Urea, propyl-

Other names: 1-Propylurea

N-propylurea

propylurea

InChi=1S/C4H10N2O/c1-2-3-6-4(5)7/h2-3H2,1H3,(H3,5,6,7)

InchiKey: ZQZJKHIIQFPZCS-UHFFFAOYSA-N

Formula: C4H10N2O SMILES: CCCNC(=N)O

Mol. weight [g/mol]: 102.14 CAS: 627-06-5

Physical Properties

Property code	Value	Unit	Source
gf	138.97	kJ/mol	Joback Method
hf	-26.32	kJ/mol	Joback Method
hvap	59.69	kJ/mol	Joback Method
log10ws	-1.92		Crippen Method
logp	0.479		Crippen Method
mcvol	88.750	ml/mol	McGowan Method
tb	517.61	K	Joback Method
tf	317.10	K	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source
cpg	38.33	J/mol×K	100.12	Joback Method
cpg	38.33	J/mol×K	100.12	Joback Method
cpg	38.33	J/mol×K	100.12	Joback Method
cpg	38.33	J/mol×K	100.12	Joback Method
cpg	38.33	J/mol×K	100.12	Joback Method
cpg	38.33	J/mol×K	100.12	Joback Method
cpg	201.84	J/mol×K	517.61	Joback Method

psub	1.76e-03	kPa	355.20	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	1.58e-03	kPa	354.10	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	1.08e-03	kPa	350.20	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	2.17e-03	kPa	357.30	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	

psub	9.90e-04	kPa	349.20	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea
psub	9.40e-04	kPa	348.70	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea
psub	7.40e-04	kPa	346.10	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea
psub	7.20e-04	kPa	345.70	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea

psub	4.70e-04	kPa	342.20	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	3.00e-04	kPa	337.40	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	
psub	1.90e-04	kPa	333.20	Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea	

Sources

NIST Webbook: http://webbook.nist.gov/cgi/cbook.cgi?ID=C627065&Units=SI

Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l

Crippen Method: https://www.chemeo.com/doc/models/crippen_log10ws

Hydration of urea and its derivatives - Volumetric and compressibility Effects of temperature and ionic strength on volumetric and acoustic Measurements and love sistementally of Belling the Measurement of the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea:

https://www.doi.org/10.1016/j.jct.2014.07.012 https://www.doi.org/10.1016/j.jct.2015.07.002 https://www.doi.org/10.1021/je050230z https://en.wikipedia.org/wiki/Joback_method

http://link.springer.com/article/10.1007/BF02311772

Legend

cpg: Ideal gas heat capacity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditionshvap: Enthalpy of vaporization at standard conditions

log10ws:Log10 of Water solubility in mol/llogp:Octanol/Water partition coefficientmcvol:McGowan's characteristic volume

psub: Sublimation pressure

tb: Normal Boiling Point Temperaturetf: Normal melting (fusion) point

Latest version available from:

https://www.chemeo.com/cid/96-702-6/Urea-propyl.pdf

Generated by Cheméo on 2024-05-21 05:13:04.628316824 +0000 UTC m=+18557633.548894137.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.