-8H2,2H3

InchiKey: UMIPWJGWASORKV-UHFFFAOYSA-N

Formula: C8H14

SMILES: C#CCCCCC

Mol. weight [g/mol]: 110.20 **CAS:** 629-05-0

Physical Properties

Property code	Value	Unit	Source
gf	239.55	kJ/mol	Joback Method
hf	80.70 ± 3.60	kJ/mol	NIST Webbook
hfus	19.45	kJ/mol	Joback Method
hvap	42.34	kJ/mol	NIST Webbook
hvap	42.30 ± 0.10	kJ/mol	NIST Webbook
ie	9.95 ± 0.02	eV	NIST Webbook
log10ws	-3.66		Estimated Solubility Method
log10ws	-3.66		Aqueous Solubility Prediction Method
logp	2.590		Crippen Method
mcvol	114.980	ml/mol	McGowan Method
рс	2960.12	kPa	Joback Method
rinpol	787.50		NIST Webbook
rinpol	784.00		NIST Webbook
rinpol	784.00		NIST Webbook
rinpol	784.00		NIST Webbook
rinpol	783.60		NIST Webbook
rinpol	786.00		NIST Webbook
rinpol	812.00		NIST Webbook
rinpol	797.00		NIST Webbook
rinpol	811.00		NIST Webbook
rinpol	784.00		NIST Webbook
rinpol	784.00		NIST Webbook
rinpol	784.50		NIST Webbook
rinpol	811.00		NIST Webbook

rinpol	812.00		NIST Webbook
rinpol	783.00		NIST Webbook
rinpol	789.00		NIST Webbook
rinpol	788.10		NIST Webbook
rinpol	783.52		NIST Webbook
rinpol	785.80		NIST Webbook
rinpol	783.52		NIST Webbook
ripol	1047.10		NIST Webbook
ripol	1034.00		NIST Webbook
ripol	1036.00		NIST Webbook
ripol	1031.00		NIST Webbook
tb	372.56	K	Joback Method
tc	547.48	K	Joback Method
tf	200.38	K	Aqueous Solubility Prediction Method
tf	193.67 ± 0.10	K	NIST Webbook
tf	194.15 ± 1.50	K	NIST Webbook
tf	193.65 ± 0.30	K	NIST Webbook
VC	0.446	m3/kmol	Joback Method
·		-	

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	207.74	J/mol×K	372.56	Joback Method
cpg	219.42	J/mol×K	401.71	Joback Method
cpg	230.61	J/mol×K	430.87	Joback Method
cpg	241.34	J/mol×K	460.02	Joback Method
cpg	251.62	J/mol×K	489.17	Joback Method
cpg	261.46	J/mol×K	518.33	Joback Method
cpg	270.87	J/mol×K	547.48	Joback Method
hvapt	35.83	kJ/mol	399.40	NIST Webbook
hvapt	38.50	kJ/mol	378.50	NIST Webbook

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)

Coeff. A	1.39482e+01
Coeff. B	-3.12653e+03
Coeff. C	-6.42400e+01
Temperature range (K), min.	293.11
Temperature range (K), max.	426.24

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	-2.39993e+00
Coeff. B	-4.34412e+03
Coeff. C	3.22566e+00
Coeff. D	-8.94889e-06
Temperature range (K), min.	357.15
Temperature range (K), max.	400.15

Value

Sources

Information

Screening of environmental friendly https://www.doi.org/10.1016/j.jct.2015.08.017 ionic liquid as a solvent for the វេឌាទី៧ឧពុទ្ធភេឌមាស្ត្រីនៅតំខាន់ problem: https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=428 Insight from activity coefficients at the interpretable of the interpret https://www.doi.org/10.1016/j.jct.2013.09.007 https://www.doi.org/10.1016/j.jct.2010.10.026 https://www.doi.org/10.1016/j.jct.2018.02.014 https://www.doi.org/10.1016/j.jct.2012.05.017 dinds: que disciente at infinite dilution BOOKING SERVICE AND SERVICE TO SERVICE https://www.doi.org/10.1016/j.jct.2009.07.010 The solutes in the ionic liquid the solution of the solution o https://www.doi.org/10.1016/j.jct.2012.03.015
https://www.doi.org/10.1016/j.jct.2012.03.015
https://www.doi.org/10.1016/j.jct.2010.05.017
https://www.doi.org/10.1016/j.jct.2010.05.017
https://www.doi.org/10.1016/j.jct.2010.05.017
https://www.doi.org/10.1016/j.jct.2010.05.017
https://www.doi.org/10.1016/j.jct.2010.05.014
https://www.doi.org/10.1016/j.jct.2010.05.014
https://www.doi.org/10.1016/j.jct.2011.01016/j.jct.2011016/j.jct.2011.01016/j.jct.201101016/j.jct.2011.01016/j.jct.2011.01016/j.jct THE TOTAL STREET OF THE CONTROL OF T http://onschallenge.wikispaces.com/file/view/AqueousDataset002.xlsx/351826032/AqueousDataset002.xlsx/AqueousDataset002.xlxx/AqueousDataset002.xlxx/AqueousDataset002.xlxx/AqueousDataset002.xlxx/AqueousDataset002.xlxx/AqueousDataset002.xlxx/AqueousDat

Activity coefficients at infinite dilution, https://www.doi.org/10.1016/j.jct.2015.05.022 physicochemical and thermodynamic supplysicochemical and thermodynamic supplysicochemical and thermodynamic supplysicochemical https://www.doi.org/10.1016/j.fluid.2010.08.016

```
Measurements of activity coefficients
                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2008.01.004
    at infinite dilution of aromatic and
                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2009.01.011
    Antivity confidents onto in the city of the control of the city of
   measurements/granganicapplutes and frimmins on 100 in jurio.

1-butyl-1-methylpyrrolidinium. Deficion in a surface in the infinite bilution of Organic Solutes in thin the political materials.
                                                                                                                                                                                                                                                                  http://pubs.acs.org/doi/abs/10.1021/ci990307l
                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/acs.jced.8b00080
                                                                                                                                                                                                                                                                    https://www.doi.org/10.1016/j.fluid.2017.06.001
    Highosplective dvater/butan-1-ol
  Highordecibidivater/butan-1-ol
squarakino oleinypstigatinpinfiliationgm
Manaikingerisiatingetilihohartigsm
Manaikingerisiatingetilihohartigsm
Manaikingerisiatingetilihohartigsm

Terratiatinyiaminomini oliofisie +
Bananahartecimingerisiatingents

Attachartecimingerisiatingents

Attachartecimingerisiatingents

Attachartecimingerisiatingents

Attachartecimingerisiatingents

Attachartecimingerisiatingents

Attachartecimingents

Attachartec
                                                                                                                                                                                                                                                                   https://www.doi.org/10.1016/j.fluid.2018.01.019
                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2017.11.017
                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2013.02.004
                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2017.03.004
                                                                                                                                                                                                                                                                  https://www.cheric.org/files/research/kdb/mol/mol428.mol
   ethylbenzene/styrene based on limiting
Joe Vaws Handbook of Vapor
Pressure:
                                                                                                                                                                                                                                                                  https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure
    Determination of Activity Coefficients
                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/je100410k
   at Infinite Dilution of 35 Solutes in the
  Retayity constiticients at infinite dilution of Bright Grant that the property of the property
   Activity (pagficients at infinite dilution
                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2009.12.004
                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2013.05.030
                                                                                                                                                                                                                                                                   https://www.doi.org/10.1016/j.jct.2010.01.004
                                                                                                                                                                                                                                                                   https://www.doi.org/10.1021/je800105r
                                                                                                                                                                                                                                                                  https://www.doi.org/10.1021/je030187k
                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2009.08.012
                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2013.05.011
                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2013.08.030
https://www.doi.org/10.1016/j.jct.2013.01.007
https://www.doi.org/10.1016/j.jct.2013.01.007
https://www.doi.org/10.1016/j.jct.2013.01.007
https://www.doi.org/10.1016/j.jct.2013.01.007
https://www.doi.org/10.1016/j.jct.2013.01.007
https://www.doi.org/10.1016/j.jct.2013.01.007
https://www.doi.org/10.1016/j.jct.2013.01.005
https://www.doi.org/10.1016/j.jct.2013.01.005
https://www.doi.org/10.1016/j.jct.2013.01.005
https://www.doi.org/10.1016/j.jct.2013.01.005
https://www.doi.org/10.1016/j.jct.2013.01.005
https://www.doi.org/10.1016/j.jct.2013.01.005
https://www.doi.org/10.1016/j.jct.2013.01.005
https://www.doi.org/10.1016/j.jct.2013.01.008
https://www.doi.org/10.1016/j.jct.2013.01.008
https://www.doi.org/10.1016/j.jct.2011.06.007
https://www.doi.org/10.1016/j.jct.2011.06.003
https://www.doi.org/10.1016/j.jct.2010.04.011
https://www.doi.org/10.1016/j.jct.2010.04.011
https://www.doi.org/10.1016/j.jct.2013.02.006
                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2013.01.007
 The solution of the solution o
                                                                                                                                                                                                                                                                   http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt
ETISHING OF THE THY IS UT SHYTIMIDE:
1-butyl-3-methyl-imidazolium
2/2-methyl-imidazolium
2/2-methyl-imidazolium
2/2-methyl-imidazolium
2/2-methyl-imidazolium
2/2-methyl-imidazolium
2/2-methyl-imidazolium
2/2-methyl-imidazolium
2/2-methyl-imidazolium
2/2-methyl-imidazolium
                                                                                                                                                                                                                                                                https://www.doi.org/10.1016/j.fluid.2018.09.024
                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.fluid.2016.02.004
                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2017.10.003
                                                                                                                                                                                                                                                                  https://www.doi.org/10.1016/j.jct.2011.11.025
     1-héxyl-3-methylimidazolium
```

tetracyanoborate:

NIST Webbook:

Activity coefficients at infinite dilution of organic solutes in the ionic liquid three your particular interest in your part http://webbook.nist.gov/cgi/cbook.cgi?ID=C629050&Units=SI Activity coefficients at infinite dilution http
attention of the second o

https://www.doi.org/10.1016/j.jct.2012.01.004 https://www.doi.org/10.1016/j.fluid.2009.08.017 https://www.doi.org/10.1016/j.fluid.2018.06.013 http://link.springer.com/article/10.1007/BF02311772 https://www.doi.org/10.1016/j.jct.2016.01.017 https://www.doi.org/10.1021/je900890u https://www.doi.org/10.1016/j.jct.2013.10.017 https://www.doi.org/10.1021/je0498107 https://www.doi.org/10.1016/j.jct.2015.02.024 https://www.doi.org/10.1021/je9008443

Ideal gas heat capacity cpg:

Legendy

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions hvapt: Enthalpy of vaporization at a given temperature

ie: Ionization energy

log10ws: Log10 of Water solubility in mol/l logp: Octanol/Water partition coefficient mcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressure

rinpol: Non-polar retention indices

ripol: Polar retention indices

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/69-348-0/1-Octyne.pdf

Generated by Cheméo on 2025-12-05 22:13:56.28441189 +0000 UTC m=+4721033.814452554.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.