Carbonic acid, ethyl-, methyl ester

Other names: C2H5OCOOCH3

Ethoxyacetic acid, methyl ester

ethyl methyl carbonate

Inchi: InChl=1S/C4H8O3/c1-3-7-4(5)6-2/h3H2,1-2H3

InchiKey: JBTWLSYIZRCDFO-UHFFFAOYSA-N

Formula: C4H8O3

SMILES: CCOC(=O)OC

Mol. weight [g/mol]: 104.10 CAS: 623-53-0

Physical Properties

Property code	Value	Unit	Source
affp	842.70	kJ/mol	NIST Webbook
basg	810.80	kJ/mol	NIST Webbook
gf	-356.12	kJ/mol	Joback Method
hf	-502.91	kJ/mol	Joback Method
hfus	10.09	kJ/mol	Joback Method
hvap	36.06	kJ/mol	Joback Method
log10ws	-0.42		Crippen Method
logp	0.789		Crippen Method
mcvol	80.530	ml/mol	McGowan Method
рс	4041.50	kPa	Joback Method
tb	389.63	K	Joback Method
tc	569.26	K	Joback Method
tf	218.14	К	Efficient determination of crystallisation and melting points at low cooling and heating rates with novel computer controlled equipment
VC	0.301	m3/kmol	Joback Method

Temperature Dependent Properties

Property code Value Unit Temperature [K] Source

cpg	149.26	J/mol×K	389.63	Joback Method	
cpg	156.06	J/mol×K	419.57	Joback Method	
cpg	162.75	J/mol×K	449.51	Joback Method	
cpg	169.33	J/mol×K	479.44	Joback Method	
cpg	175.78	J/mol×K	509.38	Joback Method	
cpg	182.09	J/mol×K	539.32	Joback Method	
cpg	188.25	J/mol×K	569.26	Joback Method	
dvisc	0.0020724	Paxs	229.23	Joback Method	
dvisc	0.0012119	Paxs	255.96	Joback Method	
dvisc	0.0007844	Paxs	282.70	Joback Method	
dvisc	0.0005474	Paxs	309.43	Joback Method	
dvisc	0.0004044	Paxs	336.16	Joback Method	
dvisc	0.0003125	Paxs	362.90	Joback Method	
dvisc	0.0002501	Paxs	389.63	Joback Method	
hfust	11.24	kJ/mol	219.40	NIST Webbook	
pvap	0.96	kPa	277.96	Low pressure methane solubility in lithium-ion batteries based solvents and electrolytes as a function of temperature. Measurement and prediction	
pvap	1.28	kPa	282.06	Low pressure methane solubility in lithium-ion batteries based solvents and electrolytes as a function of temperature. Measurement and prediction	
pvap	1.52	kPa	283.15	Low pressure methane solubility in lithium-ion batteries based solvents and electrolytes as a function of temperature. Measurement and prediction	

pvap	2.01	kPa	288.15	Low pressure methane solubility in lithium-ion batteries based solvents and electrolytes as a function of temperature. Measurement and prediction	
pvap	2.44	kPa	293.15	Low pressure methane solubility in lithium-ion batteries based solvents and electrolytes as a function of temperature. Measurement and prediction	
pvap	3.66	kPa	298.15	Low pressure methane solubility in lithium-ion batteries based solvents and electrolytes as a function of temperature. Measurement and prediction	
pvap	4.53	kPa	303.15	Low pressure methane solubility in lithium-ion batteries based solvents and electrolytes as a function of temperature. Measurement and prediction	
pvap	5.80	kPa	308.15	Low pressure methane solubility in lithium-ion batteries based solvents and electrolytes as a function of temperature. Measurement and prediction	

pvap	6.74	kPa	310.74	Low pressure methane solubility in lithium-ion batteries based solvents and electrolytes as a function of temperature. Measurement and prediction	
pvap	7.88	kPa	314.83	Low pressure methane solubility in lithium-ion batteries based solvents and electrolytes as a function of temperature. Measurement and prediction	
pvap	12.28	kPa	323.15	Low pressure methane solubility in lithium-ion batteries based solvents and electrolytes as a function of temperature. Measurement and prediction	
pvap	15.26	kPa	328.15	Low pressure methane solubility in lithium-ion batteries based solvents and electrolytes as a function of temperature. Measurement and prediction	
pvap	18.28	kPa	333.15	Low pressure methane solubility in lithium-ion batteries based solvents and electrolytes as a function of temperature. Measurement and prediction	
rhol	1006.88	kg/m3	298.15	Solid-liquid equilibria and thermo-physical properties of liquid electrolyte systems for lithium ion batteries	

1010.00 kg/m3 298.15 rhol Low pressure

carbon dioxide solubility in lithium-ion batteries based electrolytes as a function of temperature. Measurement and prediction

Sources

Joback Method: https://en.wikipedia.org/wiki/Joback_method

Crippen Method: https://www.chemeo.com/doc/models/crippen_log10ws

Efficient determination of https://www.doi.org/10.1016/j.jct.2008.05.012 crystallisation and melting points at https://www.doi.org/10.1021/acs.jced.8b00543 https://www.doi.org/10.1016/j.fluid.2018.05.033

http://webbook.nist.gov/cgi/cbook.cgi?ID=C623530&Units=SI

https://www.doi.org/10.1021/je100494z

https://www.doi.org/10.1016/j.jct.2012.01.027 http://pubs.acs.org/doi/abs/10.1021/ci990307l

http://link.springer.com/article/10.1007/BF02311772

Equilibrium for Binary Systems of Ethyl
Methyl ទេសមានមួយ Methyl មានក្រុម អ្នក ប្រជាជម្រង់ មានក្រុម អាចក្រុម អាចក្រុម អ្នក ប្រជាជម្រង់ អាចក្រុម អ្នក ប្រជាជម្រង់ អាចក្រុម អ្នក ប្រជាជម្រង់ អាចក្រុម អាចក្ Measurement and Correlation of Liquid https://www.doi.org/10.1021/acs.jced.6b01031 Liquid Equilibrium for Quaternary Sownressiwaerhomeinaida solubility https://www.doi.org/10.1016/j.jct.2012.12.025 in white in the processing and solubility in the pr

temperature. Measurement and prediction: Legend

affp: Proton affinity Gas basicity basg:

and releasing lytes as a function of

batteries: Experimental Isobaric Vapor-Liquid

Ideal gas heat capacity cpg:

dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formation hf: Enthalpy of formation at standard conditions hfus: Enthalpy of fusion at standard conditions hfust: Enthalpy of fusion at a given temperature

hvap: Enthalpy of vaporization at standard conditions

log10ws: Log10 of Water solubility in mol/l Octanol/Water partition coefficient logp: mcvol: McGowan's characteristic volume

pc: Critical Pressurepvap: Vapor pressurerhol: Liquid Density

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/80-736-6/Carbonic-acid-ethyl-methyl-ester.pdf

Generated by Cheméo on 2025-12-23 16:22:49.136620669 +0000 UTC m=+6255166.666661322.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.