Physical Properties
Property
Value
Unit
Source
Δc H°liquid
[-1705.00; -1700.00]
kJ/mol
Δc H°liquid
-1700.80 ± 1.40
kJ/mol
NIST
Δc H°liquid
-1700.00
kJ/mol
NIST
Δc H°liquid
-1705.00
kJ/mol
NIST
η
0.0005310
Pa×s
Excess ...
Δf G°
-153.60
kJ/mol
Joback Calculated Property
Δf H°gas
-301.70 ± 2.20
kJ/mol
NIST
Δf H°liquid
-337.20 ± 1.40
kJ/mol
NIST
Δfus H°
12.35
kJ/mol
Joback Calculated Property
Δvap H°
[35.50; 36.00]
kJ/mol
Δvap H°
35.50
kJ/mol
NIST
Δvap H°
36.00 ± 0.40
kJ/mol
NIST
IE
[9.90; 10.10]
eV
IE
9.90
eV
NIST
IE
10.02
eV
NIST
IE
10.10
eV
NIST
log 10 WS
0.36
Crippen Calculated Property
log Poct/wat
-0.009
Crippen Calculated Property
McVol
54.010
ml/mol
McGowan Calculated Property
Pc
5818.28
kPa
Joback Calculated Property
Inp
[582.00; 638.00]
Inp
638.00
NIST
Inp
594.00
NIST
Inp
597.00
NIST
Inp
582.00
NIST
Inp
593.00
NIST
Inp
590.00
NIST
Inp
608.00
NIST
Inp
592.00
NIST
Inp
592.00
NIST
Inp
635.00
NIST
Inp
597.00
NIST
Inp
635.00
NIST
I
935.00
NIST
S°gas
310.50 ± 4.10
J/mol×K
NIST
S°liquid
280.20
J/mol×K
NIST
Tboil
[339.12; 348.75]
K
Tboil
339.12
K
Study o...
Tboil
348.57
K
Vapor-L...
Tboil
348.00
K
Study o...
Tboil
347.70
K
NIST
Tboil
348.75
K
NIST
Tc
543.20
K
Joback Calculated Property
Tfus
[175.85; 175.90]
K
Tfus
175.85
K
NIST
Tfus
175.90 ± 0.60
K
NIST
Ttriple
175.93 ± 0.02
K
NIST
Vc
0.188
m3 /kmol
Joback Calculated Property
Temperature Dependent Properties
Property
Value
Unit
Temperature (K)
Source
Cp,gas
[87.73; 133.05]
J/mol×K
[341.89; 543.20]
Cp,gas
87.73
J/mol×K
341.89
Joback Calculated Property
Cp,gas
96.41
J/mol×K
375.44
Joback Calculated Property
Cp,gas
104.62
J/mol×K
408.99
Joback Calculated Property
Cp,gas
112.37
J/mol×K
442.54
Joback Calculated Property
Cp,gas
119.68
J/mol×K
476.09
Joback Calculated Property
Cp,gas
126.57
J/mol×K
509.65
Joback Calculated Property
Cp,gas
133.05
J/mol×K
543.20
Joback Calculated Property
Cp,liquid
[118.00; 129.50]
J/mol×K
[288.15; 328.15]
Cp,liquid
118.80
J/mol×K
288.15
Thermop...
Cp,liquid
120.30
J/mol×K
293.15
Thermop...
Cp,liquid
118.00
J/mol×K
298.00
NIST
Cp,liquid
121.70
J/mol×K
298.15
Thermop...
Cp,liquid
120.84
J/mol×K
298.15
NIST
Cp,liquid
123.30
J/mol×K
303.15
Thermop...
Cp,liquid
124.40
J/mol×K
308.15
Thermop...
Cp,liquid
125.30
J/mol×K
313.15
Thermop...
Cp,liquid
126.80
J/mol×K
318.15
Thermop...
Cp,liquid
128.10
J/mol×K
323.15
Thermop...
Cp,liquid
129.50
J/mol×K
328.15
Thermop...
η
[0.0004580; 0.0005878]
Pa×s
[298.15; 318.15]
η
0.0005878
Pa×s
298.15
Studies...
η
0.0005128
Pa×s
308.15
Studies...
η
0.0004580
Pa×s
318.15
Studies...
Δfus H
[2.68; 6.57]
kJ/mol
[142.40; 175.90]
Δfus H
2.68
kJ/mol
142.40
NIST
Δfus H
6.57
kJ/mol
175.90
NIST
Δfus H
6.57
kJ/mol
175.90
NIST
Δvap H
[33.70; 35.80]
kJ/mol
[301.50; 339.00]
Δvap H
35.80
kJ/mol
301.50
NIST
Δvap H
34.10
kJ/mol
317.50
NIST
Δvap H
34.60
kJ/mol
326.00
NIST
Δvap H
33.70
kJ/mol
326.00
NIST
Δvap H
33.70
kJ/mol
339.00
NIST
ν
[0.0000005; 0.0000007]
m2 /s
[283.15; 313.15]
ν
0.0000007
m2 /s
283.15
Experim...
ν
0.0000006
m2 /s
298.15
Experim...
ν
0.0000005
m2 /s
313.15
Experim...
Pvap
[5.42; 49.01]
kPa
[280.46; 328.15]
Pvap
5.42
kPa
280.46
Vapor P...
Pvap
6.20
kPa
282.96
Vapor P...
Pvap
7.14
kPa
285.51
Vapor P...
Pvap
7.91
kPa
287.44
Vapor P...
Pvap
10.78
kPa
293.48
Vapor P...
Pvap
13.59
kPa
298.12
Vapor P...
Pvap
13.54
kPa
298.15
Isother...
Pvap
13.54
kPa
298.15
Isother...
Pvap
15.69
kPa
301.25
Vapor P...
Pvap
17.05
kPa
303.00
Vapor P...
Pvap
19.15
kPa
305.57
Vapor P...
Pvap
23.08
kPa
309.76
Vapor P...
Pvap
26.83
kPa
313.15
Isother...
Pvap
26.73
kPa
313.16
Vapor P...
Pvap
31.18
kPa
316.81
Vapor P...
Pvap
49.01
kPa
328.15
Isother...
Pvap
49.01
kPa
328.15
Isother...
n 0
[1.39740; 1.39800]
[298.15; 298.15]
n 0
1.39800
298.15
Studies...
n 0
1.39740
298.15
Physics...
n 0
1.39779
298.15
Vapor-L...
ρl
[1046.30; 1059.00]
kg/m3
[298.15; 308.15]
ρl
1047.20
kg/m3
298.15
Thermod...
ρl
1059.00
kg/m3
298.15
Vapour ...
ρl
1058.73
kg/m3
298.15
Ionic s...
ρl
1058.62
kg/m3
298.15
(Vapour...
ρl
1058.62
kg/m3
298.15
Surface...
ρl
1058.70
kg/m3
298.15
Probing...
ρl
1058.76
kg/m3
298.15
Isother...
ρl
1058.62
kg/m3
298.15
Experim...
ρl
1058.90
kg/m3
298.15
Densiti...
ρl
1051.80
kg/m3
303.15
Viscous...
ρl
1052.60
kg/m3
303.15
Densiti...
ρl
1046.30
kg/m3
308.15
Densiti...
Δfus S
[18.80; 37.33]
J/mol×K
[142.40; 175.90]
Δfus S
18.80
J/mol×K
142.40
NIST
Δfus S
37.33
J/mol×K
175.90
NIST
csound,fluid
[1270.90; 1406.30]
m/s
[283.15; 313.15]
csound,fluid
1406.30
m/s
283.15
Speeds ...
csound,fluid
1339.90
m/s
298.15
Speeds ...
csound,fluid
1340.20
m/s
298.15
Densiti...
csound,fluid
1271.60
m/s
313.15
Speeds ...
csound,fluid
1270.90
m/s
313.15
Densiti...
γ
[0.03; 0.03]
N/m
[288.15; 308.15]
γ
0.03
N/m
288.15
Densiti...
γ
0.03
N/m
298.15
Densiti...
γ
0.03
N/m
308.15
Densiti...
Correlations
Property
Value
Unit
Temperature (K)
Source
Pvap
[1.33; 214.40]
kPa
[256.45; 372.15]
The Yaw...
Equation ln(Pvp) = A + B/(T + C) Coefficient A 1.46333e+01 Coefficient B -3.02711e+03 Coefficient C -4.54420e+01 Temperature range, min. 256.45
Temperature range, max. 372.15
Pvap
1.33
kPa
256.45
Calculated Property
Pvap
3.04
kPa
269.31
Calculated Property
Pvap
6.33
kPa
282.16
Calculated Property
Pvap
12.23
kPa
295.02
Calculated Property
Pvap
22.16
kPa
307.87
Calculated Property
Pvap
37.98
kPa
320.73
Calculated Property
Pvap
62.03
kPa
333.58
Calculated Property
Pvap
97.16
kPa
346.44
Calculated Property
Pvap
146.69
kPa
359.29
Calculated Property
Pvap
214.40
kPa
372.15
Calculated Property
Similar Compounds
Find more compounds similar to 1,3-Dioxolane .
Mixtures
1,3-Dioxolane + Cyclopentane
1,3-Dioxolane + Cyclohexane
1,3-Dioxolane + Benzene
1,3-Dioxolane + Methyl Alcohol + Water
1,3-Dioxolane + Ethanol + Water
1,3-Dioxolane + 1-Propanol + Water
1,3-Dioxolane + Isopropyl Alcohol + Water
1,3-Dioxolane + 1-Butanol + Water
2-Propanol, 2-methyl- + 1,3-Dioxolane + Water
1,3-Dioxolane + 1-Butanol, 3-methyl- + Water
1,3-Dioxolane + Pentane, 1-chloro-
1,3-Dioxolane + Hexane, 1-chloro-
1,3-Dioxolane + n-Propyl chloride
1,3-Dioxolane + Tetrabutylammonium hexafluorophosphate
1,3-Dioxolane + 1-Propanol, 2-methyl-
2-Propanol, 2-methyl- + 1,3-Dioxolane
1,3-Dioxolane + Butane, 1-chloro-
1,3-Dioxolane + Butane, 2-chloro-
1,3-Dioxolane + Propane, 1-chloro-2-methyl-
1,3-Dioxolane + Propane, 2-chloro-2-methyl-
Find more mixtures with 1,3-Dioxolane .
Sources
Crippen Method
Crippen Method
Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures
Partial Molar Volumes, Viscosity B-Coefficients, and Adiabatic Compressibilities of Sodium Molybdate in Aqueous 1,3-Dioxolane Mixtures from 303.15 to 323.15 K
Viscous synergy and antagonism and isentropic compressibility of ternary mixtures containing 1,3-dioxolane, water and monoalkanols at 303.15K
Isothermal vapour-liquid equilibrium for cyclic ethers with 1-chloropentane
Vapour liquid equilibrium of cyclic ethers with 1-chlorohexane: Experimental results and UNIFAC predictions
Temperature dependence of limiting activity coefficients and Henry s law constants of cyclic and open-chain ethers in water
Study of isobaric vapour liquid equilibrium of some cyclic ethers with 1-chloropropane: Experimental results and SAFT-VR modelling
Ionic solvation of tetrabutylammonium hexafluorophosphate in pure nitromethane, 1, 3-dioxolane and nitrobenzene: A comparative physicochemical study
Separation of 1,3-dioxolane from its azeotropic aqueous solution by using Good's buffer ionic liquid [TMA][EPPS]
(Vapour + liquid) equilibrium of binary mixtures (1,3-dioxolane or 1,4-dioxane + 2-methyl-1-propanol or 2-methyl-2-propanol) at isobaric conditions
Densities and speeds of sound for binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures 298.15 K and 313.15 K
Surface study of mixtures containing cyclic ethers and isomeric chlorobutanes
Isothermal (vapour + liquid) equilibrium of (cyclic ethers + chlorohexane) mixtures: Experimental results and SAFT modelling
Partial molar volumes of organic solutes in water. XXII. Cyclic ethers at temperatures (298 to 573) K and pressures up to 30 MPa
Probing subsistence of ion-pair and triple-ion of an ionic salt in liquid environments by means of conductometric contrivance
(Liquid + liquid), (solid + liquid), and (solid + liquid + liquid) equilibria of systems containing cyclic ether (tetrahydrofuran or 1,3-dioxolane), water, and a biological buffer MOPS
Excess molar volumes and excess isentropic compressibilities of mixtures containing lactam, cyclic ethers and cyclic alkanones
Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15K Application of an extended cell model
Experimental and predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15K
Studies on liquid liquid interactions of some ternary mixtures by density, viscosity, ultrasonic speed and refractive index measurements
Thermodynamic properties of liquid mixtures containing 1,3-dioxolane and anilines: Excess molar volumes, excess molar enthalpies, excess Gibb's free energy and isentropic compressibilities changes of mixing
Physics and Chemistry of Lithium Halides in 1,3-Dioxolane and Its Binary Mixtures with Acetonitrile probed by Conductometric, Volumetric, Viscometric, Refractometric and Acoustic Study
Vapor Pressure and Its Temperature Dependence of 28 Organic Compounds: Cyclic Amines, Cyclic Ethers, and Cyclic and Open Chain Secondary Alcohols
Isothermal Vapor-Liquid Equilibria and Excess Gibbs Energies for Binary Mixtures of Cyclic Ethers with 1,2-Dichloroethane
Vapor-Liquid Equilibrium Data for Methanol + 1,3-Dioxolane + Water and Constituent Binary Systems at 101.3 kPa.
Experimental and predicted viscosities of the ternary mixture (hexane + 1,3-dioxolane + 2-butanol) at 298.15 and 313.15 K
Excess Molar Volumes and Viscosity Deviations of Binary Liquid Mixtures of 1,3-Dioxolane and 1,4-Dioxane with Butyl Acetate, Butyric Acid, Butylamine, and 2-Butanone at 298.15 K
Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques
Isobaric Vapor Liquid Equilibrium for the Ternary System (Formaldehyde + 1,3-Dioxolane + Water) at 101.3 kPa
Densities, Speeds of Sound, Excess Molar Enthalpies, and Heat Capacities of o-Chlorotoluene and Cyclic Ether Mixtures
Studies on Molecular Interactions of Some Thiocyanate Salts in Coaqueous Solutions of 1,3-Dioxolane + Water by Volumetric, Viscometric, and Speed of Sound Measurements
Densities, Viscosities, Refractive Indices, and Surface Tensions for the Mixtures of 1,3-Dioxolane + 2-Propanol or + 2,2,4-Trimethylpentane at (288.15, 298.15, and 308.15) K and 1,3-Dioxolane + 2-Propanol + 2,2,4-Trimethylpentane at 298.15 K
Density, Viscosity, Refractive Index, and Ultrasonic Speed of Binary Mixtures of 1,3-Dioxolane with 2-Methoxyethanol, 2-Ethoxyethanol, 2-Butoxyethanol, 2-Propylamine, and Cyclohexylamine
Vapor-Liquid Equilibria for Binary and Ternary Mixtures of 1,3-Dioxolane, 2-Propanol, and 2,2,4-Trimethylpentane at 101.3 kPa
Study of Solution Properties of Some Alkali Bromides in Aqueous Binary Mixtures of 1,3-Dioxolane in View of Different Models
Joback Method
McGowan Method
NIST Webbook
The Yaws Handbook of Vapor Pressure
Note: Cheméo is only indexing the data, follow the source links to retrieve the latest data. The source is also providing more information like the publication year, authors and more.
Take the time to validate and double check the source of the data.