Furan, tetrahydro-2-methyl-

Other names: .alpha.-methyltetramethylene oxide

2-Methylfuranidine2-Methyloxolane

2-Methyltetrahydrofuran
2-Methyltetrahydrofurane
Furan, 2-methyl-tetrahydroMethyltetrahydrofuran

Tetrahydro-2-methylfuran Tetrahydrofuran, 2-methyl-

Tetrahydrosylvan

Inchi: InChI=1S/C5H10O/c1-5-3-2-4-6-5/h5H,2-4H2,1H3

InchiKey: JWUJQDFVADABEY-UHFFFAOYSA-N

Formula: C5H10O SMILES: CC1CCC01

Mol. weight [g/mol]: 86.13 CAS: 96-47-9

Physical Properties

Value	Unit	Source
840.80	kJ/mol	NIST Webbook
811.60	kJ/mol	NIST Webbook
-58.35	kJ/mol	Joback Method
-218.05	kJ/mol	Joback Method
10.62	kJ/mol	Joback Method
33.70	kJ/mol	NIST Webbook
34.00	kJ/mol	NIST Webbook
9.22 ± 0.05	eV	NIST Webbook
0.11		Estimated Solubility Method
0.11		Aqueous Solubility Prediction Method
1.185		Crippen Method
76.320	ml/mol	McGowan Method
3757.63 ± 68.94	kPa	NIST Webbook
664.00		NIST Webbook
678.00		NIST Webbook
661.00		NIST Webbook
	840.80 811.60 -58.35 -218.05 10.62 33.70 34.00 9.22 ± 0.05 0.11 0.11 1.185 76.320 3757.63 ± 68.94 664.00 678.00	840.80 kJ/mol 811.60 kJ/mol -58.35 kJ/mol -218.05 kJ/mol 10.62 kJ/mol 33.70 kJ/mol 34.00 kJ/mol 9.22 ± 0.05 eV 0.11 1.185 76.320 ml/mol 3757.63 ± 68.94 kPa 664.00 678.00

rinpol	663.00		NIST Webbook
rinpol	674.00		NIST Webbook
rinpol	682.00		NIST Webbook
rinpol	663.00		NIST Webbook
rinpol	669.00		NIST Webbook
rinpol	664.00		NIST Webbook
ripol	925.00		NIST Webbook
ripol	925.00		NIST Webbook
ripol	951.00		NIST Webbook
ripol	876.00		NIST Webbook
ripol	876.00		NIST Webbook
ripol	935.00		NIST Webbook
tb	359.65 ± 1.00	K	NIST Webbook
tb	338.15 ± 2.00	K	NIST Webbook
tb	353.20	K	NIST Webbook
tb	352.65 ± 2.00	K	NIST Webbook
tb	353.10 ± 0.30	K	NIST Webbook
tb	353.15 ± 1.00	K	NIST Webbook
tc	537.00 ± 2.00	K	NIST Webbook
tf	137.05 ± 0.40	K	NIST Webbook
VC	0.267 ± 0.005	m3/kmol	NIST Webbook
·			

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	194.00	J/mol×K	553.34	Joback Method
cpg	174.57	J/mol×K	487.57	Joback Method
cpg	164.07	J/mol×K	454.69	Joback Method
cpg	153.02	J/mol×K	421.80	Joback Method
cpg	141.40	J/mol×K	388.92	Joback Method
cpg	129.20	J/mol×K	356.03	Joback Method
cpg	184.54	J/mol×K	520.46	Joback Method
cpl	162.10	J/mol×K	313.15 2-N	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Poly(ethylene glycols) + Methyltetrahydrofur at (293.15, 303.15, and 313.15) K

cpl	153.50	J/mol×K	288.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	155.30	J/mol×K	293.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Poly(ethylene glycols) + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	166.20	J/mol×K	323.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	155.30	J/mol×K	293.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K

cpl	156.90	J/mol×K	298.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	158.70	J/mol × K	303.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	160.20	J/mol×K	308.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K
cpl	158.60	J/mol×K	303.15	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Poly(ethylene glycols) + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K

cpl 164.20 J/molxK 318.15 Molar Heat Capacities, Densities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K cpl 162.10 J/molxK 313.15 Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K dvisc 0.0005618 Paxs 283.15 Excess Enthalpy, Density, Speed of Sound, and Viscosity for 2-Methyltetrahydrofuran + 1-Butanol at (283.15, 298.15, and, 313.15) K dvisc 0.0004776 Paxs 298.15 Excess Enthalpy, Density, Speed of Sound, and Viscosity for Sund, and Viscosity Sund, and	
Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K dvisc 0.0005618 Paxs 283.15 Excess Enthalpy, Density, Speed of Sound, and Viscosity for 2-Methyltetrahydrofuran + 1-Butanol at (283.15, 298.15, and, 313.15) K dvisc 0.0004776 Paxs 298.15 Excess Enthalpy, Density, Speed of Sound, and Viscosity for Sound, and Viscosity for Density, Speed of Sound, and Viscosity for Sound, and Viscosity for Sound, and Viscosity for	
Density, Speed of Sound, and Viscosity for 2-Methyltetrahydrofuran + 1-Butanol at (283.15, 298.15, and, 313.15) K dvisc 0.0004776 Paxs 298.15 Excess Enthalpy, Density, Speed of Sound, and Viscosity for	
Density, Speed of Sound, and Viscosity for	
2-Methyltetrañydrofuran + 1-Butanol at (283.15, 298.15, and, 313.15) K	
dvisc 0.0004088 Paxs 313.15 Excess Enthalpy, Density, Speed of Sound, and Viscosity for 2-Methyltetrahydrofuran + 1-Butanol at (283.15, 298.15, and, 313.15) K	
kvisc 0.0000006 m2/s 298.15 Viscosities of Binary Mixtures of Isomeric Butanols or Isomeric Chlorobutanes with 2-Methyltetrahydrofuran	

la de a	0.000005	mc 0 / n	040.45	Vicesitie f
kvisc	0.0000005	m2/s	313.15	Viscosities of Binary Mixtures of Isomeric Butanols or Isomeric Chlorobutanes with 2-Methyltetrahydrofuran
pvap	4.93	kPa	279.01	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	5.63	kPa	281.44	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	6.57	kPa	284.34	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	7.83	kPa	287.83	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols

pvap	7.85	kPa	287.84	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	9.26	kPa	291.17	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	11.65	kPa	295.94	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	13.37	kPa	298.94	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	
pvap	15.76	kPa	302.62	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols	

pvap	18.28	kPa	306.05	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
рvар	4.93	kPa	279.00	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	21.69	kPa	310.11	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
pvap	5.60	kPa	281.41	Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
rfi	1.40287		298.15	Thermophysical properties of the binary mixtures of 2-methyl-tetrahydrofuran with benzene and halobenzenes

rfi	1.40299		298.00	Quaternary and ternary LLE measurements for solvent (2-methyltetrahydrofuran and cyclopentyl methyl ether) + furfural + acetic acid + water between 298 and 343 K
rfi	1.40280		298.15	Ternary and binary LLE measurements for solvent (2-methyltetrahydrofuran and cyclopentyl methyl ether) + furfural + water between 298 and 343 K
rhol	848.10	kg/m3	298.15	Excess molar enthalpies of the ternary mixtures: (tetrahydrofuran or 2-methyltetrahydrofuran + methyl tert-butyl ether + n-octane) at the temperature 298.15 K
rhol	848.10	kg/m3	298.15	Excess molar enthalpies of the ternary mixtures (1-hexene + tetrahydrofuran or 2-methyltetrahydrofuran + methyl tert-butyl ether) at the temperature 298.15K.
rhol	848.10	kg/m3	298.15	Excess molar enthalpies of the ternary mixtures: {tetrahydrofuran or 2-methyltetrahydrofuran + methyl tert-butyl ether + n-dodecane} at the temperature 298.15 K

rhol	851.60	kg/m3	295.00 High-pressure vapor-liquid equilibria of the second generation biofuel blends (2-methylfuran + iso-octane) and (2-methyltetrahydrofuran + di-n-butyl ether): Experiments and PCP-SAFT modeling
rhol	849.40	kg/m3	298.15 Study of the Surface Tension of Chlorocyclohexane or Bromocyclohexane with Some Cyclic Ethers
rhol	855.00	kg/m3	293.15 Isothermal Vapor-Liquid Equilibrium Data for the Binary Systems Consisting of 1,1,2,3,3,3-Hexafluoro-1-propene and Either Methylcyclohexane, Cyclohexane, n-Hexane, 2-Methyltetrahydrofuran, or 2,2,3,3,4,4,4-Heptafluoro-1-butanol
rhol	849.20	kg/m3	298.15 Thermodynamic study of 2-methyl-tetrahydrofuran with isomeric chlorobutanes

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.47976e+01
Coeff. B	-3.18218e+03
Coeff. C	-3.93870e+01
Temperature range (K), min.	258.70
Temperature range (K), max.	374.84

Sources

McGowan Method: http://link.springer.com/article/10.1007/BF02311772

Excess Enthalpy, Density, Speed of https://www.doi.org/10.1021/je060017i

Excess Enthalpy, Density, Speed of Sound, and Viscosity for Yimen titem of pinothylikitures at anol at 12 genesic 28 at 13 days and 14 to 15 layers of pensities, Densities, Vinon titem and Refinative Indices of Penyerthale and Colorative Indices of Penyerthale and Indices of Penyerthale an

https://www.doi.org/10.1016/j.jct.2006.03.020 https://www.doi.org/10.1016/j.jct.2004.12.005 https://www.doi.org/10.1016/j.tca.2004.11.034

http://webbook.nist.gov/cgi/cbook.cgi?ID=C96479&Units=SI

The Yaws Handbook of Vapor https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure Thermophysical properties of the https://www.doi.org/10.1016/j.tca.2005.08.034

binary mixtures of https://www.doi.org/10.1021/acs.jced.9b00441
โลสมาร์ตเปลา Systems Consisting โรมาระบุ Systems Consisting http://pubs.acs.org/doi/suppl/10.1021/ci034243x/suppl_file/ci034243xsi20040112_053635.txt

S. Metaylatie, hereatie, and hold of the history of https://www.doi.org/10.1021/acs.jced.7b01011

natemethylpinenyllatischlorora spinenyllatischlorora spinenyllatischlororare spinenyllatischlororare spinenyllatischlororare spinenyllatischlororare spinenyllatischlororare spinenyllatischlororare s http://pubs.acs.org/doi/abs/10.1021/ci990307l https://www.doi.org/10.1021/acs.jced.6b00576

https://www.doi.org/10.1021/je0500577 Ethers เมลเบาระสบอลยั Open Chain Beemณ์ มดูใจก่องมดอะพith Some Cyclic

Legend

affp: Proton affinity Gas basicity basg:

and + 2-Methyltetrahydrofuran at bygess mojal enthalsies of the ternary mixtures (1-hexene + tetrahydrofuran

Ex2998 mylenentyalbrear the ternyary
Ex2998 mylenentyalbrear the ternyary
mixtures the about the ternyary
mixtures (1-nexentyalbrear)
the ternyary
mixtures (1-nexentyalbrear)
mixtures (1-nexentyalbr

cpg: Ideal gas heat capacity Liquid phase heat capacity cpl:

dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions ie: Ionization energykvisc: Kinematic viscosity

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressurerfi: Refractive Indexrhol: Liquid Density

rinpol: Non-polar retention indices

ripol: Polar retention indices

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/70-540-4/Furan-tetrahydro-2-methyl.pdf

Generated by Cheméo on 2024-05-05 20:16:27.604975008 +0000 UTC m=+17229436.525552330.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.