Thiophene, tetrahydro-, 1,1-dioxide

Other names: 1,1-Dioxide tetrahydrothiofuran

1,1-Dioxidetetrahydrothiophene

1,1-Dioxothiolan

2,3,4,5-Tetrahydrothiophene-1,1-dioxide

BONDELANE A

Bondolane A

CYCLIC TETRAMETHYLENE SULFONE

Cyclotetramethylene sulfone Dihydrobutadiene sulfone Dihydrobutadiene sulphone

Dioxothiolan NSC 46443 Sulfalone Sulfolan Sulfolane Sulpholane Sulphoxaline

TETRAHYDROTHIOPHENE DIOXIDE

Tetrahydothiophene-1,1-dioxide Tetrahydrothiofen-1,1-dioxid Tetrahydrothiophene 1,1-dioxide

Tetramethylene sulfone
Thiacyclopentane dioxide
Thiocyclopentane-1,1-dioxide

Thiolane-1,1-dioxide
Thiophan sulfone
Thiophane 1,1-dioxide

Thiophane dioxide

Thiophene, 1,1-dioxide-tetrahydro-

thiolane 1,1-dioxide

Inchi: InChi=1S/C4H8O2S/c5-7(6)3-1-2-4-7/h1-4H2

InchiKey: HXJUTPCZVOIRIF-UHFFFAOYSA-N

Formula: C4H8O2S

SMILES: O=S1(=O)CCCC1

Mol. weight [g/mol]: 120.17 CAS: 126-33-0

Physical Properties

Property code	Value	Unit	Source
gf	-434.74	kJ/mol	Joback Method
hf	-495.03	kJ/mol	Joback Method
hfus	9.88	kJ/mol	Joback Method
hvap	42.69	kJ/mol	Joback Method
log10ws	-0.23		Crippen Method
logp	0.195		Crippen Method
mcvol	84.450	ml/mol	McGowan Method
nfpaf	%!d(float64=1)		KDB
nfpah	%!d(float64=2)		KDB
рс	6328.92	kPa	Joback Method
tb	560.48	К	Isobaric (vapour + liquid) equilibria for sulfolane with toluene, ethylbenzene, and isopropylbenzene at 101.33 kPa
tc	521.90	K	Joback Method
tf	237.59	K	Joback Method
VC	0.320	m3/kmol	Joback Method

Temperature Dependent Properties

Property code	Value	Unit	Temperature [K]	Source	
cpg	189.37	J/mol×K	521.90	Joback Method	
cpg	180.77	J/mol×K	491.20	Joback Method	
cpg	171.68	J/mol×K	460.50	Joback Method	
cpg	162.09	J/mol×K	429.80	Joback Method	
cpg	151.99	J/mol×K	399.10	Joback Method	
cpg	141.38	J/mol×K	368.40	Joback Method	
cpg	130.22	J/mol×K	337.70	Joback Method	
cpl	189.00	J/mol×K		Molar Heat Capacity of Aqueous Sulfolane, -Formylmorpholine dethyl-2-pyrrolidinol and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K	

cpl	191.00	J/mol×K	333.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	193.00	J/mol×K	338.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	194.00	J/mol×K	343.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	197.00	J/mol×K	348.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	199.00	J/mol×K	353.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	192.30	J/mol×K	355.09	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide

cpl	185.00	J/mol×K	313.15	Molar Heat
				Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	179.50	J/mol×K	304.04	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
cpl	179.90	J/mol×K	304.04	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
cpl	181.30	J/mol×K	309.14	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
cpl	181.60	J/mol×K	309.15	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
cpl	182.60	J/mol×K	314.25	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
cpl	183.80	J/mol×K	314.25	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
cpl	184.70	J/mol×K	319.35	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
cpl	184.50	J/mol×K	319.35	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide

cpl	185.30	J/mol×K	324.46	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
cpl	188.00	J/mol×K	323.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K
cpl	187.40	J/mol×K	329.56	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
cpl	186.60	J/mol×K	329.56	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
cpl	188.70	J/mol×K	334.66	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
cpl	187.90	J/mol×K	334.67	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
cpl	189.70	J/mol×K	339.77	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
cpl	188.50	J/mol×K	339.77	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide
cpl	190.20	J/mol×K	344.88	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide

cpl	190.20	J/mol×K	344.88	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
cpl	192.50	J/mol×K	349.98	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
cpl	192.00	J/mol×K	349.98	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
cpl	193.40	J/mol×K	355.09	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	
cpl	186.00	J/mol×K	318.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K	
cpl	181.50	J/mol×K	303.15	Heat Capacity, Thermal Conductivity and Thermal Diffusivity of Aqueous Sulfolane Solutions	_
cpl	185.10	J/mol×K	313.15	Heat Capacity, Thermal Conductivity and Thermal Diffusivity of Aqueous Sulfolane Solutions	_
cpl	188.70	J/mol×K	323.15	Heat Capacity, Thermal Conductivity and Thermal Diffusivity of Aqueous Sulfolane Solutions	

срІ	192.30	J/mol×K	333.15	Heat Capacity, Thermal Conductivity and Thermal Diffusivity of Aqueous Sulfolane Solutions	
срІ	194.30	J/mol×K	343.15	Heat Capacity, Thermal Conductivity and Thermal Diffusivity of Aqueous Sulfolane Solutions	
cpl	197.80	J/mol×K	353.15	Heat Capacity, Thermal Conductivity and Thermal Diffusivity of Aqueous Sulfolane Solutions	
cpl	182.42	J/mol×K	308.20	Thermal Properties of Cyano-Based Ionic Liquids	
cpl	183.50	J/mol×K	312.20	Thermal Properties of Cyano-Based Ionic Liquids	
cpl	184.70	J/mol×K	316.20	Thermal Properties of Cyano-Based Ionic Liquids	
cpl	185.90	J/mol×K	320.20	Thermal Properties of Cyano-Based Ionic Liquids	
cpl	187.11	J/mol×K	324.20	Thermal Properties of Cyano-Based Ionic Liquids	
cpl	188.79	J/mol×K	328.20	Thermal Properties of Cyano-Based Ionic Liquids	
cpl	190.47	J/mol×K	332.20	Thermal Properties of Cyano-Based Ionic Liquids	
срІ	192.39	J/mol×K	336.20	Thermal Properties of Cyano-Based Ionic Liquids	
срІ	194.32	J/mol×K	340.20	Thermal Properties of Cyano-Based Ionic Liquids	

cpl	196.36	J/mol×K	344.20	Thermal	
		.	00	Properties of Cyano-Based Ionic Liquids	
cpl	198.52	J/mol×K	348.20	Thermal Properties of Cyano-Based Ionic Liquids	
cpl	200.81	J/mol×K	352.20	Thermal Properties of Cyano-Based Ionic Liquids	
cpl	203.21	J/mol×K	356.20	Thermal Properties of Cyano-Based Ionic Liquids	
cpl	205.73	J/mol×K	360.20	Thermal Properties of Cyano-Based Ionic Liquids	
cpl	208.26	J/mol×K	364.20	Thermal Properties of Cyano-Based Ionic Liquids	
cpl	210.90	J/mol×K	368.20	Thermal Properties of Cyano-Based Ionic Liquids	
cpl	213.66	J/mol×K	372.20	Thermal Properties of Cyano-Based Ionic Liquids	
cpl	182.00	J/mol×K	303.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine 1-Methyl-2-pyrrolidinor and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K	
cpl	184.00	J/mol×K	308.15	Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine 1-Methyl-2-pyrrolidinor and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K	, ne,
cpl	184.40	J/mol×K	324.46	Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide	

dvisc	0.0078080	Paxs	313.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0100700	Paxs	303.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0061940	Paxs	323.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0050090	Paxs	333.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0041260	Paxs	343.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure

dvisc	0.0034400	Paxs	353.15	Densities and Viscosities of Binary Mixtures of Ethylbenzene + N-Methyl-2-pyrrolidone, Ethylbenzene + Sulfolane, and Styrene + Octane from (303.15 to 353.15) K and Atmospheric Pressure
dvisc	0.0100304	Paxs	303.15	Densities, Viscosities, and Speeds of Sound of Binary Liquid Mixtures of Sulfolane with Ethyl Acetate, n-Propyl Acetate, and n-Butyl Acetate at Temperature of (303.15, 308.15, and 313.15) K
dvisc	0.0087947	Paxs	308.15	Densities, Viscosities, and Speeds of Sound of Binary Liquid Mixtures of Sulfolane with Ethyl Acetate, n-Propyl Acetate, and n-Butyl Acetate at Temperature of (303.15, 308.15, and 313.15) K
dvisc	0.0102280	Paxs	303.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0078365	Paxs	313.15	Densities, Viscosities, and Speeds of Sound of Binary Liquid Mixtures of Sulfolane with Ethyl Acetate, n-Propyl Acetate, and n-Butyl Acetate at Temperature of (303.15, 308.15, and 313.15) K

dvisc	0.0078440	Pa×s	313.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0065740	Paxs	318.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0061750	Paxs	323.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0051910	Paxs	328.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0048870	Paxs	333.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K

dvisc	0.0043100	Paxs	338.15	Viscometric and volumetric
				behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and
				diethanolamine in the range 303 373 K
dvisc	0.0042140	Paxs	343.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0035310	Paxs	353.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0030110	Paxs	363.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0025760	Paxs	373.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K

dvisc	0.0022530	Paxs	383.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0019870	Paxs	393.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0017610	Paxs	403.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0015710	Paxs	413.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K
dvisc	0.0014150	Paxs	423.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K

dvisc	0.0091940	Paxs	308.20	Phase equilibria study on bromide-based ionic liquids with glycols and sulfolane. Experimental data and correlation	
dvisc	0.0081160	Paxs	313.20	Phase equilibria study on bromide-based ionic liquids with glycols and sulfolane. Experimental data and correlation	
dvisc	0.0072010	Paxs	318.20	Phase equilibria study on bromide-based ionic liquids with glycols and sulfolane. Experimental data and correlation	
dvisc	0.0064390	Paxs	323.20	Phase equilibria study on bromide-based ionic liquids with glycols and sulfolane. Experimental data and correlation	
dvisc	0.0057720	Paxs	328.20	Phase equilibria study on bromide-based ionic liquids with glycols and sulfolane. Experimental data and correlation	
dvisc	0.0051990	Paxs	333.20	Phase equilibria study on bromide-based ionic liquids with glycols and sulfolane. Experimental data and correlation	
dvisc	0.0047140	Paxs	338.20	Phase equilibria study on bromide-based ionic liquids with glycols and sulfolane. Experimental data and correlation	

dvisc	0.0042680	Pa×s	343.20	Phase equilibria study on bromide-based ionic liquids with glycols and sulfolane. Experimental data and correlation	
dvisc	0.0100742	Paxs	303.15	Excess Molar Volumes and Viscosities of Binary Mixtures of Sulfolane with Benzene, Toluene, Ethylbenzene, p-Xylene, o-Xylene, and m-Xylene at 303.15 and 323.15 K and Atmospheric Pressure	
dvisc	0.0061936	Paxs	323.15	Excess Molar Volumes and Viscosities of Binary Mixtures of Sulfolane with Benzene, Toluene, Ethylbenzene, p-Xylene, o-Xylene, and m-Xylene at 303.15 and 323.15 K and Atmospheric Pressure	
dvisc	0.0090460	Paxs	308.15	Viscometric and volumetric behaviour of binary mixtures of sulfolane and N-methylpyrrolidone with monoethanolamine and diethanolamine in the range 303 373 K	
pvap	829.20	kPa	685.10	Critical Point and Vapor Pressure Measurements for 17 Compounds by a Low Residence Time Flow Method	

pvap	0.04	kPa	353.15	Vapor liquid equilibria and density measurement for binary mixtures of toluene, benzene, o-xylene, m-xylene, sulfolane and nonane at 333.15K and 353.15K	
pvap	350.20	kPa	626.30	Critical Point and Vapor Pressure Measurements for 17 Compounds by a Low Residence Time Flow Method	
pvap	203.90	kPa	594.40	Critical Point and Vapor Pressure Measurements for 17 Compounds by a Low Residence Time Flow Method	
pvap	4144.00	kPa	829.00	Critical Point and Vapor Pressure Measurements for 17 Compounds by a Low Residence Time Flow Method	
pvap	103.60	kPa	560.20	Critical Point and Vapor Pressure Measurements for 17 Compounds by a Low Residence Time Flow Method	
pvap	3185.00	kPa	802.70	Critical Point and Vapor Pressure Measurements for 17 Compounds by a Low Residence Time Flow Method	
pvap	2363.00	kPa	773.40	Critical Point and Vapor Pressure Measurements for 17 Compounds by a Low Residence Time Flow Method	

pvap	0.01	kPa	333.15	Vapor liquid equilibria and density measurement for binary mixtures of toluene, benzene, o-xylene, m-xylene, sulfolane and nonane at 333.15K and 353.15K	
pvap	1665.00	kPa	742.00	Critical Point and Vapor Pressure Measurements for 17 Compounds by a Low Residence Time Flow Method	
pvap	1181.00	kPa	713.20	Critical Point and Vapor Pressure Measurements for 17 Compounds by a Low Residence Time Flow Method	
pvap	556.80	kPa	656.30	Critical Point and Vapor Pressure Measurements for 17 Compounds by a Low Residence Time Flow Method	
rfi	1.48230		303.15	Phase equilibria measurements of ternary mixtures (sulfolane + a carboxylic acid + pentane) at 303.15 K	
rfi	1.48150		303.15	(Liquid + liquid) equilibria measurements for ternary systems (sulfolane + a carboxylic acid + n-heptane) at T = 303.15 K and at 0.1 MPa	

rhol	1226.00	kg/m3	343.15 Measuring the solubility of CO2 and H2S in sulfolane and the density and viscosity of saturated liquid binary mixtures of (sulfolane + CO2) and (sulfolane + H2S)
rhol	1266.40	kg/m3	298.15 Experimental densities and viscosities of binary mixture of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or glycerol with sulfolane and their molecular interaction by COSMO-RS
rhol	1228.10	kg/m3	343.15 Density, Viscosities, and Excess Properties for Binary Mixtures of Sulfolane + Alcohols and Sulfolane + Glycols at Different Temperatures
rhol	1215.00	kg/m3	353.15 Experimental densities and viscosities of binary mixture of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or glycerol with sulfolane and their molecular interaction by COSMO-RS
rhol	1206.00	kg/m3	363.15 Experimental densities and viscosities of binary mixture of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or glycerol with sulfolane and their molecular interaction by COSMO-RS

rhol	1262.90	kg/m3	303.15 Density, Viscosities, and Excess Properties for Binary Mixtures of Sulfolane + Alcohols and Sulfolane + Glycols at Different Temperatures
rhol	1254.10	kg/m3	313.15 Density, Viscosities, and Excess Properties for Binary Mixtures of Sulfolane + Alcohols and Sulfolane + Glycols at Different Temperatures
rhol	1245.20	kg/m3	323.15 Density, Viscosities, and Excess Properties for Binary Mixtures of Sulfolane + Alcohols and Sulfolane + Glycols at Different Temperatures
rhol	1265.75	kg/m3	303.15 Measurement of phase equilibria data for the extraction of toluene from alkane using different solvents
rhol	1235.40	kg/m3	333.15 Experimental densities and viscosities of binary mixture of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or glycerol with sulfolane and their molecular interaction by COSMO-RS
rhol	1253.00	kg/m3	313.15 Measuring the solubility of CO2 and H2S in sulfolane and the density and viscosity of saturated liquid binary mixtures of (sulfolane + CO2) and (sulfolane + H2S)

rhol	1244.00	kg/m3	323.15	Measuring the solubility of CO2	
				and H2S in sulfolane and the density and viscosity of saturated liquid binary mixtures of (sulfolane + CO2) and (sulfolane + H2S)	
rhol	1235.00	kg/m3	333.15	Measuring the solubility of CO2 and H2S in sulfolane and the density and viscosity of saturated liquid binary mixtures of (sulfolane + CO2) and (sulfolane + H2S)	
rhol	1236.60	kg/m3	333.15	Density, Viscosities, and Excess Properties for Binary Mixtures of Sulfolane + Alcohols and Sulfolane + Glycols at Different Temperatures	
rhol	1218.00	kg/m3	353.15	Measuring the solubility of CO2 and H2S in sulfolane and the density and viscosity of saturated liquid binary mixtures of (sulfolane + CO2) and (sulfolane + H2S)	
rhol	1209.00	kg/m3	363.15	Measuring the solubility of CO2 and H2S in sulfolane and the density and viscosity of saturated liquid binary mixtures of (sulfolane + CO2) and (sulfolane + H2S)	

rhol	1260.10	kg/m3	303.15 Volumetric and transport properties of binary liquid mixtures of sulfolane with aniline, N,N-dimethylaniline and N,N-diethylaniline at different temperatures and atmospheric pressure
rhol	1255.70	kg/m3	308.15 Volumetric and transport properties of binary liquid mixtures of sulfolane with aniline, N,N-dimethylaniline and N,N-diethylaniline at different temperatures and atmospheric pressure
rhol	1251.30	kg/m3	313.15 Volumetric and transport properties of binary liquid mixtures of sulfolane with aniline, N,N-dimethylaniline and N,N-diethylaniline at different temperatures and atmospheric pressure
rhol	1259.40	kg/m3	303.15 Experimental densities and viscosities of binary mixture of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or glycerol with sulfolane and their molecular interaction by COSMO-RS
rhol	1251.70	kg/m3	313.15 Experimental densities and viscosities of binary mixture of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or glycerol with sulfolane and their molecular interaction by COSMO-RS

rhol	1244.00	kg/m3	323.15 Experimental densities and viscosities of binary mixture of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or glycerol with sulfolane and their molecular interaction by COSMO-RS
rhol	1262.00	kg/m3	303.15 Measuring the solubility of CO2 and H2S in sulfolane and the density and viscosity of saturated liquid binary mixtures of (sulfolane + CO2) and (sulfolane + H2S)
rhol	1225.00	kg/m3	343.15 Experimental densities and viscosities of binary mixture of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or glycerol with sulfolane and their molecular interaction by COSMO-RS
speedsl	1576.00	m/s	308.15 Densities and Speeds of Sound for Binary Liquid Mixtures of Thiolane-I,I-dioxide with Butanone, Pentan-2-one, Pentan-3-one, and 4-Methyl-pentan-2-one at T = (303.15 or 308.15 or 313.15) K
speedsl	1558.00	m/s	313.15 Densities and Speeds of Sound for Binary Liquid Mixtures of Thiolane-I,I-dioxide with Butanone, Pentan-2-one, Pentan-3-one, and 4-Methyl-pentan-2-one at T = (303.15 or 308.15 or 313.15) K

speedsl	1588.00	m/s	303.15	Densities and Speeds of Sound for Binary Liquid Mixtures of Thiolane-I,I-dioxide with Butanone, Pentan-2-one, Pentan-3-one, and 4-Methyl-pentan-2-one at T = (303.15 or 308.15 or 313.15) K
srf	0.05	N/m	303.15	Densities, Viscosities, and Surface Tensions of Aqueous Mixtures of Sulfolane + Triethanolamine and Sulfolane + Diisopropanolamine
srf	0.05	N/m	313.15	Densities, Viscosities, and Surface Tensions of Aqueous Mixtures of Sulfolane + Triethanolamine and Sulfolane + Diisopropanolamine
srf	0.05	N/m	323.15	Densities, Viscosities, and Surface Tensions of Aqueous Mixtures of Sulfolane + Triethanolamine and Sulfolane + Diisopropanolamine
srf	0.05	N/m	333.15	Densities, Viscosities, and Surface Tensions of Aqueous Mixtures of Sulfolane + Triethanolamine and Sulfolane + Diisopropanolamine
srf	0.05	N/m	343.15	Densities, Viscosities, and Surface Tensions of Aqueous Mixtures of Sulfolane + Triethanolamine and Sulfolane + Diisopropanolamine

Correlations

Information Value

Property code	pvap
Equation	ln(Pvp) = A + B/(T + C)
Coeff. A	1.51896e+01
Coeff. B	-5.14444e+03
Coeff. C	-7.13560e+01
Temperature range (K), min.	416.57
Temperature range (K), max.	592.15

Information Value

Property code	pvap
Equation	$ln(Pvp) = A + B/T + C*ln(T) + D*T^2$
Coeff. A	1.04677e+02
Coeff. B	-1.21143e+04
Coeff. C	-1.26025e+01
Coeff. D	4.33097e-06
Temperature range (K), min.	300.75
Temperature range (K), max.	849.00

Sources

Joback Method:

Liquid + liquid equilibria for ternary mixtures of (solvent + aromatic high to be a liquid Equilibria of Alkane (C10-C14) + Hexylbenzene + Sulfolane: (Liquid + liquid) equilibria of ternary and quaternary systems containing Measuring the end whility lene; Q2 of the liquid high to be set under the liquid by liquid to be set under the liquid by liquid to be set under the liquid by liqu

https://en.wikipedia.org/wiki/Joback_method

https://www.doi.org/10.1016/j.jct.2005.01.016

https://www.doi.org/10.1021/je7000123

https://www.doi.org/10.1016/j.jct.2006.12.008

https://www.doi.org/10.1016/j.jct.2015.01.001

https://www.doi.org/10.1016/j.jct.2018.12.004

https://www.doi.org/10.1021/je200465z

https://www.doi.org/10.1016/j.jct.2011.06.015

https://www.doi.org/10.1016/j.jct.2015.12.030

https://www.doi.org/10.1021/je5001439

https://www.doi.org/10.1021/je500153g

https://www.doi.org/10.1021/je200124h

https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1868

https://www.doi.org/10.1021/je200098d

http://webbook.nist.gov/cgi/cbook.cgi?ID=C126330&Units=SI

Phase equilibria measurements of https://www.doi.org/10.1016/j.fluid.2015.06.029 ternary mixtures (sulfolane + a **ហែលសម្ភាពខេប់លើ**អៀសមែលស្វី១១៩ នេះ Infinite Dilution of Hydrocarbons in ទល់ស្រីឯងសម្រៀតក្នុងបើប្រៀបថ្ងៃ enary https://www.doi.org/10.1021/je700139p https://www.doi.org/10.1021/je800340v Bysionarous in the state of th https://www.doi.org/10.1016/j.tca.2013.03.017 and Thermal Diffusivity of Aqueous solitors mabbanos riguid Equilibrium and Excess Enthalpy Data for the Expany rosetal solve field of the Expany rosetal solve field field of the Expany rosetal solve field fiel https://www.doi.org/10.1021/je034254m https://www.doi.org/10.1021/acs.jced.7b00428 https://www.doi.org/10.1016/j.jct.2019.02.003 https://www.doi.org/10.1016/j.tca.2016.07.005 https://www.doi.org/10.1016/j.jct.2018.09.017 https://www.doi.org/10.1016/j.jct.2018.03.011 https://www.doi.org/10.1016/j.fluid.2006.07.002 http://pubs.acs.org/doi/abs/10.1021/ci990307l Conditions: Thermal Properties of Cyano-Based https://www.doi.org/10.1021/je400140n Ionic Liquids: The Yaws Handbook of Vapor https://www.sciencedirect.com/book/9780128029992/the-yaws-handbook-of-vapor-pressure Pressure: McGowan Method: http://link.springer.com/article/10.1007/BF02311772 KDB: https://www.cheric.org/files/research/kdb/mol/mol1868.mol Liquid liquid equilibria for the binary https://www.doi.org/10.1016/j.fluid.2006.05.008 systems of sulfolane with branched https://www.doi.org/10.1016/j.fluid.2008.02.023 https://www.doi.org/10.1021/je050227f https://www.doi.org/10.1021/acs.jced.9b00620 https://www.doi.org/10.1016/j.fluid.2014.07.034 Solveylenes Aceto ninnet en a seing https://www.doi.org/10.1021/je0504313

https://www.doi.org/10.1021/je200203k

C14) + sec-Butylbenzene + Sulfolane:

Experimental investigation of hydrogen

Sulfide colubility in acutous sulfolane sulfide solubility in aqueous sulfolane seconomended vapor pressures for https://www.doi.org/10.1016/j.fluid.2011.02.002 https://www.doi.org/10.1016/j.jct.2015.12.019 https://www.doi.org/10.1016/j.jct.2013.05.046 https://www.doi.org/10.1021/je700611f https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1868 m-Xylene + Sulfolane: Densities and Viscosities of Binary https://www.doi.org/10.1021/je049572f Mixtures_of Ethylbenzene + លះរាសមារុ Methy eblidone, Ethylbenzene + https://www.chemeo.com/doc/models/crippen_log10ws Arinory Methyorislidone, Ethylbenzene + Sulfolane, and Styrene + Octane from Massirement 950 phase enumbria data in the property of toluene from the property of the property https://www.doi.org/10.1016/j.fluid.2015.06.016 https://www.doi.org/10.1016/j.jct.2009.10.010 https://www.doi.org/10.1021/je7001607 https://www.doi.org/10.1016/j.fluid.2009.09.024 https://www.doi.org/10.1021/je4007713 http://www.ddbst.com/en/EED/VLE/VLE%20Ethanol%3BSulfolane.php

N-Methylimidazole, and N-Methylpyrrolidone):

Ternary Liquid-Liquid Equilibria for Systems of (Sulfolane + Toluene or Dataities and Speeds of Sale) of for Binary Liquid Mixtures of Thiolane-I,I-dioxide with Butanone, Pentan-2-one, Pentan-3-one, and 4-Methyl-pentan-2-one at T = (303.15 or 1024 pp. 343.45) K:

https://www.doi.org/10.1021/je0601210 https://www.doi.org/10.1021/je900056u

cpg: Ideal gas heat capacitycpl: Liquid phase heat capacity

dvisc: Dynamic viscosity

gf: Standard Gibbs free energy of formationhf: Enthalpy of formation at standard conditionshfus: Enthalpy of fusion at standard conditions

hvap: Enthalpy of vaporization at standard conditions

log10ws: Log10 of Water solubility in mol/llogp: Octanol/Water partition coefficientmcvol: McGowan's characteristic volume

nfpaf: NFPA Fire Rating
nfpah: NFPA Health Rating
pc: Critical Pressure
pvap: Vapor pressure
rfi: Refractive Index
rhol: Liquid Density

speedsl: Speed of sound in fluid

srf: Surface Tension

tb: Normal Boiling Point Temperature

tc: Critical Temperature

tf: Normal melting (fusion) point

vc: Critical Volume

Latest version available from:

https://www.chemeo.com/cid/98-351-4/Thiophene-tetrahydro-1-1-dioxide.pdf

Generated by Cheméo on 2025-12-24 14:44:21.207143527 +0000 UTC m=+6335658.737184181.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.